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Abstract  
Hydrogen, producing electricity in fuel cells, is a versatile energy source, but with risks associated with 

flammability. Fuel cells use enclosures for protection which need ventilating to remove hydrogen 

emitted during normal operation or from supply system leaks. Passive ventilation, using buoyancy 

driven flow is preferred to mechanical systems. Performance depends upon vent design, size, shape, 

position and number. Vents are usually plain rectangular openings, but environmentally situated 

enclosures use louvres for protection. The effect of louvres on passive ventilation is not clear and has 

therefore been examined in this paper. Comparison ‘same opening area’ louvre and plain vent tests were 

undertaken using a 0.144 m3 enclosure with opposing upper and lower vents and helium leaking from 

a 4 mm nozzle on the base at rates from 1 to 10 lpm, simulating a hydrogen leak. Louvres increased 

stratified level helium concentrations by typically in excess of 15 %. The empirical data obtained was 

also used in a validation exercise with a SolidWorks: Flow Simulation CFD model, which provided a 

good qualitative representation of flow behaviour and close empirical data correlations. 
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Nomenclature and units  

nlpm Normal litre per minute 

lpm Litre per minute 

Cd Discharge coefficient 

Abbreviations 

STP Standard temperature and pressure 

LFL Lower flammable limit (Hydrogen = 4%) 

CFD Computational fluid dynamics 

 

1.0 Introduction 

There is a global move away from fossil fuel dependence and its replacement with a distributed energy 

system based around renewable energy sources. A ‘Hydrogen Economy’ is promoted as a transition 

measure that will support the development of the new renewable energy infrastructure. The hydrogen 

economy though will only succeed if concerns relating to hydrogen production, storage, transportation 

and safe conversion to a viable energy source are resolved. 

 

Hydrogen fuel cells are a key part of the initiative being used at a variety of scales to provide distributed 

energy. Low power fuel cells, housed in small protective enclosures, are likely to become widely used 
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in domestic and commercial applications. However, because fuel cells emit small amounts of hydrogen 

and there is the possibility of a leak from supply pipes, the enclosures represent a potential hydrogen 

confinement hazard. Hydrogen’s wide flammable range (4-75%) means that explosive mixtures can 

quickly develop, so effective ventilation is needed to maintain safe concentrations. Passive hydrogen 

removal research is motivated by accident prevention and the need to understand hydrogen’s behaviour 

in hazardous scenarios [1]. Hydrogen accidents begin with evolution/leaks in air, followed by ignition, 

fire or deflagration with thermal/pressure effects which can threaten life and property. Confinement 

scenarios have more serious outcomes since significant explosion overpressures can be developed [2]. 

Confidence in hydrogen safety will support fuel cell use and progression to the wider use of renewables.   

 

Deployment of small low power fuel cells is becoming popular in remote locations to replace diesel 

generators, powering lighting and cellular telephone towers. These installations are exposed to 

environmental conditions and require protective enclosures. Ventilation design in these enclosures is 

important so that water ingress is prevented, the effect of wind forces [3] is effectively managed and 

the possibility of vent blockages, e.g. by foliage, is accounted for. Vent obstructions impede air flow 

through the enclosure and can lead to increased concentrations of unvented hydrogen. Meshes may also 

be necessary to prevent rodents and insects from gaining access and damaging pipes and circuitry. 

 

Enclosure ventilation solutions require complex safety considerations and design insight. Natural 

ventilation is the flow of air through a confined volume due to wind, thermal and pressure differences. 

An extensive review [4] of the conditions responsible for producing natural ventilation found that 

density differences and buoyancy are the driving forces in scenarios where wind forces are absent, 

which is the case in some enclosure deployments. Two distinct regimes of natural ventilation were also 

identified: (i) mixing ventilation (e.g. via a single upper vent, which allows an exchange of air through 

a two-way flow) producing an (approximately) uniform condition throughout the interior of an 

enclosure and (ii) displacement ventilation (e.g. via two vents one located near the top and one near the 

bottom, with air flow in one direction) where a stratified condition develops with distinct layers. Natural 

ventilation theory developed for buildings [5] [6] has been  applied to buoyant gas enclosure scenarios.  

 

The presence of a buoyant gas in the ventilation flow has been shown to have an effect upon the flow 

dynamics. As such a distinction has been made between ‘natural ventilation’, applicable to the flow of 

air only and ‘passive ventilation’ which occurs when a buoyant gas such as hydrogen mixes with the 

air in the ventilation flow. It has been determined that for natural ventilation of air in an enclosure with 

one vent, the neutral plane (where internal pressure is equal to external air pressure) is located half-way 

up the opening (i.e. by making the approximation that the volumetric flow rates of air entering and 

leaving through the vent are equal). However, this is not necessarily the case for a passive ventilation 

scenario involving the release of a lighter than air gas (e.g. air and hydrogen), where for sufficiently 

high release rates, the neutral plane can be positioned anywhere between the half-way point and the 

bottom of the vent [7].  

 

 
(a)                                                   (b) 

Figure 1 (a) function f(X) for passive ventilation (solid line) and for natural ventilation (dash line). 

(b) hydrogen volume fraction (X) in enclosure as a function of neutral plane height fraction [7]. 
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Figure 1(a), taken from [7], compares the predictive capability of equations for passive and natural 

ventilation, showing the change of f(X) – the correction factor for passive ventilation - with the hydrogen 

volumetric fraction in air, X. It shows that if the natural ventilation equations were applied to a passive 

ventilation scenario it would under predict at low volumetric hydrogen concentrations and over predict 

for very high ones. Figure 1(b), also from [7], shows a functional dependence between the vent neutral 

plane height and hydrogen mole fraction. For a natural ventilation scenario where the hydrogen volume 

fraction is zero the neutral plane divides the vent equally for incoming and outgoing air. As the hydrogen 

volume fraction in the enclosure increases, associated with an increase in leak rate the neutral plane 

becomes lower. This phenomenon has relevance to other ventilation scenarios. Hydrogen management 

through passive venting is viable due to its inherent reliability and hydrogen’s suitability as a buoyant 

gas [8], so there is confidence in the application of these concepts to small fuel cell enclosures to manage 

concentrations below the LFL [9]. 

 

Environmentally situated enclosures use louvre vents (angled horizontal bars across the ventilation 

opening for protection). However, the ventilation performance of vents with louvres compared with 

plain rectangular vents is not clear. Previous passive ventilation studies have typically used plain, 

vertical, rectangular vents for which the discharge coefficient (Cd), a measure of vent flow resistance, 

can be readily determined. When louvres are fitted to a vent, the opening is no longer vertical, but 

angled close to the horizontal and it may also have rounded edges. These louvre vent characteristics 

will influence the Cd and the enclosure flow regime. Hence, data from plain vent tests cannot be simply 

applied to vents with louvres of the same opening area. Comparison tests were conducted to determine 

the extent of flow impairment. This investigation uses simplified louvre extensions to test their affect. 

Computational fluid dynamics (CFD) has capability in predicting hydrogen dispersion and can inform 

passive ventilation system design, with validated CFD models saving development time in engineering 

applications. SolidWorks Flow Simulation CFD is untested in this field, so this investigations empirical 

data has been used in a validation process for the code.  

 

2.0 Method: Experimental 

In this study, a test rig was constructed consisting of  Perspex outer chamber 1m x 1m x 2m long, 

intended to prevent draughts affecting experimental ventilation flow. The outer chamber contained a 

0.144 m3 plywood (5 mm) structure (0.6 m x 0.6 m x 0.4 m) (Figure 2), which represented a ventilated 

fuel cell enclosure, designed to facilitate the investigation of vent design on passive buoyant gas 

ventilation behaviour. A cross flow displacement ventilation vent arrangement was incorporated, with 

opposing upper and lower plain rectangular ventilation openings (20mm high x 360mm wide). 
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Figure 2 Experimental schematic showing the position of helium sensors and vents 

 

For the louvre vent tests, the plain vents were adapted with two 10mm horizontal louvre blade 

extensions across the full vent width. These were fabricated from stiff cardboard with one positioned at 

the vertical mid-point and one positioned at the top of the vent (Figure 3). The louvre and plain vents 
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were fabricated with the same vertical opening area, so any difference in passive ventilation flow 

between the two arrangements could therefore be attributed to a change in flow resistance or discharge 

coefficient, due to the presence of the horizontal louvre extensions. A horizontal extension is the 

simplest representation of a louvre. Louvres used on commercial installations are more restrictive.  
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Figure 3 Louvre vent design and specification 

 

A Brooks GF125 Digital Thermal mass flow controller (+/- 1.0% Flow Accuracy) supplied helium (A 

grade), used as a safe analogue for hydrogen, into the enclosure via a vertical 4mm diameter nozzle, 

centrally positioned 100 mm from the base of the enclosure, to simulate a leak from a fuel cell. Tests 

with plain vents and simplified louvre vents using helium leak rates from 1 to 10 nlpm was undertaken.  

Eight mini katharometer helium sensors (Xensor Ltd: TGC3880) were incorporated into the plywood 

enclosure to record gas dispersal behaviour. Two sensor arrangements were used. ‘Frame sensors’ 

comprised two horizontal lines of four sensors, mounted on a steel frame at heights of 345 mm and 555 

mm above the enclosure floor, to establish and average helium concentration in the upper part of the 

enclosure. ‘Stacked sensors’ comprised a single vertical column of eight sensors positioned centrally 

near to an end wall at heights of 120, 225, 320, 420, 470, 535, 570 and 590 mm above the enclosure 

floor, to provide data on the vertical concentration gradient and stratification within the enclosure. The 

sensors record data sequentially at one second intervals, so take a reading every eight seconds. For each 

test the flow passed through the transient phase to steady state as shown in figure 4. To avoid the effect 

of the amplitude perturbations shown in the graph, a 100 second time averaged section of steady state 

data was taken to provide average helium concentrations following the methodology in [10].  

 
Figure 4 Time series for top four stack sensors using louvre vents at 10 lpm 

 
2.1 Method: CFD Modelling 
SolidWorks Flow Simulation CFD was used to model the experimental setups in this investigation. 

Flow Simulation solves the equations for the conservation of mass, momentum and energy for fluid 

flows, supplemented by fluid state equations, which define the nature of the fluid with regards to, for 
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example, fluid density, viscosity and thermal conductivity. It was developed to investigate the turbulent 

flows encountered in engineering. To predict turbulent flows, it uses the ‘Favre-averaged Navier Stokes 

equations’, where time averaged effects of flow turbulence on flow parameters are considered [11]. The 

k–ɛ transport equation for turbulent kinetic energy and its dissipation rate[12] are used to close the 

equations (1-6). Flow Simulation uses one system of equations to describe both laminar and turbulent 

flows and transition from a laminar state to a turbulent state and vice versa is possible. Equation 7 is 

the function that allows for laminar-turbulent transition [11]. 
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𝜇𝑡 = 𝑓𝜇
𝐶𝜇𝜌𝑘2

𝜀
      (Turbulent eddy viscosity)  [6] 
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2
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20,5

𝑅𝑇
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𝜌𝑘2

𝜇𝜀
  ,     𝑅𝑦 =  
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𝜇
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0.05
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)

3

,   𝑓2 = 1 − exp (𝑅𝑇
2)  [8] 

 

The constants are 𝐶𝜇 = 0.09   𝐶𝜀1
= 1.44  𝐶𝜀2

= 1.92    𝜎𝜀   =1.3   𝜎𝑘  =1, CB = 1 if PB > 0 and 0 otherwise. 

 

SolidWorks design software was used to develop a computer aided design (CAD) solid geometric model 

of the fuel cell enclosure, containing all the wire frame, surface geometry required to describe the edges 

and faces required for a CFD simulation [11]. Horizontal vanes were applied to the openings for the 

louvre tests. This model was configured to simulate the empirical test conditions. The enclosure CAD 

model was placed within a computational domain the same size as the external rig housing used in the 

empirical tests. The simulation in these tests is modelling flow through the enclosure and the wider 

computational domain, which allows flow through the vents to be modelled explicitly. A volume flow 

inlet condition is applied to the horizontal top surface of the helium nozzle to reflect the leak rate. When 

the simulation is set up, a basic parallel piped cuboid ‘initial’ mesh, orthogonal to the Cartesian axes, is 

created in the computational domain. Mesh settings can refine the whole mesh density or for areas of 

interest, a ‘local initial mesh’ can be created using additional geometry (later disabled) which is meshed 

independently. This approach was adopted in this study, where a cone was added in the plume and a 

cuboid in the area of likely stratification. Mesh sensitivity was tested using three levels of refinement, 

with the most refined being selected.  

 

3.0 Results and discussion 

Four sets of tests were completed-experimentally and numerically; 

 Plain vents with frame sensors 

 Plain vents with stacked sensors 

 Louvre vents with frame sensors 
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 Louvre vents with stacked sensors 

Plain vent tests provide a standard against which to measure louvre vent performance. 

 

3.1 Experimental results: Plain Vents-Frame sensors  

The frame sensor results for the plain vent test are shown in figure 5. Figure 5 (a) shows a distinct 

difference in concentrations achieved by the sensors on the upper and lower bars of the frame. The 

lower bar at 345 mm does not exceed 0.3 % at the highest leak rate and the top bar at 555 mm achieves 

a maximum of 5.73 % at 10 lpm, with the LFL achieved at 6 lpm. The maximum average concentration 

of all the sensors is 2.86 % at 10 lpm.  

 

The much higher concentrations present at the top level clearly indicates the buoyant nature of the gas 

and the build-up of helium in the upper part of the enclosure suggests that stratification may be present. 

A further point of interest is the change of gradient at 3 lpm in figure 5 (a) for sensors 1 to 4 and also in 

figure 5 (b) from 3 lpm, the increase in concentration at each leak rate increase, is much reduced from 

that found between 1 lpm and 2 lpm and between 2 lpm and 3 lpm. This may be due to the helium leak 

developing from a weak plume to a stronger plume or more of a jet as the leak velocity increases. 
 

                   
(a)                                                                         (b) 

Figure 5 Frame sensor helium concentrations (a) for all sensors (b) at the 555 mm level 

 

             
                                     (a)                                                                              (b) 

Figure 6 Stacked sensor helium concentrations against height (a) Plain vents (b) Louvre vents 

 

3.1.1 Plain Vents-Stacked sensors 

Figure 6(a) presents the plain vent enclosure results with stacked sensors and Figure 6(b) the louvre 

vent stacked sensor results, discussed in section 3.2.4. The stacked sensor arrangement provides more 
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information about the enclosure concentration gradient and how it changes with height at each leak rate. 

With plain vents a distinct stratified layer is very evident in the enclosure, particularly from 3 lpm 

upwards. Concentrations above 4% (the LFL) are present above about 500mm and from 6 lpm upwards.  

 

The displacement ventilation scheme has created the predicted stratified layer at the top of the enclosure. 

This layer gradually thickens, and stratified layer concentrations increase as the helium leak rate 

increases. Of note again is the change in behaviour at 3 lpm. There is a clear development in the regime 

inside the enclosure with a significant increase in helium concentration in the stratified layer. 

 

3.1.2 Louvre Vents-Frame sensors 

Figure 7 (a) shows the graph for helium concentration against leak rate for the louvre vented enclosure 

using frame sensors. The trends presented are similar to those found with the plain vents (Figure 5), but 

the concentrations at the top row of sensors are higher, peaking at 6.03 % for the 10 lpm leak rate. 

Sensors 7 and 8 on the lower row have also recorded slightly higher concentrations as the leak rate 

increases. A change of gradient is again apparent from 3 lpm. 

 

               
                                     (a)                                                                         (b) 

Figure 7 Frame sensor helium concentrations (a) for all sensors (b) at the 555 mm level 

 

3.1.3 Louvre Vent-Stacked sensors 

The results in Figure 6(b) for louvre vents and stacked sensors show that a distinct stratified layer is 

present for all leak rates. The LFL is exceeded at 5 lpm (7 lpm for plain sensors) and all leak rates 

produce concentrations exceeding 25 % of the LFL in the stratified layer. The addition of two horizontal 

louvres has changed the ventilation regime present in the enclosure. The louvres would appear to be 

reducing the flow rate through the vents causing the helium to ‘back-up’ and build a thicker layer at the 

top of the enclosure, than was experienced with plain vents.  

 

                
(a)                                                                  (b) 



8 
 

 

             
                                              (c)                                                                            (d)     

 

Figure 8 Comparison of plain (P) and louvre (L) vent (stacked sensor) concentrations at (a) 1 lpm, 

(b) 2 lpm, (c) 4 and 10 lpm and (d) Frame sensor concentrations at sensor 1 (Peak concentrations 

shown on graph) 

 

Figure 8 (a) shows a comparison of stacked sensor readings for plain and louvre vents at 1 lpm and 8 

(b) at 2 lpm.  Although the LFL is not exceeded at these leak rates, the increase in high-level 

concentration is quite marked with the addition of louvres on the vent opening. At 1 lpm the peak 

concentration goes from 0.23 to 1.68 % and at 2 lpm the peak concentration jumps from 0.59 to 3.04 

%, an increase of almost 2.5 percentage points. Figure 8 (c) compares enclosure helium concentrations 

using plain and louvre vents at 4 and 10 lpm. In both instances the addition of louvres has increased 

helium concentrations in the stratified layer, by 16.66 % (at 4 lpm) and 15.12 % (at 10 lpm). Figure 8(d) 

shows the difference in plain and louvre vent concentrations at frame sensor position 1. Apart from at 

1 lpm, the addition of louvres has led to an increase in helium concentration. 

 

3.2 CFD results (SolidWorks: Flow Simulation): 

 

  
(a)                                              (b)                                                     (c) 

 

Figure 9 SolidWorks Flow Simulation images (a) Enclosure (b) Louvres (c) Cut plane at 10lpm 

 

Two simplified CAD models were created in SolidWorks (Figure 9(a)), one with plain vents and one 

with louvre vents (Figure 9 (b)). A computational domain equivalent to the outer enclosure was created 

and a series of simulations were run at leak rates from 1 to 10 lpm. Point source data was then extracted 

for helium concentration at the equivalent experimental sensor positions. Figure 9(c) is an example cut 

plot of helium concentration in the enclosure, showing the helium plume and stratified zone. 

 

3.2.1 Plain Vents-Frame sensors 

Figure 10 presents the frame sensor CFD concentration data. The overall trends in terms of increasing 

concentration with increased leak rate are similar to those for the experimental data in figure 5. The 

simulations have reproduced the flow behaviour seen experimentally with similar concentrations. 
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Differences are that CFD helium concentrations are higher for the top sensor positions at low leak rates, 

and CFD top sensor concentrations at higher leak rates are lower than with the empirical data. 

                       
                                     (a)                                                                              (b) 

Figure 10 Frame sensor helium concentrations (a) for all sensors (b) at the 555 mm level 

 

3.2.2 Plain Vents-Stacked sensors 

                     
                                     (a)                                                                              (b) 

Figure 11 Stacked sensor helium concentrations against height (a) Plain vents (b) Louvre vents 

Figure 11(a) presents the plain vent enclosure CFD results with stacked sensors and Figure 11(b) the 

louvre vent stacked sensor results, discussed in section 3.2.4. The trends produced by the experimental 

data of increasing concentration with height are reflected in the CFD data. The LFL is exceeded at the 

6lpm leak rate, which is the same as for the empirical data. The maximum achieved is 5.29% at 10lpm 

(5.59 % for empirical data), and the depth of the stratified layer is deeper across the leak rate range. The 

1 and 2lpm data series also both exceed the 1% (25% of LFL) mark, whereas the empirical data did not.  

 

3.2.3 Louvre Vents-Frame sensors  

Figure 12(a) presents frame sensor CFD data for concentration against leak rate. The trends presented 

are similar to those found with the experimental data in figure 7, with flow behaviour replicated and 

similar concentrations. The LFL is exceeded by the top sensor positions with the 5 lpm leak rate, 

whereas it was at 6lpm with the empirical data. Concentrations are marginally higher than the CFD data 

for plain vents but are slightly lower than the empirical data. Bottom sensor point data is also lower 

than for CFD plain vents, notably so at the higher leak rates. Figure 13 compares the CFD plain and 

louvre vent data at sensor 4.  It shows that as the helium leak rate increases the louvre vent enclosure 
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concentration is higher than for that found with the plain vent enclosure. The model has identified 

additional flow resistance leading to a concentration increase. 

 

                   
                                          (a)                                                                     (b) 

Figure 12 Frame sensor helium concentrations (a) for all sensors (b) at the 555 mm level 

 

 
Figure 13 Comparison of CFD plain and louvre vent data at frame sensor 4 

 

3.2.4 Louvre Vents-Stacked sensors  

Figure 11 (b) presents louvre vent CFD data for enclosure height against helium concentration. The 

experimental trends of increasing concentration with height are present, but with slightly lower 

concentrations. The LFL is exceeded at 5lpm (6lpm for CFD plain vent tests and 5 lpm for experimental 

louvre vents tests). The depth of the stratified layer appears slightly shallower than for the CFD plain 

vent data in figure in figure 11(a), which is the opposite to what was found with the experimental tests.  

 

3.2.5 Comparison of experimental and CFD data 

The CFD validation exercise produced qualitative results that suggested the model was behaving in the 

way expected.  Some of the CFD tests predicted helium concentrations that were at variance with the 

empirical tests, but in some cases the predictions were very close.  Figure 14 compares the  CFD and 

experimental frame sensor data at sensor 4.  The correlation between the two data sets is very good with 

most variance at low leak rates.  

 

Figure 15 (a) compares the CFD and empirical plain vent stacked sensor results at 10 lpm. The 

correlation is very good apart from in the stratified zone where the CFD has slightly under-predicted. 

In figure 15 (b) the peak concentrations are close, but the CFD has produced a shallower stratified zone. 

Figure 16 (a)  compares CFD and experimental plain vent data for the stacked sensors at 4 lpm. The 

peak CFD concentration is slightly higher than with the experimental data and the CFD produces a 

deeper stratified zone. In figure 16 (b) the louvre data is compared. Again the peak concentrations are 

close but, on this occasion, the experimental data has a deeper stratified zone. 
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Figure 14 Comparison of CFD and experimental data at frame sensor 4 
 

                      
(a)                                                                   (b) 

Figure 15 Comparison of CFD and experimental data (a) plain and (b) louvre vents at 10 lpm 

                            
(a)                                                                          (b) 

Figure 16 Comparison of CFD and experimental data (a) plain and (b) louvre vents at 4 lpm 

 

4.0 Conclusion and future work 

This study has considered low-level helium leaks in a small fuel cell enclosure to understand when 

flammable levels are achieved. Empirical data shows that adding simple louvres to the plain vent 

openings increases helium concentrations in the stratified zone, which is also deeper, therefore 

increasing the volume in which a flammable mixture may be formed. At a leak rate of 10 lpm for the 

peak concentration, the relative percentage difference between plain and louvre vent performance is 

14.6 %. For this leak rate at the 4 % concentration point the relative percentage difference in stratified 

depth is 19.5 %. Louvres increase flow resistance through the enclosure, so direct replacement of plain 

vents with same opening area louvre vents will not achieve the same performance, larger louvre vents 

would be necessary. The CFD predictions produced some good results with excellent correlations as 



12 
 

shown by figures 14 and 15(a). Generally, peak concentrations were close, but with some variation in 

stratified depth. A comparison of experimental and CFD results using relative percentage difference 

showed that with; 

 

 Plain vent experimental and CFD data peak concentrations at 10 lpm: rpd = 6.0 % 

 Plain vent experimental and CFD data at 10 lpm, stratified depth at 4% point: rpd = 0 % 

 Louvre vent experimental and CFD data peak concentrations at 10 lpm: rpd = 11.1% 

 Louvre vent experimental and CFD data at 10 lpm, stratified depth at 4 % point: rpd = 9.1 % 

 

These findings support the use of SolidWorks Flow Simulation in this field and contribute towards 

validating its capability. Future enclosure investigations will test proprietary aluminium louvre vents.   
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 Passive ventilation tests comparing plain rectangular vents and vents with louvre vanes 

 Louvre vents shown to impede passive ventilation flow through the enclosure 

 Louvre vents shown to increase stratified level buoyant gas concentrations 

 SolidWorks Flow Simulation CFD validation exercise 
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