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Abstract† 

The synthesis of 1,2-butylene carbonate (BC) from cycloaddition reaction of 1,2-butylene 

oxide (BO) and carbon dioxide (CO2) was investigated using several heterogeneous catalysts 

in the absence of organic solvent. Continuous hydrothermal flow synthesis (CHFS) has been 

employed as a rapid and cleaner route for the synthesis of a highly efficient graphene-inorganic 

heterogeneous catalyst, ceria-lanthana-zirconia/graphene nanocomposite, represented as Ce–

La–Zr/GO. The heterogeneous catalysts have been characterised using transmission electron 

microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD)  

and nitrogen adsorption/desorption (BET for measuring the surface area/pore size 

distribution),. Ceria- lanthana-zirconia/graphene nanocomposite catalyst (Ce–La–Zr/GO) 

exhibited high catalytic activity as compared to other reported heterogeneous catalysts in the 

absence of any organic solvent with a selectivity of 76% and 64% yield of 1,2-butylene 

carbonate at the reaction conditions of 408 K, 75 bar in 20 h. 

Keywords: 1,2-butylene carbonate (BC), carbon dioxide (CO2), continuous hydrothermal 

flow synthesis (CHFS), ceria, lanthana and zirconia graphene oxide nanocomposite (Ce-La-

Zr/GO), heterogeneous catalysts.

                                                 
† Abbreviations : BC, 1,2-butylene carbonate; BO, 1,2-butylene oxide; CO2, Carbon dioxide;CHFS, Continuous 

hydrothermal flow synthesis; Ce-LA-Zr/GO, Ceria lanthana, and zirconia graphene oxide; Ce-La-Zr-O, Ceria and 

lanthana doped zirconia; BET, Brunauer–Emmett–Teller; SEM, scanning electron microscope; TEM, 

Transmission electron microscopy; XRD, x-ray diffraction; (XPS), X-ray photoelectron spectroscopy; Ce-Zr-O, 

Ceria doped zirconia; (EC), ethylene carbonate; (CMEC), (chloromethyl) ethylene carbonate; (VCHC), 4-vinyl-

1-cyclohexene carbonate; (MgO), magnesium oxide; (GO), graphene oxide; FID, Flame ionization detector; GC, 

Gas chromatograph; La-O, Lanthanum oxide; (La-ZrO2), Lanthana doped zirconia; (ZrO2), Zirconium oxide; 

(CeO2), Cerium oxide; MEL Chemicals, Magnesium Elektron Limited Chemicals; PO,  propylene oxide; PC, 

propylene carbonate; t,  time (h); scCO2, Supercritical CO2; SCF, Supercritical fluid, (NGP), Natural graphite 

powder; (HCL), Hydrochloric acid; (H2SO4), Sulphuric acid; (K2O2), sodium nitrate, potassium hydroxide pellet; 

(H2O2), Hydrogen peroxide; (C3H6O), Acetone; (C8H18), Octane; (KMnO4), Potassium permanganate; (CH3OH), 

Methanol; (Ce(NO3)3 · 6H2O), Cerium(III) nitrate hexahydrate; (La(NO3)3⋅6H2O), Lanthanum (III) nitrate 

hexahydrate; (ZrO(NO3)2 · xH2O), Zirconium (IV) oxynitrate hydrate.  
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1. INTRODUCTION 

The global emission of carbon dioxide (CO2) into the atmosphere has reached unsustainable 

level resulting in climate change and therefore there is the need to reduce the emission of CO2 

[1]. Recently, there has been a tremendous interest in the use of CO2 as an environmentally 

benign building block in the chemical industry due to its chemical and physical properties (e.g. 

chemical inertness, stability, non-flammability, non-toxicity) allowing to be  considered as an 

attractive green replacement of toxic reactants (e.g. isocyanates, phosgene) [2,3]. CO2 is 

regarded as a stable compound due to its carbon covalently bonded to two oxygen atoms, 

although the thermodynamic stability of CO2 requires a significant amount of energy to be 

decomposed [4]. There are known ways in which CO2 emissions could be reduced such as 

replacing fossil fuels with renewable energy [5], carbon capture and storage (CCS) [6] and CO2 

utilisation [7]. The use of CO2 for the synthesis of valuable products such as cyclic carbonates 

and polycarbonates via greener routes is highly desirable. The reactions of CO2 with epoxides 

are exothermic and generate organic carbonates such as cyclic [8] and polycyclic carbonates 

[9]. 

Organic carbonates such as acyclic, cyclic and polycyclic carbonates are widely used chemicals 

in agriculture, automobile, cosmetic, lithium battery, paint and pharmaceutical industries 

[10,11]. Cyclic carbonates such as ethylene carbonate (EC), 1,2-butylene carbonate (BC), 

propylene carbonate, (PC), (chloromethyl) ethylene carbonate (CMEC), 4-vinyl-1-

cyclohexene carbonate (VCHC) and styrene carbonate (SC) have been synthesised through the 

direct synthesis of CO2 with their respective epoxides in the presence of either homogeneous 

or heterogeneous catalysts, but only a few have been commercialised [12,13]. 

1,2-butylene carbonate is a valuable chemical of great commercial interest. It is an excellent 

reactive intermediate material used in industry for the production of plasticisers, surfactant, 

and polymers and can also be used as a solvent for degreasing, paint remover, wood binder 

resins, foundry sand binders, lubricants as well as a potential solvent for lithium battery as 

energy generation because of its high polarity property [14,15]. The significance of this 

research is not only to reduce CO2 emission in the atmosphere, which causes global warming, 

but also to produce a value-added chemical. 

There have been several routes reported for the synthesis of cyclic carbonates that include the 

followings: oxidative carboxylation of alkenes [15], oxidative carbonylation of alcohol and 
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phenol [17], the reaction of urea and phenol or alcohol, phosgene and oxetanes [18],  and direct 

synthesis of CO2 with epoxides [19]. 

These processes of cyclic carbonates synthesis use toxic materials and produce harmful by-

products, which are cancer-causing substances. These toxic materials could pose a severe 

health challenge and a threat to the environment. The shortcomings of the traditional approach 

remains a major challenge in recent times. 

Recent studies have shown that the use of catalysts has not only facilitated the process of 

greener organic carbonates synthesis but enhanced the selectivity of the desired products and 

fulfilled the requirement for the sustainability of the greener chemical process [11].  

Various homogeneous catalytic processes have been studied extensively such as ionic liquid 

[20], salen metal complex [21], salt and metal halide [22], for the synthesis of cyclic carbonate 

through the catalytic reaction of CO2 and epoxides. However, the processes have suffered 

various drawbacks due to the high cost of catalyst production, difficulty in separation of 

product from the reaction mixture, complexity of processes, co-solvent use, potential 

production of toxic species, limitation of catalyst reusability and instability of the catalyst under 

room condition [23,24]. 

Several metal oxide catalysts have been developed and assessed for the effective synthesis of 

cyclic carbonates such as magnesium oxide (MgO) [25], graphene oxide (GO) [26],  zirconium 

oxide (ZrO2) [27], cerium oxide (CeO2) [27], lanthanum oxide (La2O3)  and a mixed metal 

oxide such as ceria doped zirconia oxide (Ce-ZrO2) [28], Furthermore, it has been identified 

that the use of support can enhance the dispersion of the active sites, the stability of catalyst, 

and consequently offer improvements of the catalytic properties of the material.  Recent studies 

have shown numerous materials have been used extensively as suitable supports such as 

activated carbon, silica, molecular sieves, metal oxides and graphene oxide [29]. 

Graphene (a unique 2D single layer of one atom thick sp2 carbon) and its derivatives represent 

an advanced class of catalysts materials with novel characteristics (very high surface area and 

easy surface modifications) [30–32]. Indeed, in this paper, we report the use of graphene 

derivative (ceria-lanthana-zirconia/graphene nanocomposite) as high-quality catalyst material 

(highly stable and active) prepared via controlled, easily scalable continuous hydrothermal 

flow synthesis (CHFS). 

The use of CHFS reactors over conventional means gives an independent control over reaction 

variables such as temperature, flow rate and pressure [33]. The process of CHFS involves the 

continuous mixing of supercritical water stream with an aqueous precursor/flow (typically 
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metal salts) to produce spontaneous precipitation of nanoparticles with desirable composition 

and properties.  

The catalytic activities of the CHFS synthesised Ce-La-Zr/GO inorganic nanocomposite have 

been tested using a new, greener and sustainable process for the direct synthesis of 1,2-butylene 

carbonate from CO2 with 1,2-butylene oxide. The effect of various parameters such as catalysis 

loading, reaction temperature, reaction time, CO2 pressure has been studied. Catalyst 

reusability studies have been carried out to investigate the stability and reusability of the 

catalyst for the synthesis of BC. 

2. EXPERIMENTAL 

2.1. Materials 

Table 1 lists the chemicals used and their respective sources. These chemicals were used 

without further pre-treatment or purification. 

Table 1: List of chemicals and their sources 

Chemicals Chemical formula Sources 

Natural graphite powder ( NGP)  Fisher Scientific UK Ltd 

Hydrochloric acid  HCl Fisher Scientific UK Ltd 

Sulphuric acid  H2SO4 Fisher Scientific UK Ltd 

Sodium nitrate NaNO3 Fisher Scientific UK Ltd 

Potassium hydroxide pellet  KOH Fisher Scientific UK Ltd 

Hydrogen peroxide  H2O2 Fisher Scientific UK Ltd 

Acetone  C3H6O Fisher Scientific UK Ltd 

Octane  C8H18 Fisher Scientific UK Ltd 

Potassium permanganate  KMnO4 Fisher Scientific UK Ltd 

Methanol CH3OH Sigma–Aldrich Co. LLC, UK 

Cerium(III) nitrate hexahydrate Ce(NO3)3 · 6H2O Sigma–Aldrich Co. LLC, UK 

Lanthanum (III) nitrate hexahydrate  La(NO3)3⋅6H2O Sigma–Aldrich Co. LLC, UK 

Zirconium (IV) oxynitrate hydrate  ZrO(NO3)2 · xH2O Sigma–Aldrich Co. LLC, UK 

1,2-butylene oxide  C4H8O Sigma–Aldrich Co. LLC, UK 

1,2-butylene carbonate  C5H8O3 Sigma–Aldrich Co. LLC, UK 

Magnesium oxide  MgO Sigma–Aldrich Co. LLC, UK 

Zirconium oxide and ceria,  ZrO2 MEL Chemical Company Ltd 
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2.2 Preparation and characterisation of ceria-lanthana-zirconia oxide/graphene 

nanocomposite synthesis via CHFS 

 

2.2.1 Graphene Oxide (GO) Preparation 

An improved method of Hummers and Offeman [34] was used to prepare GO from NGP using 

KMnO4 as an oxidizing agent. 1.25 g of NaNO3 and 1.25 g of NGP was added into 57.5 mL of 

H2SO4, which was stirred continuously with a magnetic stirrer in an ice bath for 15 mins. 10 g 

of KMnO4 was added to the black slurry mixture gradually under a continuous stirring which 

was left for 15 mins. The resulting dark green mixture was transferred to an oil bath at 40 oC 

and stirred at 600 rpm for 90 mins. The deionised water of 100 mL was added slowly to the 

dark green mixture for about 15 mins then 15 mL of hydrogen peroxide (H2O2) was added in 

a dropwise manner for about 5 mins followed by another 100 mL of deionised water. The 

resulting light brown mixture was kept at 90 oC and stirred continuously at 600 rpm for 15 

mins. The mixture was cooled to room temperature and the product was subject to 

centrifugation (5000 rpm, 5 mins per cycle). The product was washed with diluted HCl (10 mL 

of HCl in 80 mL deionised water) four times and deionised water three times in order to remove 

impurities. The GO was freeze-dried for 24 hrs. 

 

2.2.2 Preparation of ceria-lanthana-zirconia oxide/graphene nanocomposite synthesis via 

CHFS 

CHFS experiment was conducted using a reactor with a basic design that has been reported 

earlier [35-36]. CHFS simplified schematic of which is shown in Figure 1, mainly consists of 

three HPLC pumps (utilised for delivery of the water and desired precursors), counter-current 

reactor, cooler and back-pressure regulator. In a typical experiment, each pre-mixed aqueous 

Cerium oxide  CeO2 MEL Chemical Company Ltd 

Lanthana oxide  La2O3 MEL Chemical Company Ltd 

Lanthana doped zirconia  La-ZrO2 MEL Chemical Company Ltd 

Lithium doped zirconia  Li-ZrO2 MEL Chemical Company Ltd 

Ceria doped zirconia  Ce-ZrO2 MEL Chemical Company Ltd 

Lanthana doped zirconia  Ce-La-ZrO2 MEL Chemical Company Ltd 

Liquid carbon dioxide cylinder (99.9%) CO2 BOC Ltd., UK. All 



5 

 

solution of Ce(NO3)3.6H2O, La(NO3)3.6H2O and ZrO(NO3).6H2O (with a total metal ion 

concentration of 0.2 M) Ce:La:Zr nominal atomic ratios (15:5:80) and pre-sonicated aqueous 

solution of GO (4 µgm/L) were pumped (via Pump 2) to meet a flow of KOH (1 M, delivered 

via Pump 3) at a T-junction (see Figure 1). The molar ratio of metal salt mixture Ce3+/La3+/Zr4+ 

to GO was 1:1. This mixture meets superheated water (delivered via Pump 1 through the heater) 

at 24.1 MPa of 450 oC inside an in-house built countercurrent reactor whereupon the formation 

of Ce-La-Zr/GO occurred continuously [38,]. The aqueous suspension was cooled through a 

vertical cooler and slurries were collected from the exit of the back-pressure regulator (BPR). 

The product was separated via centrifugation (5000 rpm), washed with de-ionised water twice 

and then freeze-dried. 

 

Figure 1: Schematic of a CHFS reactor set up used for the production of Ce-La-Zr/GO 

inorganic nanocomposite catalyst 

2.3 Experimental procedure for the synthesis of 1, 2-butylene carbonate 

The synthesis of BC was carried out in a 25 mL stainless steel high-pressure autoclave details 

of which have been reported previously [15] equipped with a stirrer, thermocouple and a 

heating mantle and controller. The reactor was charged with a required amount of BO and 

catalyst. The reactor was heated to the required temperature and continuously stirred at a known 
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stirring speed. The supercritical fluid pump was used to pump CO2 at a desired pressure from 

the cylinder to the reactor and left for a specified time. The time at which the liquid CO2 was 

charged into the reactor was taken as the starting time (t=0). After the reaction, the reactor was 

cooled down to room temperature using an ice bath. 

The reactor was depressurized and the reaction mixture was filtered. The recovered catalyst 

was washed with acetone and dried in an oven while the products were analysed using a gas 

chromatography (GC) equipped with a flame ionization detector (FID) with a capillary column 

using octane as an internal standard. The effect of various parameters such as catalyst types, 

catalyst loading, CO2 pressure, reaction temperature and reaction time was studied for the 

optimization of the reaction conditions. Catalyst reusability studies were also conducted to 

assess the stability of the catalyst for synthesis of BC.  

 

2.4 Method of analysis 

The separation and identification of experimental samples were done by Shimadzu gas 

chromatography (GC). The GC was equipped with a capillary column of dimension (30m x 

320µm x 0.25 µm) and flame ionization detector (FID) as the detector. High purity (99.9%) 

helium was used as carrier gas at a flow rate of 1 mL/min. The injection and detector 

temperatures were maintained isothermally at 553 K. A split ratio of 50:1 and injection volume 

of 0.5 µL were chosen as a part of the GC method. A ramp method was used to differentiate 

all the components present in the sample mixture and the initial temperature was set at 323 K. 

An autoinjector was used to inject sample for analysis. The oven’s temperature was set at 323 

K for 5 min after the sample injection which was then ramped to 553 K at the rate of 25 K/min. 

The total run time for each sample was ̴ 14min. After each run, the oven’s temperature was 

cooled down to 323 K for successive sample runs. Octane was used as an internal standard. A 

chromatograph of sample mixture analysed using GC revealed that octane, BO and BC peak 

occurred at residence times of ̴  4,  ̴7 and  ̴12 respectively. 

2.5 Equipment and catalyst characterisation techniques 

Heto PowerDry PL3000 freeze-dryer has been used for freeze-drying all the samples. This was 

done by using liquid nitrogen to freeze the washed catalysts and left in a freeze drier for ca. 24 

h.-TEM of Ce-La-Zr/GO was investigated using a JEOL 2100FCs with a Schotty Field 

Emission Gum transmission electron microscope (200 kV accelerating voltage). The sample 

was collected on the carbon-coated copper grid (Holey Carbon Film, 300 mesh Cu, Agar 

Scientific Essex, UK) after being briefly dispersed ultrasonically in water. BET surface area 
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measurements of heterogeneous catalysts were performed on a Micromeritics Gemini VII 

analyser (nitrogen adsorption and desorption method). Barrett-Joyner-Halenda (BJH) method 

was used to obtain the pore size distribution and pore volume. The XRD data of the prepared 

Ce-La-Zr/GO via CHFS reactor was collected on a Stoe Stadip diffractometer using Mo 

radiation (0.7093) angstrom wavelength) set at 30 mA, 50 kV using a Germanium 111 

monochromatic crystal to select K alpha 1. A small amount of Ce-La-Zr/GO was placed 

between two polymer sheets clamped into a 3mm aperture holder and rotated in the X-ray 

beam. Dectris Mythen 1 K silicon strip Position Sensitive Detector (PSD) was used as a 

detector. Data were collected by scanning at position 2 to 45 2θ degree at 0.5o steps and 30 

seconds per step, the step resolution of the data being 0.015o
. LaB6 standard was used to check 

diffractometer alignment. 

XPS measurements were performed using a Kratos Axis Ultra DLD photoelectron 

spectrometer utilizing monochromatic Alka source operating at 144W. Samples were mounted 

using conductive carbon tape. Survey and narrow scans were performed at constant pass 

energies of 160 and 40 eV, respectively. The base pressure of the system is ca. 4 x 10-9 Torr 

under the analysis of these samples. 

3. Results and discussion 

3.1 Proposed reaction mechanism 

The active acidic and basic site on the surface of mixed metal oxide catalyst plays a vital role 

in the synthesis of a cyclic carbonate and influences the selectivity of the product massively 

[47]. The reaction pathway for the synthesis of BC from the reaction of BO and CO2 in the 

presence of the heterogeneous catalyst is shown in Figure 2a. The proposed reaction 

mechanism in which the metal atom M consists of Lewis acid site and an oxygen atom O 

consists of Lewis basic site is shown in Figure 2b. The reaction was initiated by adsorption of 

CO2 on the basic site of the metal oxide catalyst to form a carboxylate anion and BO was 

activated by adsorption on the acidic site. The previous report has also suggested the parallel 

requirement of both Lewis base activation of the CO2 and Lewis acid activation of the epoxide 

[48]. The carbon atom of BO is attacked by a carboxylate anion that leads to the ring opening 

of BO to form an oxyanion species and this was also supported by Adeleye et al [19]. BC 

formed as a product through desorption from the dissociation of metal oxide (catalyst) from 

the oxyanion species leads to a ring closure [27]. The side products associated with the reaction 
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of BO and CO2 includes an isomer of BO and oligomers of BC which were below the detection 

limit of the GC-FID used in the analysis. 

 

Figure 2: Synthesis of 1,2-butylene carbonate (BC) using a heterogeneous catalyst.  

(a) Reaction scheme and (b) Plausible reaction mechanism. 

3.2 Catalyst characterisation 

In this work, rapid, single step, Continuous Hydrothermal Flow Synthesis (CHFS) approach 

was used for the synthesis of nanocomposite inorganic. Fig 3 shows a schematic representation 

of the synthesized Ce-La-Zr/GO inorganic nanocomposite. The Ce-La-Zr/GO inorganic 

nanocomposite was produced from 0.2 M (total concentration) of a pre-mixed aqueous solution 

of cerium, lanthanum and zirconium nitrate (Ce3+: La3+: Zr4+ at 15: 5: 80 atomic ratios) and 

GO (synthesised via conventional Hummer method) under alkaline conditions (KOH, 1M).  
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Figure 3: A schematic representation of the synthesized Ce-La-Zr/GO  nanocomposite. 

The transmission electron microscopy (TEM) images of GO and Ce-La-Zr/GO nanocomposite 

catalyst are shown in Figure 4, where  Ce-La-Zr/GO catalyst exhibits a mean particle size of 

5.78 ± 1.56 (see Table 2). Additionally, for comparative purposes, commercially available 

catalysts were also used for preliminary work and some of their characteristics are shown in 

Table 2. 

X-ray powder diffraction (XRD) shown in Figure 5 was employed to assess the phase 

composition and crystallinity of CHFS as-prepared catalysts Ce-La-Zr/GO and GO (starting 

precursor ). The XRD pattern of the nanocomposite matched with Zr0.84Ce0.16O2 (ICDD 

standard card No. 38-1437) structure as indicated in the previously reported research [15].. The 

composition, oxidation states and chemical states of the as-synthesised materials 

wereexamined and analysed by X-ray photoelectron spectroscopy (XPS). Figure 6 shows the 

XPS analysis of the metal ratio of Ce-La-Zr/GO and the spin-orbit splitting of the La3d5/2 peak 

(ca. 4.5eV) indicating La2O3 phase for the latter. The spectra of samples revealed strong peaks 

corresponding to cerium, lanthanum, zirconium, oxygen and carbon. The hydrothermal process 

is effective in reducing GO as reported in by Kellici et al [42]. The C(1s) XPS spectra of Ce-

La-Zr/GO made hydrothermally revealed the reduction of the peak intensities of the oxygen-

containing functional group (epoxide, carboxyl and hydroxyl), which is associated with GO as 

starting material. The XPS analysis further revealed the presence of mixed Ce(III) and Ce (IV) 

species as evidenced by the peak at ca. 900 eV [43]. The XPS spectrum of the state Zr 3d core 

level shows a strong spin-orbit doublet due to ZrO2 at 182.2 eV while at state 183.4 eV is due 

to Zr-OH bonds. The Zr-OH is supported by large O(1s) component at 531.4 eV[50]. The 

presence of suboxides is eliminated at these lower binding energies (ca 179-181 eV).  
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Figure 4: Transmission electron microscopy (TEM) images of (a) graphene oxide and (b) ceria, 

lanthana and zirconia graphene oxide (Ce-La-Zr/GO). 

 

  
Figure 5: X-ray diffraction (XRD) patterns of ceria-lanthana - zirconia/graphene oxide (Ce-La-

Zr/GO), and graphene oxide (GO) catalysts. 
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Figure 6: X-ray photoelectron spectroscopy (XPS) spectra showing (a) deconvoluted C(1s) (b) 

Ce(3d) and La(3d) region (c) O(1s) region and (d) Zr(3d) region for CHFS synthesized Ce-La-

Zr/GO catalysts. 
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Table 2: Physical and Chemical Properties of Heterogeneous Catalysts and Synthesized Ce-La-Zr/GO Inorganic Nanocomposite Catalyst 

Catalyst 

Properties 

 Catalyst  

Zr-O GO La-O La-Zr-O Ce-Zr-O Ce-La-Zr-O  Ce-La-Zr/GO 

Physical form White 

powder 

Black 

powder 

White 

powder 

White 

powder 

Pale yellow 

powder 

Pale yellow 

powder 

Black  

powder 

Composition (%) ZrO2: 95±5 O: 24.64 

C: 75.36 

La2O3: 100 

 

La2O3: 10±1 

ZrO2: 90±1 

CeO2: 18±2 

ZrO2: 82±2 

CeO2: 17±2 

La2O3: 5±1 

ZrO2: 78±3 

Ce: 2.98 

La:1.19 

O: 34.99 

 C: 47.29 

 K: 0.8 

 Zr: 12.75 

  

BET surface area  310 124 22 75 70 55 115 

(m2 g-1)        

Pore volume  

(cm3 g-1) 

0.45 0.049 0.015 0.22 0.2 0.29 0.047 

Particle size  5µm - 100nm 5µm 30µm 1.7µm 5.78±3.9nm 

  

 

Material synthesis 

Temperature (K)a 

673 a  723 b 2578 a  673 a  673 a  673 a  723 b 

aManufacturer data and bCHFS data



13 

 

3.3 Effect of mass transfer in heterogeneous catalytic reactions 

In a heterogeneous catalytic reaction, the effect of mass transfer is very significant due to the 

reactants being indifferent phase from the solid catalyst unlike the homogeneous catalytic 

reaction, (where the reactant, catalyst, and yield are in the same phase), thereby making the 

effect of mass transfer between phases nearly negligible. Mass transfer plays a vital role in the 

reaction rate, the conversion of reactant and formation of product (yield) [44].The activity of a 

solid catalyst towards the selectivity of the desired product depends on the characteristics of 

the catalyst that includes (active site, molecular structure, pore size, porosity, surface area and 

particle size) and prevailing conditions at the boundaries of a solid catalyst such as (pressure, 

temperature, and superficial velocity). 

The understanding of the effect of mass transfer in cycloaddition of CO2 to BO in the presence 

of heterogeneous catalytic reaction offers a better understanding toward designing a new 

catalyst based on the limiting resistance for both internal and external mass transfer on the 

variable reaction parameters. Mass transfer of the reactants occurs from the bulk fluid to the 

external surface of the catalyst and diffuses from the external surface through the pores within 

the catalyst to the catalytic surface of the pores, in which the reaction occurs [45,46]. However, 

the external mass transfer resistance could be limited through the control of various parameters 

such as pressure, temperature and stirring speed. Furthermore, the understanding of catalytic 

reactions could limit the effect of mass transfer process during a chemical reaction and thereby 

shift the equilibrium towards the selectivity of the desired product. 

The synthesis of BC through cycloaddition of CO2 to BO was carried out using different stirring 

speed of 300 - 500 rpm. The results in Figure 7 shows that the conversion of BO and yield of 

BC were found to be the approximately same as there were no significant changes in the 

conversion and yield. The conversion of BO and yield of BC were found to be 84% and 64%, 

respectively with an experimental error of ±2%. This confirmed that the external mass transfer 

resistance is negligible for the stirring speed from 300 rpm to 500 rpm under the related reaction 

conditions.  Furthermore, the influence of internal mass transfer resistance is also negligible, 

and this is attributed to the size of the catalyst of 5-26 nm range, the average pore diameter of 

Ce-La-Zr/GO nanocomposite catalyst which was 2.16 nm and falls in the mesoporous region 

i.e. 2–50 nm reported by Clerici and Kholdeeva [47]. Moreover, the absence of internal and 

external mass transfer resistance using different stirrer speed and different size fractions of ion-

exchange resins as catalysts for the synthesis of n-hexyl acetate has been reported by Patel and 

Saha [48]. The stirring speed of 300 rpm has been selected and used to conduct further 
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investigation for cycloaddition of CO2 to BO for the synthesis of BC was as a result of energy 

efficiency and cost. Therefore, it can be concluded that there was no effect of mass transfer 

resistances on the synthesis of BC using Ce-La-Zr/GO catalyst at 300 rpm. 

 

Figure 7: Effect of mass transfer resistance on conversion of 1, 2 butylene oxide (BO) against 

yield and selectivity of 1,2-butylene carbonate (BC). Experimental conditions: Catalyst - Ce-

La-Zr/GO; Catalyst loading - 10% (w/w); CO2 pressure - 75 bar; Reaction temperature - 408 

K; Reaction time - 20 h. 

3.4  Effect of different heterogeneous catalysts 

The study of various heterogeneous catalysts such as catalytic activity, conversion, yield and 

selectivity were conducted in order to establish the best performing metal oxide or mixed metal 

oxide catalyst for the synthesis of BC through the cycloaddition reaction of CO2 to BO using a 

high-pressure reactor. Figure 8 shows the results of different (commercially available) 

heterogeneous catalysts as well as Ce-La-Zr/GO (synthesised via CHFS) on the conversion of 

1,2-butylene oxide, the yield and selectivity of 1,2-butylene carbonate. The experiments were 

conducted using the optimum reaction conditions. Ce-La-Zr/GO catalyst gave an improved 

conversion of BO (84%) and highest BC yield (64%) and selectivity (76%) at optimum reaction 

conditions of reaction temperature 408 K, CO2 pressure 75 bar, reaction time 20 h, stirring 

speed 300 rpm and catalyst loading of 10% (w/w). 
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Figure 8: Effect of different metal oxide, and mixed metal oxide heterogeneous catalysts as 

well as prepared GO via Hummer’s method and Ce-La-Zr/GO inorganic nanocomposite via 

CHFS on conversion of BO against yield and selectivity of BC. Experimental conditions: 

Catalyst - Ce-La-Zr/GO; Catalyst loading - 10% (w/w); CO2 pressure - 75 bar; Reaction 

temperature – 408 K; Reaction time; 20 h; Stirring speed – 300 rpm. 

 

3.5 Effect of Catalyst Loading 

The influence of different catalysts loading (w/w) ranging from 5% - 15% have been studied 

for the synthesis of BC via cycloaddition reaction of CO2 to BO as shown in Figure 9. It has 

been observed that with an increase in catalyst loading (w/w) from 5% to 10%, BO conversion 

was increased from 48% to 84%, and the yield of BC increased from 18% to 64% (see Figure 

9). However, with an increase in catalyst loading (w/w) from 10% to 12.5%, there were no 

significant changes in the conversion of BO and yield of BC, although the separation of the 

product becomes difficult as the catalyst loading goes beyond 10% (w/w). Furthermore, there 

were no significant changes in the responses as the catalyst loading exceeded 10% (w/w), 

except for 15% (w/w) catalyst loading where it was observed that there was a slight drop in the 

yield of BC. This shows that the active sites required for the reaction of BO and CO2 to produce 

BC were sufficient at 10% (w/w) catalyst loading when taking the experimental error of ±2% 

into consideration. Therefore, based on this study, it can be concluded that at fixed reaction 

conditions at 408 K, 75 bar and 20 h, 10% (w/w) catalyst loading is the optimum amount of 

catalyst needed for this reaction.  
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Figure 9: Effect of catalyst loading on conversion of BO against yield and selectivity of BC. 

Experimental conditions: Catalyst - Ce-La-Zr/GO; Catalyst loading - 10% (w/w); CO2 pressure 

- 75 bar; Reaction temperature; 408 K; Reaction time; 20 h, Stirring speed – 300 rpm. 

 

3.6 Effect of Reaction Time 

Several experiments were carried out using different reaction time ranging from 16 h to 24 h 

with a target to conclude the importance of reaction time on the synthesis of BC. The different 

reaction time of 16 h, 20 h and 24 h at constant reaction conditions of 408 K, 75 bar and 10% 

catalyst loading for Ce-La-Zr/GO were investigated. Figure 10 shows that the reaction time 

affects both BO conversion and BC yield significantly. It increases both responses (i.e. BO 

conversion and BC yield) from the range between 16 and 20 h, while beyond 20 h the 

conversion of BO and yield of BC remains unchanged, which were 84% and 64% respectively.  

In contrast, at the reaction time of 16 h, the conversion of BO was 71% and BC yield was 64% 

while at the reaction time of 20 h, it increases to 80% and 64% respectively. In this study, it is 

evident that optimum reaction time is 20 h under otherwise identical reaction conditions. 
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Figure 10: Effect of reaction time on conversion of BO against yield and selectivity of BC. 

Experimental conditions: Catalyst - Ce-La-Zr/GO; Catalyst loading - 10% (w/w); CO2 pressure 

- 75 bar; Reaction temperature; 408 K; Stirring speed – 300 rpm 

3.7 Effect of Reaction Temperature 

In this study, the synthesis of BC through the reaction of BO and CO2 were carried out at a 

different reaction temperature from 368 K to 408 K in order to establish the effect of reaction 

temperature on BO conversion, BC yield and selectivity. The reaction conditions for this study 

were set at 10% (w/w) catalyst loading, the CO2 pressure of 75 bar for 20 h. As it was expected, 

the higher the temperature, the more the conversion of BO into carbonates isomers and 

oligomers. Figure 11 shows the temperature dependence on the yield and selectivity of BC.  

It was observed from Figure 11 that there was a corresponding increase in conversion of BO, 

BC yield and selectivity as temperature increases from 368 K to 408 K, however, further 

increase of temperature from 408 K to 430 K, there was a significant drop of BC yield from 

64% to 58%. The selectivity drops from 76% to 64% whilst its BO conversion increases from 

84% to 90%. These results are in good agreement with similar work published by Adeleye et 

al [11]. Based on this study, 408 K was found to be the optimum reaction temperature for 

synthesis of BC.  
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Figure 11: Effect of reaction temperature on conversion of BO against yield and selectivity of 

BC. Experimental conditions: Catalyst - Ce-La-Zr/GO; Catalyst loading - 10% (w/w); CO2 

pressure - 75 bar; Reaction time; 20 h; Stirring speed – 300 rpm. 

3.8 Effect of CO2 Pressure 

The application of CO2 pressure is very significant for the synthesis of BC through the reaction 

of BO and CO2. It has been reported that application of CO2 in the supercritical state can 

influence reaction system positively and improve the mass transfer efficiency of the reactants, 

thereby, creating a shift in the reaction equilibrium which tends to open up the thermodynamic 

limitation of the reaction [49,50]. The effect of CO2 pressure on BO conversion and BC yield 

were investigated to determine the optimum CO2 pressure for the cycloaddition reaction of CO2 

to BO. These experimental studies were carried out in a high-pressure reactor at 408 K with 

CO2 pressure ranging from 55 bar to 105 bar for 20 h and the obtained experimental results 

were shown in Figure 12. It can be seen in Figure 12 that an increase in CO2 pressure from 55 

bar to 75 bar increases the BO conversion and the BC yield. As a result, selectivity increased 

rapidly from 58% to 76%, however, beyond 75 bar there were further increase in BO 

conversion but the yield of BC dropped slightly. This can be explained by the pressure effect 

on the concentrations of CO2 and epoxide in the reaction [51]. Furthermore, the drop in yield 

could also be attributed to the form of by-products such as oligomers and isomers which were 

below the detection limit of GC-FID used in the analysis and therefore yields of the by-products 

were not calculated. Based on the experimental results of the investigation, it can be concluded 

that the optimum CO2 pressure for this reaction is 75 bar. This study shows the supercritical 
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condition of CO2, there is an improvement in polarity and solubility of BO conversion as the 

reaction pressure increases. 

  

Figure 12: Effect of reaction CO2 pressure on conversion of BO against yield and selectivity 

of BC. Experimental conditions: Catalyst - Ce-La-Zr/GO; Catalyst loading - 10% (w/w); 

Reaction temperature – 408 K; Reaction time; 20 h; Stirring speed – 300 rpm. 

 

3.9 Catalyst reusability studies 

One of the vital characteristics of an industrial catalyst is the ability to regenerate without losing 

its catalytic activity and also providing resistance to deactivation. The heterogeneous catalyst 

reusability experiments were conducted to investigate the catalytic activity of the best 

performed heterogeneous catalyst. Ceria-lanthana-zirconia/graphene nanocomposite 

reusability test was investigated in different runs. The experiments were carried out in a high-

pressure reactor at optimum reaction conditions of temperature 408 K, the CO2 pressure of 75 

bar, fresh 10% (w/w) catalyst loading of Ce-La-Zr/GO for 20 h. The first used catalyst was 

recovered by filtration from the reaction mixture and washed with acetone, which was dried in 

an oven for 12 h at 323 K. The catalyst was later reused for 5 different runs subjected to the 

same reaction conditions and as it can be observed in Figure 13 that the conversion of BO, 

yield and selectivity of BC were approximately the same with an experimental error of ±2%. 

It can be concluded that Ce-La-Zr/GO catalyst still maintains its catalytic activity after several 

runs. 
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Figure 13: Catalyst reusability studies on conversion of BO against yield and selectivity of BC. 

Experimental conditions: Catalyst - Ce-La-Zr/GO; Catalyst loading - 10% (w/w); Reaction 

temperature – 408 K; Reaction time; 20 h; Stirring speed – 300 rpm 

4. CONCLUSIONS 

This study showcases the transformation of CO2 to a value-added chemical (e.g. BC) using a 

highly active heterogeneous catalyst instead of other means of CO2 emissions reduction such 

as CCS which is not economically viable when compared with utilisation. The synthesis of BC 

through cycloaddition reaction of CO2 and BO has been successfully carried out using a high-

pressure reactor in the presence of various heterogeneous catalysts without any solvent. It was 

observed that the supercritical state of CO2 influences reaction system positively and improves 

the mass transfer efficiency of the reactants. The experimental results revealed that among the 

used heterogeneous catalysts ceria-lanthana-zirconia/graphene oxide (Ce-La-Zr/GO) catalyst 

was found to be the best-performed catalyst and the optimum reaction condition was found at 

408 K, 75 bar CO2 pressure, 10% (w/w) catalyst loading and 20 h reaction. Ce-La-Zr/GO 

catalyst was easily recycled and reused several times without any reduction in its catalytic 

performance. 
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