

 1

Reliable Resource Provisioning using
Bankers’ Deadlock Avoidance Algorithm in

MEC for Industrial IoT

Emeka E. Ugwuanyi1, Saptarshi Ghosh, Muddesar Iqbal, Tasos Dagiuklas
Division of Computer Science and Informatics, London South Bank University, London SE1 0AA, UK

ABSTRACT Multi-Access Edge Computing (MEC) is a new 5G enabling technology proposed to reduce

latency by bringing cloud computing capability closer to IoT and mobile device users. MEC may be prone to

unreliable communication as a result of deadlock during resource provisioning. Deadlock may occur due to

a huge number of devices contending for a limited amount of resources if adequate measures are not put in

place. It is crucial to eradicate deadlock while scheduling and provisioning of resources on MEC to achieve

highly reliable and available system. In this paper, a deadlock avoidance resource provisioning algorithm is

proposed for Industrial IoT devices using MEC platforms to ensure higher reliability of network interactions.

The proposed scheme incorporates banker’s resource-request algorithm using SDN to reduce communication

overhead. Simulation Results have shown that system deadlock can be prevented by applying the proposed

algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC

platforms.

INDEX TERMS Network Reliability, 5G networks, Edge nodes, IIoT, MEC, Resource provisioning,

Deadlock avoidance

I. INTRODUCTION

Reliable and instant communication has become more vital

than ever in the fast-growing digital economy and connected

society. Therefore, it is no surprise that network reliability is a

major concern of network and internet service providers.

According to [1], the key concerns of network service

providers are network reliability, network usability and

network fault processing. This paper aims at building a more

reliable system by eliminating the chances of deadlock during

resource provisioning of Industrial IoT (IIoT) to an MEC

system.

Industrial IoT devices consist mainly of devices that have

computation and resource limitations and therefore offload

majority of their workload. In this research, we assume that

the workload of these IIoT devices are offloaded to the nearest

MEC node where they are provisioned resources for

execution. This drastically increases the number of devices

dependent on MEC node sharing and competing for resources.

Tran, T et al [2] defines MEC as an emerging paradigm that

provides computing, storage and networking resources

within the edge of mobile Radio Access Network (RAN).

The idea was to design mini servers known as edge nodes

that would handle storage and computation for mobile

devices. These edge nodes are in close proximity to the end

users providing a platform for caching and offloading with

the aim of reducing bandwidth consumption and latency of

the network. The edge nodes complement the traditional

cloud infrastructure by providing additional resources.

Resource provisioning in MEC depicts a multiprogramming

environment where several resources may compete for

reusable resources. The idea is to schedule application tasks

from mobile devices to edge nodes for execution. Since there

is a finite amount of resources in MEC, resources must be

managed effectively to prevent scheduling a task to an edge

node which does not have adequate available resources to

execute the offloaded task. This environment is usually prone

to deadlock because a process may request for resources which

are held by another waiting resource thereby leading to a

circular wait [3]. Deadlock is an undesirable problem that has

been studied extensively in operating systems [3], resource

allocation systems [4], and manufacturing systems [5] [6].

MEC is a distributed system [7] and studies on distributed

systems have reported a chance of deadlock in such systems if

proper measures are not put in place [8].

There are four necessary properties of a distributed system that

could cause deadlock which includes no pre-emption, mutual

exclusion, hold and wait and circular wait [3]. A

simultaneous occurrence of these four leads the system to an

Unsafe State where the system suffers from a probability of

getting stuck due to unmanaged distribution of resources.

Deadlock-free operation is a key characteristic for industrial

sites that require high reliability and availability from its

infrastructure to achieve the daily goal of the industry. The

standard toolset for deadlock detection is the Wait for Graph

(WFG) [3].

In the absence of algorithms to detect and recover from

deadlocks, a situation may occur where the system is in a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/227106603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

deadlock state and yet there is no way of recognizing what has

happened. In this case, the undetected deadlock will result in

deterioration of the system's performance because resources

are being held by processes that cannot fully execute.

Therefore, if more and more processes make requests for

resources, the system will enter a deadlocked state.

Eventually, the system will stop functioning and would require

a manual restart [3].

In this paper, a deadlock aware algorithm for scheduling

resources for IIoT devices onto an MEC platform which

incorporates banker’s resource-request algorithm is presented.

Banker’s algorithm works by simulating and using specified

resources to predetermine deadlock conditions for all pending

activities and deciding if allocation should be allowed to

continue. Banker’s algorithm requires three important inputs

for execution which are the NEED matrix, MAX matrix and

available vector (AVAIL vector) [19]. The proposed algorithm

is only favorable if implemented using Software Defined

Networking (SDN) to reduce the communication overhead

that would be generated by the resource-request algorithm.

The remainder of this paper is structured as follows: in section

II we have reviewed related work, listed our contribution and

discussed the case study. In section III we presented the

system model. In section IV we presented the proposed

algorithm. We have simulated, tested and discussed the results

in section V. We concluded in VI and future works in VII

II. LITERATURE REVIEW

Table 1 Deadlock strategies

With the successful launch of 4G in 2010, approximately 800

telecommunication stakeholder companies around the world

have formed consortiums such as 5G PPP Working Group to

produce a draft for 5G architecture explaining the basic

expectations [9]. This includes energy efficiency, low

latency, high reliability and machine-centric communication

design. To minimize latency in network communication,

MEC and fog computing was proposed by ETSI and

consortiums.

Considering the decentralized architecture of MEC as

opposed to the traditional centralized cloud infrastructure, it

is important to investigate an efficient mechanism to offload

and execute mobile applications on the edge of a network.

There have been several proposals for resource provisioning

techniques to offload mobile application workloads on MEC

[10] [11] [12]. Nevertheless, none of the previous works on

MEC considers deadlock during offloading and resource

provisioning which is a concern for distributed systems as

previously stated. There are four major strategies for

handling deadlock in distributed systems. These include (i)

ignore, (ii) detect and recover, (iii) prevention and (IV)

avoidance. The first two are commonly used because the last

two are difficult to implement [13]. Few researchers have

opted for detect and recover strategies as shown in table 1.

This is not always ideal because in a scenario where the

system needs to be readily available, any amount of

downtime can be very costly. Deadlock avoidance strategy

is said to be the most effective, but it is difficult to implement

in distributed systems because of communication overheads

and therefore labelled impractical [14].

Researchers have previously used load balancing algorithms

to level out the workload between servers in MEC and avoid

resource over provisioning [15] [16]. C. Tham and R.

Chattopadhyay [15] proposed a load-balancing scheme for

distributed computing on the edge of a network based on

heuristic algorithm. They used an edge model of a group of

nodes connected over a wireless ad-hoc network with which

they formed a convex optimization problem. The simulation

results obtained show near-optimal performance in most

cases. Load balancing schemes reduces the chances of

deadlock but does not eliminate it entirely from the system.

Deadlock prevention and/or avoidance scheme is a more

suitable approach as it eliminates the chances of deadlock in

the system [17].

With the advancement of 5G and Software Defined

Networks (SDN), the communication overheads that was

once a problem in the implementation can now be reduced

thereby making it practical to implement the deadlock

avoidance algorithms in a distributed system. The idea of

separating the control plane from the data plane means there

would be less communication between the routers and

switches because they share a centralized control plane [18].

The current state of art shows that researchers have

previously used load balancing to avoid over provisioning

and deadlock in MEC. However, to the best of our

knowledge deadlock avoidance have not been addressed in

an MEC context. Therefore, in this study, a novel resource

provisioning algorithm for deadlock avoidance on a multi-

access edge computing is proposed in the context of IIoT.

The proposed algorithm is different from load balancing

because in load balancing there is a load balancer that first

accepts the request and uses a mechanism to distribute it to

servers. As opposed to this, in the proposed method, the task

goes directly to the MEC servers for execution and only gets

redirected if the time and resource constraints of the task

cannot be satisfied.

The widely used deadlock avoidance algorithm due to its

efficiency is the banker’s algorithm proposed by Dijkstra

Detection

algorithms

Lamport’s algorithm [20]

Chandy-Misra-Haas algorithm

[21]

Parallel Deadlock Detection

Algorithm [22]

Detection in heterogeneous

systems [23]

Unstructured deadlock detection

[24]

Prevention

algorithms

Load balancing methods [25,26]

Deadlock Prevention Algorithm in

Grid Environment [27]

Avoidance

algorithms

Banker’s algorithm [19]

 1

[19]. Banker’s algorithm is a resource allocation algorithm

which simulates a system using predefined variables and

predetermines the safeness of a system before granting a task

allocation request [19]. It is mainly used in operating systems

where it runs on a single machine. In this study, we used it

in a distributed environment where resource information is

shared by systems within the environment

A. Contributions

The main contributions of this paper are listed as follows:

a. Formulation of distributed task model in a MEC that

ensures reliability by avoiding deadlock.

b. Adaptation of the banker’s algorithm in the proposed

solution and pushing its boundary by testing it in a new

field (MEC) and obtaining an optimized solution for

distributed systems.

c. Extensive simulations conducted on the algorithm shows

reduced probability of deadlock occurrence.

B. Case Study Architecture for Industrial IoT and

MA-MEC

Figure 1 shows a high-level view of the MEC topology

adopted in this study. In this scenario, due to resource and

computation limitation of the IIoT devices, they heavily

depend on MEC nodes to execute their workload. Therefore,

tasks are offloaded from the IoT devices to be executed on

an MEC platform. The distributed edge nodes communicate

with each other through SDN. IoT requests that are not

available on the edge node would be forwarded to the cloud

through the API (Application programming interface). To

reduce latency in this research, traffic to the cloud is

generally avoided. The SDN controller uses it North Bound

(NB) interface to communicate with the cloud and

communication with the edge nodes is done using the South

Bound (SB) interface. Each edge node comprises of a

monitoring tool which calculates the resource utilization of

the node (CPU, RAM and Memory). This information is

shared between the edge nodes as metadata. Therefore, each

edge node that forms a part in the network is assumed to keep

resource utilization information about the entire destination

within the system. This helps the edge nodes decide the most

suitable edge if re-offloading is required.

Optimal routes are also considered when sharing metadata

among edge nodes. Each edge node in the network sends

updated metadata after each event. This metadata describes

the resource utilization of the edge node after the event. The

term network is used here loosely to describe the Multi-

access edge architecture.

III. SYSTEM MODEL

In this work, a distributed architecture which consists of a

pool of Multi-Access Mobile Edge Computing (MEC) nodes

is considered as a platform for resource provisioning. The

tasks seeking to be offloaded will utilize the MEC resources

through a request-response mechanism. Hence the problem

can be modelled as a Directed Regular Graph. The target

scenario stands out to be soft real-time and high volume of

offloading traffic from an underlying scalable network.

Let’s consider a mesh network of a finite non-empty set of

edge nodes CL ={𝐶𝑙1, 𝐶𝑙2 … 𝐶𝑙𝑛} and a finite non-empty

set of mobile station M = {𝑚𝑠1, 𝑚𝑠2 … 𝑚𝑠𝑛} connected

to the edge network such that 𝑚𝑠𝑖 ∈ 𝑀 and 𝐶𝑙𝑗 ∈

𝐶𝐿 maintains a disjoint many-to-one cardinality. Here an

edge node is connected to many mobile stations, but no

mobile station is connected to multiple edge nodes.

Communication between CL and M happens over a wireless

band with a fixed number of channels {𝑐ℎ𝑖|1 ≤ 𝑖 ≤ 𝑘}

and collision is prevented by CSMA/CA protocol [28]. The

CSMA/CA maintains a back off time less than the real-time

deadline 𝜏𝑑𝑙 making the system scalable and dynamic. The

system model comprises of the communication model and

Figure 1 Case Study Architecture

 1

the computation model. The communication model deals

with the optimization of communication parameters for

better energy savings and the computation model for

optimizing the execution time with deadlock immunity.

a. Communication Model

Let’s consider a workload W = {𝑇1, 𝑇2 … 𝑇𝑛} which contain

a set of tasks 𝑇𝑖 to be offloaded by a mobile station. The

workload, denoted by W [𝑐𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑑𝑖] is characterized by

CPU, memory, network and data size respectively. During

IIoT application development, the developer specifies which

fraction of the total workload can be offloaded (Remotable

Object) and which part should be executed locally.

Therefore, the offloadable data size of any task 𝑇𝑖 can be

denoted as a fraction 𝛼𝑖 of total workload data size 𝑑𝑖.

Therefore, 𝑙𝑖 = 𝛼𝑖𝑑𝑖 is the offloadable data size of 𝑇𝑖 . The

transmission time 𝑡𝑖 = (
𝑙𝑖

𝑟𝑖
) where 𝑟𝑖 is the transmission rate

which can also be expressed as

𝑟𝑖 = 𝐵 log2 (1 +
𝑃𝑖𝑔𝑖

2

𝑁0𝐵
)

 (1)

where B is the bandwidth, g is the gain and P is the transmit

power. Hence the equation can be rewritten for 𝑃𝑖 as (eq 2)

𝑁0𝐵(2

𝑟𝑖
𝐵 −1)

𝑔𝑖
2 =

1

𝑔𝑖
2 ℎ (

𝑙𝑖

𝑡𝑖
)

 (2)

where

 ℎ(𝑥) = 𝑁0𝐵 (2
𝑥

𝐵 − 1)

(3)

which is monotonically increasing with x. Hence the energy

consumption for the offloading task is (eq 4)

 𝐸𝑖,𝑜𝑓𝑓 =
𝛼𝑖𝑑𝑖𝑃𝑖

𝑟𝑖
= 𝑡𝑖𝑝𝑖 =

𝑡𝑖

𝑔𝑖
2 ℎ (

𝑙𝑖

𝑡𝑖
)

(4)

Therefore, 𝐸𝑖,𝑜𝑓𝑓 = 𝑂(𝑡𝑖) (Lemma 1). Energy optimization

can be obtained by the following model.

 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝐸𝑠𝑎𝑣𝑒𝑑 = ∑ (𝐸𝑙𝑜𝑐𝑎𝑙 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑)𝑖

subject to,

 𝜏𝑙𝑜𝑐𝑎𝑙 + ∑ 𝜏𝑟𝑜𝑢𝑡𝑒 + ∑ 𝜏𝑤𝑎𝑖𝑡 ≤ 𝜏𝑑𝑙 .
where 𝜏𝑙𝑜𝑐𝑎𝑙 is the time spent to calculate if the task should

be offload, while 𝜏𝑟𝑜𝑢𝑡𝑒 is the time spent in routing the task

from the local device to the edge for execution. 𝜏𝑤𝑎𝑖𝑡 is the

time the task spends on the edge node before being executed.

The edge nodes are assumed to be in a mesh topology, hence

𝜏𝑟𝑜𝑢𝑡𝑒 = 𝑂(1), whereas 𝜏𝑤𝑎𝑖𝑡 = 𝑂(𝑛𝑘) . As deadlock

freezes the system, the waiting time keeps increasing by 2𝑘

until it reaches the maximum k value and times out due to

CSMA binary exponential back-off characteristics [32].

b. Computation Model

Computation starts after the offloaded data stream is

received by an edge node. Here a decision is made whether

the requested task gets executed on the subjected edge node

or re-offloaded to another one. The decision is made based

on resource request WFG of each individual edge node and

availability of the other nodes in the mesh. Hence the system

is a mesh of interconnected priority queues. Note that the

WFG is made for each MEC node and not distributed across

all nodes. The priority is based on a safe sequence from

banker’s algorithm which guarantees no deadlock using a

preventive and avoidance measure. The precomputing delay

contributes to 𝜏𝑤𝑎𝑖𝑡 and ensures it is below deadline. The

edge node maintains two queues. First, a prioritized

indefinite length job queue whose priority is maintained by

the publisher (Rate Monotonic Criteria). To achieve real-

time criteria, Rate Monotonic Scheduling (RMS) suggests

that frequent occurring tasks should be given higher priority

[29]. Tasks get popped out in Job queue in FIFO order and

then checked if the requested resource can be accommodated

by the subjected edge node 𝐶𝑙𝑖. If not, it finds another edge

node 𝐶𝑙𝑗 that is most eligible and offloads. If 𝐶𝑙𝑗 executes the

task on time, then 𝐶𝑙𝑖 increases the 𝑗𝑡ℎ index on its 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦𝑖

vector that it maintains, decreases otherwise. This affinity

vector is initialized with 0 and used to maintain reliability

record and tie-breaker purpose. A Request ≤ Available is said

to be valid and put into the Ready Queue which is finite with

size 𝑆𝑖𝑧𝑒𝑟 and prioritized with Banker’s generated safe

sequence.

𝑆𝑖𝑧𝑒𝑟 = [
𝐵𝐷𝑃

𝑚𝑒𝑎𝑛(𝑙)
] = [

𝑛𝐵 𝑅𝑇𝑇

2 ∑ 𝑙𝑖
𝑛
𝑖=1

]

 (5)

BDP shows the number of bits the channel can

accommodate, hence the ratio of BDP and average task is the

number of task that can be queued ensuring mutual exclusion

property. When a task is inserted into a ready queue, it gets

an index based on its resource requirement. Starvation is

handled with aging. If a task 𝑇𝑖 gets placed into a ready queue

with index i, then the expected turnaround time 𝑇𝑇(𝑇, 𝑘) =
𝑖 ∗ 𝑎𝑤𝑡𝑘. Where 𝑎𝑤𝑡𝑘 is the average waiting time of edge

node 𝐶𝑙𝑘.

In worst case scenario, for n processes and m resources

Banker’s algorithm takes 𝑂(𝑛2𝑚) time. Since the number of

resources are fixed (k), hence the time complexity is 𝑂(𝑛2𝑘)

= 𝑂(𝑛2). Since the algorithm is applied on the ready queue

the maximum task it can retain is 𝑆𝑖𝑧𝑒𝑟 × 𝛼 𝑑𝑒𝑙𝑎𝑦 = 𝑡𝑖 ,
Hence banker’s algorithm takes 𝑂(𝑡𝑖

2) to generate a safe

sequence.

Lemma 1: The consumed energy for offloading and the

transmission time shares a linear relationship.

 1

Proof. From equation 3 & 4 it can be inferred that, the

partial relationship between 𝐸𝑖,𝑜𝑓𝑓 & 𝑡𝑖 for a given gain (𝑔𝑖)

and offload length (𝑙𝑖) is,

𝐸𝑖,𝑜𝑓𝑓 =
𝑡𝑖

𝑔𝑖
2 ℎ (

𝑙𝑖

𝑡𝑖

) = 𝑡𝑖2
1
𝑡𝑖

Using asymptotic analysis of the given function,

𝑂(𝐸𝑖,𝑜𝑓𝑓) = 𝑂(𝑡𝑖) × 𝑂 (2
1
𝑡𝑖)

Now the second element is a monotonically decreasing

sequence with lower bound 0. Hence, it has a constant

asymptotic upper bound 𝑐 ∈ 𝑅, therefore 𝑂(1).

Hence,

𝑂(𝐸𝑖,𝑜𝑓𝑓) = 𝑂(𝑡𝑖) × 𝑂(1) = 𝑂(𝑇𝑖)

 (6)

This can be verified by plotting equation 4. (Figure 2)

IV. Proposed algorithm

In this section we discuss the design and analysis of the

proposed resource provisioning algorithm (RPA). The

algorithm fetches tasks from the task queue which is RMS

scheduled, therefore most frequently used tasks get higher

priority. Tasks from Job queue then migrates to ready queue.

The proposed algorithm alters the order in which the tasks

leave the job queue and stays in the ready queue. The

following are the criteria used for the ordering.

Case 1. Overdemand: each task comes with its maximum

resource need, recorded in the MAX vector. If the maximum

need exceeds the total available resources, then it searches

for an MEC node which satisfies the constraint. If no such

MEC node is found the task waits for a certain amount of

time which increases in a binary exponential order with each

iteration of request before it times out.

Case 2. Unsafe Request: if the MAX is less than the current

node’s AVAIL then the tasks enters Banker’s safe state

algorithm and be given a safe sequence index at which the

task gets executed. Banker’s algorithm guarantees a safe

sequence never causes deadlock.

Case 3. Time feasibility: A resource hungry task in a resource

constrain MEC may suffer from starvation by waiting. Aging

is used here to improve waiting time, although it requires the

process to stay waiting to age. Hence the algorithm calculates

waiting time by the product of the average waiting time of

the current node and the index of the task. If the waiting time

exceeds the soft deadline of the task, it finds an alternative

node to meet the criteria.

Algorithm 1: Resource Provisioning Algorithm (RPA)

Input: W [𝑐𝑖, 𝑚𝑖, 𝑛𝑖, 𝑑𝑖]
Output: Resource Provision Plan for 𝑡𝑖
Steps
1. Do

2. Job. Insert(𝑡𝑖)

3. 𝑘 ← 0 ; max_k = input(‘maximum retry attempt :’)
4. While (Ready.isfree() = true) do

5. Ready. Insert(Job.delete(𝑡𝑖));

6. J-cur Ready.delete (𝑡𝑖);

7. J-Cur. Status = Assigned ;
8. If 𝐽𝑐𝑢𝑟 .MAX< node.AVAIL:
9. Ind = banker’s (jcur)
10. Time = (AWT)X(Ind)

11. If Time < 𝑡𝑖
𝑙 ;

12. Assign;
13. Else Goto step 14

[End If]
Else

14. Find 𝐶𝑙𝑖 from CL [nodes] :
15. Max

𝑖
(𝐶𝑙𝑖 . 𝐴𝑉𝐴𝐼𝐿 – 𝐽𝑐𝑢𝑟 . 𝑀𝐴𝑋)

16. Send(Jcur);
17. Wait until (response)
18. If response = Success :
19. Return result

20. Else wait(2𝑘++) // k : iteration count
21. If (Timeout OR k = max_k):
22. Return “Fail”

 [End if]
 [End if]
 [End If]
 [End Loop]
 While (True)

2

10.71773463

20.70529848

30.70121676

40.69918768

50.69797399

60.69716642

70.69659034

80.6961587

90.69582323

100.695555

0

20

40

60

80

100

120

0 20 40 60 80 100 120

En
er

gy

Time

Energy Characteristics

Figure 2 Energy characteristics vs time

 1

A task is said to be feasible if it doesn’t overdemand and the

generated waiting time is less than its latency constraint. The

waiting time of a task is the product of average waiting time

of the executing node 𝐶𝑙𝑖 and the safe index bankers’

algorithm produces. The algorithm allows a feasible task to

execute locally else it gets executed remotely. A task that

demands resources that are not available on the local MEC

or a task with unsuccessful execution by a remote MEC must

be kept on waiting until it’s timeout. The waiting period

increases with a binary exponential order with each attempt.

A registry is also maintained to keep track of the tasks

submitted for remote execution and their status. Figure 3

depicts the complete workflow of RPA.

Lemma 2: RPA is not suitable for hard real-time but soft

real-time tasks.

The response time of the algorithm depends on various

timing factors such as

i. Queuing Delay: Takes place due to processing

overhead, context switching etc. of other processes

rather than the subjected one. It also depends on system

specification and load.

ii. Transmission Delay: An offloaded task’s total

execution time includes the transmission delay which

varies with network conditions.

 The given uncertainty conditions makes a hard deadline

infeasible as opposed to a soft deadline (lemma 3), hence the

statement.

Lemma 3: If there exists a feasible MEC node for a task,

RPA handles the task within a finite time.

To prove the lemma, we’ll prove for each three feasibility

cases discussed earlier, a task waits a finite amount of time

under RPA.

Case 1: If the task over demands resources to its original

MEC node and a remote node failed to execute, it must wait

twice the time for resubmission hence the timeout occurs in

log2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 iteration.

Case 2: if the task makes an unsafe request, it looks for a

remote node to get offloaded. Since all the AVAIL

information are reactively shared and the decision is made

based on the global map of AVAILs. Therefore, the task gets

offloaded only once and onto the optimal remote MEC node.

This prevents node hopping and total execution time can be

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑙 + 𝑇𝑟 + 2𝐶𝑙𝑟 where 𝑇𝑙 , 𝑇𝑟 & 𝐶𝑖𝑗 are local

execution, remote execution and transmission time

respectively.

Case 3: If a task makes a safe request but has a large NEED,

it must wait for the resources to be available. If a remote node

can execute it in less time, it is offloaded (𝑇𝑙 < 𝑇𝑟).

Therefore, this guarantees the optimal remote node selection.

Figure 3 RPA workflow

 1

V. SIMULATION

Simulations were performed to demonstrate the validity of

the proposed technique. The simulations were based on the

complexity analysis of the algorithm and energy

optimization as discussed in the previous section. The

energy, 𝐸𝑖,𝑜𝑓𝑓 required by an edge node 𝐶𝑙𝑖 to offload a task

of 𝑙𝑖 𝑠𝑖𝑧𝑒 for 𝑡𝑖 unit time through a channel of 𝐵𝑖 bandwidth

using an antenna of 𝑔𝑖 and a signal to data ratio 𝑁0 is (eq 7).

𝐸𝑖,𝑜𝑓𝑓 =
𝑡𝑖

𝑔𝑖
2 𝑁0𝐵 (2

𝑙𝑖
𝐵𝑡𝑖 − 1)

 (7)

Since gain, bandwidth, data size and signal-to-data ratio is

predetermined by the communication system hence the

relation can be squeezed into an asymptotic upper bound

form as (eq 8).

𝐸𝑖,0𝑓𝑓 = 𝑂 (𝑡𝑖
𝑙. 2

𝑙𝑖

𝑡𝑖
𝑙
)

 (8)

The graph in figure 2 shows a critical value of transmission

time and payload length the energy consumption by the

antenna starts rising exponentially. Context suggests that if

there’s a deadlock then the waiting time component will

increase indefinitely resulting to a significantly large energy

consumption. Since the transmission time is a function of the

data length and a constant data rate, therefore the

transmission time is a random variable distributed over a

Bernoulli’s probability density function (collision control is

CSMA/CA). To find the expectation (E) this can be shown

that the surface integral mentioned below cannot be

expressed in a closed form (eq 9).

∫ ∫ 𝑡𝑖2
𝑙𝑖
𝑡𝑖𝑑𝑡𝑖𝑑𝑙𝑖

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

0

𝐵𝐷𝑃
𝑛

0

 (9)

Equation 9 states the Growth rate of 𝐸𝑖,𝑜𝑓𝑓. Plotting this

growth characteristic within a close range of [0, 50], the

response characteristic surface in figure 4 is obtained. Each

spike on the graph depicts the exponential growth of energy

discussed earlier. With an increase of transmission time and

length the peak energy consumption grows at a constant rate

of ln 2. The growth characteristics of the 𝐸𝑖,𝑜𝑓𝑓 in equation 8

can also be shown by the partial derivatives with respect to

latency (𝑡𝑖) and offload length (𝑙𝑖)

𝜕2𝐸𝑖,𝑜𝑓𝑓

𝜕𝑙𝑖𝜕𝑡𝑖

= − (ln 2
2

𝑙𝑖
𝑡𝑖

𝑡𝑖

)

 (10)

Figure 5 growth characteristics of the rate of change in offload energy with varying latency and offload length in a
close range. Slope gets steeper with increasing range, saturates at [1,40]

Figure 4: offload energy characteristics

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

Energy Characteristics in a discrete space of time and offload size

 9

The surface plot of the equation 10 is depicted on figure 5.

Analytically equation 10 signifies the rate of change of

energy consumption with respect to varying offload length

and latency. The value of (𝑡𝑖 , 𝑙𝑖) is taken in a close range. It

can be shown in table 2 that the growth gets steeper as the

range increases. It can be observed that the plot saturates

after the range [1,40].

Table 2: growth characteristics of change in energy in

discrete time & size.

(𝑡𝑖, 𝑙𝑖) range Rate of change of 𝐸𝑖,𝑜𝑓𝑓

[1,10) 3.5 × 102

[1,20) 3.5 × 105
[1,30) 3.5 × 108

[1,40] 3.5 × 109

[1,100] 3.5 × 109

c. Experimental Results

Since there exist no related experiments with MEC context

in the literature, we performed the experiment by comparing

results of a system with and without using RPA.

Fig 6 shows time comparison graphs between a system with

no deadlock prevention measures and a system running the

proposed algorithm. The graphs were plotted with their

corresponding time complexities for n number of tasks

subject to a constant k (timeout order: this value is

application dependent). It can be seen in fig 6 that as k

increases, the time consumption of the system with no

deadlock measures surpasses the system running the

proposed algorithm. Since time is directly proportional to

energy, it can be deduced that the algorithm optimizes the

energy of a system by eliminating deadlock.

d. Complexity analysis of the proposed model

If 𝑁𝑇𝑜𝑡𝑎𝑙 tasks are submitted to an edge node, the job queue

will hold them in priority as generated by Rate Monotonic

Scheduling (RMS) Algorithm which takes 𝑡𝑟𝑚𝑠 time. Based

on tasks’ request and the subjected edge node’s availability

or resources, 𝑁𝑜𝑐 tasks are offloaded to an eligible edge node

𝐶𝑙𝑗 as overcommitted task. An efficient binary search

implementation can find such 𝐶𝑙𝑗 in log2 𝑐 − 1 time. The

remaining 𝑁𝑇𝑜𝑡𝑎𝑙 − 𝑁𝑜𝑐 tasks will be put into banker’s

algorithm that takes 𝑡𝑏𝑎 time to find the safe sequence in

worst case scenario. If a task 𝑇𝑘 gets a safe index k, and the

TT(k, i) > Q(deadline of 𝑇𝑘) then, the task will be offloaded

to another MEC node that can perform the execution within

the deadline. The function queue calculates the probability

of executing the task and maintaining the deadline after all

the communication and queuing. This is done by maintaining

the affinity matrix. Hence, the time complexity of Q is

𝑁𝑟𝑒𝑜𝑓𝑓 log2 𝑁𝑟𝑒𝑜𝑓𝑓 where 𝑁𝑟𝑒𝑜𝑓𝑓 is the number of tasks to be

re-offloaded. Therefore, the maximum time a task can take

to be executed if it got offloaded twice and being the

lengthiest task can be expressed as

𝑇𝑚𝑎𝑥 = 2[𝑙𝑛2 + log2(𝑐 − 1) + 3(𝑁𝑇𝑜𝑡𝑎𝑙 − 𝑁𝑜𝑐)2

 + 𝑁𝑟𝑒𝑜𝑓𝑓 log2 𝑁𝑟𝑒𝑜𝑓𝑓 + 𝑟𝑡𝑡] + 𝑡𝑒𝑥𝑒𝑐

 (11)

The worst-case complexity of RMS and Bankers algorithm

can be deduced to ln2 and 3𝑛2 respectively

VI. CONCLUSION

In this paper, a Resource Provisioning Algorithm for

Deadlock Avoidance for Multi-Access Edge Platform was

presented with an aim to maintain a more reliable network

system for IIoT devices. As edge nodes have a finite amount

of resources, continuous increase in the number of users

dependent on the edge resources might lead to over-

provisioning which may result in a system deadlock because

of many devices contending for limited and shared resources.

The simulation results confirm this behaviour. In this paper

we build on previous work on MEC by using a modified

resource request banker’s algorithm which can also re-

Figure 6: comparison of time consumption of system with & without using RPA

 9

distribute tasks to satisfy the latency constraint. Simulation

test confirms deadlock if the system is in an unsafe state and

there is a continuous increase of IIoT applications dependent

on the edge node. On applying the proposed algorithm,

results show that system deadlock can be avoided, which

ultimately leads to a more reliable network interaction

between IIoT devices and MEC platforms.

VII. FUTURE WORKS

The proposed RPA is an algorithm for distributed systems

and not a distributed algorithm. Further works on this topic

will be to improve the algorithm into distributed algorithm

for MEC which can map the WFG of all the MEC nodes

together rather than individual MEC WFG node mapping.

Another direction would be comparison of RPA with

Banker’s integration to another version of RPA using

different deadlock avoidance algorithms.

REFERENCES

[1] C. R. Kalmanek and R. Y. Yang, Guide to reliable internet services

and applications: The Challenges of Building Reliable Networks and

Networked Application Services. [Place of publication not identified]:

Springer London Ltd, 2013.
[2] Tran, T., Hajisami, A., Pandey, P. and Pompili, D. (2017).

Collaborative Mobile Edge Computing in 5G Networks: New

Paradigms, Scenarios, and Challenges. IEEE Communications
Magazine, 55(4), pp.54-61

[3] A. Silberschatz, P. Galvin and G. Gagne, Operating system concepts,

8th ed. Hoboken, N.J: Wiley, 2014, pp. 283-310.
[4] S. Reveliotis and Z. Fei, "Robust deadlock avoidance for sequential

resource allocation systems with resource outages", 2016 IEEE

International Conference on Automation Science and Engineering
(CASE), 2016.

[5] Y. Yang and H. Hu, "Distributed deadlock avoidance in automated

manufacturing systems with forward conflict free structures using
Petri nets", 2016 European Control Conference (ECC), 2016.

[6] Zhonghua Huang and Zhiming Wu, "A New Distributed Deadlock

Avoidance Strategy for Flexible Manufacturing Systems Using
Digraph Models", 2006 8th International Workshop on Discrete Event

Systems.

[7] W. Yu, F. Liang, X. He, W. Hatcher, C. Lu, J. Lin and X. Yang, "A
Survey on the Edge Computing for the Internet of Things", IEEE

Access, vol. 6, pp. 6900-6919, 2018

[8] V. Kate, A. Jaiswal and A. Gehlot, "A survey on distributed deadlock
and distributed algorithms to detect and resolve deadlock", 2016

Symposium on Colossal Data Analysis and Networking (CDAN),
2016.

[9] Group, 5. P. A. W., 2017. 5G PPP Architecture Working Group View

on 5G Architecture (Version 2.0), s.l.: 5G PPP Architecture Working
Group

[10] J. Liu, Y. Mao, J. Zhang and K. Letaief, "Delay-optimal computation

task scheduling for mobile-edge computing systems", 2016 IEEE
International Symposium on Information Theory (ISIT), 2016.

[11] A. Al-Shuwaili and O. Simeone, "Energy-Efficient Resource

Allocation for Mobile Edge Computing-Based Augmented Reality
Applications", IEEE Wireless Communications Letters, vol. 6, no. 3,

pp. 398-401, 2017.

[12] Y. Mao, J. Zhang and K. Letaief, "Dynamic Computation Offloading
for Mobile-Edge Computing With Energy Harvesting Devices", IEEE

Journal on Selected Areas in Communications, vol. 34, no. 12, pp.

3590-3605,2016.Meulen, R. (2017).
[13] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. YANG and W. Wang, "A

Survey on Mobile Edge Networks: Convergence of Computing,

Caching and Communications", IEEE Access, vol. 5, pp. 6757-6779,

2017.

[14] C. Sanchez, H. Sipma and Z. Manna, "Generating Efficient
Distributed Deadlock Avoidance Controllers", 2007 IEEE

International Parallel and Distributed Processing Symposium, 2007.

[15] C. Tham and R. Chattopadhyay, "A load balancing scheme for sensing
and analytics on a mobile edge computing network", 2017 IEEE 18th

International Symposium on A World of Wireless, Mobile and

Multimedia Networks (WoWMoM), 2017.
[16] R. Beraldi, A. Mtibaa and H. Alnuweiri, "Cooperative load balancing

scheme for edge computing resources", 2017 Second International

Conference on Fog and Mobile Edge Computing (FMEC), 2017.
[17] M. Altamimi, "A Task Offloading Framework for Energy Saving on

Mobile Devices using Cloud Computing", Ph.D, University of

Waterloo, 2017.
[18] J. Doherty, SDN and NFV Simplified. [S.l.]: Addison-Wesley

Professional, 2016, pp. 149 - 154.

[19] Dijkstra, Edsger W. "Cooperating sequential processes." The origin of
concurrent programming. Springer New York, 1968. 65-138.

[20] L. Lamport, "Time, clocks, and the ordering of events in a distributed

system", Communications of the ACM, vol. 21, no. 7, pp. 558-565,
1978.

[21] K. Chandy, J. Misra and L. Haas, "Distributed deadlock

detection", ACM Transactions on Computer Systems, vol. 1, no. 2, pp.
144-156, 1983.

[22] H. Nguyen, H. Dang, N. Pham, V. Le and T. Nguyen, "Deadlock
Detection for Resource Allocation in Heterogeneous Distributed

Platforms", Advances in Intelligent Systems and Computing, pp. 285-

295, 2015.
[23] H. Nguyen and V. Le, "Detection and Avoidance Deadlock for

Resource Allocation in Heterogeneous Distributed Platforms",

International Journal of Computer Science and Telecommunications,
vol. 6, no. 2, 2015.

[24] J. Lim, T. Suh and H. Yu, "Unstructured deadlock detection technique

with scalability and complexity-efficiency in clouds", International
Journal of Communication Systems, vol. 27, no. 6, pp. 852-870, 2013.

[25] K. Rashmi, V. Suma and M. Vaidehi, "Enhanced Load Balancing

Approach to Avoid Deadlocks in Cloud", International Journal of

Computer Applications, 2012.

https://arxiv.org/ftp/arxiv/papers/1209/1209.6470.pdf

[26] O. Mahitha and V. Suma, "Deadlock avoidance through efficient load
balancing to control disaster in cloud environment", 2013 Fourth

International Conference on Computing, Communications and

Networking Technologies (ICCCNT), 2013.
[27] D. Malhora, "Deadlock Prevention Algorithm in Grid Environment",

MATEC Web of Conferences, vol. 57, p. 02013, 2016.

[28] B. Forouzan and S. Fegan, Data communications and networking, 4th
ed. Boston [Mass.]: McGraw-Hill Higher Education, 2007. 370-379

[29] J. Lehoczky, L. Sha and Y. Ding, "The rate monotonic scheduling

algorithm: exact characterization and average case behavior", [1989]
Proceedings. Real-Time Systems Symposium.

https://arxiv.org/ftp/arxiv/papers/1209/1209.6470.pdf

