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ABSTRACT Multi-Access Edge Computing (MEC) is a new 5G enabling technology proposed to reduce 

latency by bringing cloud computing capability closer to IoT and mobile device users. MEC may be prone to 

unreliable communication as a result of deadlock during resource provisioning. Deadlock may occur due to 

a huge number of devices contending for a limited amount of resources if adequate measures are not put in 

place. It is crucial to eradicate deadlock while scheduling and provisioning of resources on MEC to achieve 

highly reliable and available system. In this paper, a deadlock avoidance resource provisioning algorithm is 

proposed for Industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. 

The proposed scheme incorporates banker’s resource-request algorithm using SDN to reduce communication 

overhead. Simulation Results have shown that system deadlock can be prevented by applying the proposed 

algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC 

platforms. 

INDEX TERMS Network Reliability, 5G networks, Edge nodes, IIoT, MEC, Resource provisioning, 

Deadlock avoidance

I. INTRODUCTION 

Reliable and instant communication has become more vital 

than ever in the fast-growing digital economy and connected 

society. Therefore, it is no surprise that network reliability is a 

major concern of network and internet service providers. 

According to [1], the key concerns of network service 

providers are network reliability, network usability and 

network fault processing. This paper aims at building a more 

reliable system by eliminating the chances of deadlock during 

resource provisioning of Industrial IoT (IIoT) to an MEC 

system. 

Industrial IoT devices consist mainly of devices that have 

computation and resource limitations and therefore offload 

majority of their workload. In this research, we assume that 

the workload of these IIoT devices are offloaded to the nearest 

MEC node where they are provisioned resources for 

execution. This drastically increases the number of devices 

dependent on MEC node sharing and competing for resources. 

Tran, T et al [2] defines MEC as an emerging paradigm that 

provides computing, storage and networking resources 

within the edge of mobile Radio Access Network (RAN). 

The idea was to design mini servers known as edge nodes 

that would handle storage and computation for mobile 

devices. These edge nodes are in close proximity to the end 

users providing a platform for caching and offloading with 

the aim of reducing bandwidth consumption and latency of 

the network. The edge nodes complement the traditional 

cloud infrastructure by providing additional resources.  

Resource provisioning in MEC depicts a multiprogramming 

environment where several resources may compete for 

reusable resources. The idea is to schedule application tasks 

from mobile devices to edge nodes for execution. Since there 

is a finite amount of resources in MEC, resources must be 

managed effectively to prevent scheduling a task to an edge 

node which does not have adequate available resources to 

execute the offloaded task. This environment is usually prone 

to deadlock because a process may request for resources which 

are held by another waiting resource thereby leading to a 

circular wait [3].  Deadlock is an undesirable problem that has 

been studied extensively in operating systems [3], resource 

allocation systems [4], and manufacturing systems [5] [6]. 

MEC is a distributed system [7] and studies on distributed 

systems have reported a chance of deadlock in such systems if 

proper measures are not put in place [8].  

There are four necessary properties of a distributed system that 

could cause deadlock which includes no pre-emption, mutual 

exclusion, hold and wait and circular wait [3].   A 

simultaneous occurrence of these four leads the system to an 

Unsafe State where the system suffers from a probability of 

getting stuck due to unmanaged distribution of resources. 

Deadlock-free operation is a key characteristic for industrial 

sites that require high reliability and availability from its 

infrastructure to achieve the daily goal of the industry. The 

standard toolset for deadlock detection is the Wait for Graph 

(WFG) [3]. 

In the absence of algorithms to detect and recover from 

deadlocks, a situation may occur where the system is in a 
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deadlock state and yet there is no way of recognizing what has 

happened. In this case, the undetected deadlock will result in 

deterioration of the system's performance because resources 

are being held by processes that cannot fully execute. 

Therefore, if more and more processes make requests for 

resources, the system will enter a deadlocked state. 

Eventually, the system will stop functioning and would require 

a manual restart [3]. 

In this paper, a deadlock aware algorithm for scheduling 

resources for IIoT devices onto an MEC platform which 

incorporates banker’s resource-request algorithm is presented. 

Banker’s algorithm works by simulating and using specified 

resources to predetermine deadlock conditions for all pending 

activities and deciding if allocation should be allowed to 

continue. Banker’s algorithm requires three important inputs 

for execution which are the NEED matrix, MAX matrix and 

available vector (AVAIL vector) [19]. The proposed algorithm 

is only favorable if implemented using Software Defined 

Networking (SDN) to reduce the communication overhead 

that would be generated by the resource-request algorithm. 

The remainder of this paper is structured as follows: in section 

II we have reviewed related work, listed our contribution and 

discussed the case study. In section III we presented the 

system model.  In section IV we presented the proposed 

algorithm. We have simulated, tested and discussed the results 

in section V. We concluded in VI and future works in VII 

 

II. LITERATURE REVIEW 

Table 1 Deadlock strategies 

With the successful launch of 4G in 2010, approximately 800 

telecommunication stakeholder companies around the world 

have formed consortiums such as 5G PPP Working Group to 

produce a draft for 5G architecture explaining the basic 

expectations [9]. This includes energy efficiency, low 

latency, high reliability and machine-centric communication 

design. To minimize latency in network communication, 

MEC and fog computing was proposed by ETSI and 

consortiums.  

Considering the decentralized architecture of MEC as 

opposed to the traditional centralized cloud infrastructure, it 

is important to investigate an efficient mechanism to offload 

and execute mobile applications on the edge of a network.  

There have been several proposals for resource provisioning 

techniques to offload mobile application workloads on MEC 

[10] [11] [12]. Nevertheless, none of the previous works on 

MEC considers deadlock during offloading and resource 

provisioning which is a concern for distributed systems as 

previously stated. There are four major strategies for 

handling deadlock in distributed systems. These include (i) 

ignore, (ii) detect and recover, (iii) prevention and (IV) 

avoidance. The first two are commonly used because the last 

two are difficult to implement [13]. Few researchers have 

opted for detect and recover strategies as shown in table 1. 

This is not always ideal because in a scenario where the 

system needs to be readily available, any amount of 

downtime can be very costly. Deadlock avoidance strategy 

is said to be the most effective, but it is difficult to implement 

in distributed systems because of communication overheads 

and therefore labelled impractical [14].   

Researchers have previously used load balancing algorithms 

to level out the workload between servers in MEC and avoid 

resource over provisioning [15] [16]. C. Tham and R. 

Chattopadhyay [15] proposed a load-balancing scheme for 

distributed computing on the edge of a network based on 

heuristic algorithm. They used an edge model of a group of 

nodes connected over a wireless ad-hoc network with which 

they formed a convex optimization problem. The simulation 

results obtained show near-optimal performance in most 

cases. Load balancing schemes reduces the chances of 

deadlock but does not eliminate it entirely from the system. 

Deadlock prevention and/or avoidance scheme is a more 

suitable approach as it eliminates the chances of deadlock in 

the system [17]. 

With the advancement of 5G and Software Defined 

Networks (SDN), the communication overheads that was 

once a problem in the implementation can now be reduced 

thereby making it practical to implement the deadlock 

avoidance algorithms in a distributed system. The idea of 

separating the control plane from the data plane means there 

would be less communication between the routers and 

switches because they share a centralized control plane [18]. 

The current state of art shows that researchers have 

previously used load balancing to avoid over provisioning 

and deadlock in MEC. However, to the best of our 

knowledge deadlock avoidance have not been addressed in 

an MEC context. Therefore, in this study, a novel resource 

provisioning algorithm for deadlock avoidance on a multi-

access edge computing is proposed in the context of IIoT. 

The proposed algorithm is different from load balancing 

because in load balancing there is a load balancer that first 

accepts the request and uses a mechanism to distribute it to 

servers. As opposed to this, in the proposed method, the task 

goes directly to the MEC servers for execution and only gets 

redirected if the time and resource constraints of the task 

cannot be satisfied. 

The widely used deadlock avoidance algorithm due to its 

efficiency is the banker’s algorithm proposed by Dijkstra 
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[19]. Banker’s algorithm is a resource allocation algorithm 

which simulates a system using predefined variables and 

predetermines the safeness of a system before granting a task 

allocation request [19]. It is mainly used in operating systems 

where it runs on a single machine. In this study, we used it 

in a distributed environment where resource information is 

shared by systems within the environment 

A. Contributions  

The main contributions of this paper are listed as follows: 

a. Formulation of distributed task model in a MEC that 

ensures reliability by avoiding deadlock.  

b. Adaptation of the banker’s algorithm in the proposed 

solution and pushing its boundary by testing it in a new 

field (MEC) and obtaining an optimized solution for 

distributed systems. 

c. Extensive simulations conducted on the algorithm shows 

reduced probability of deadlock occurrence.  

 

B. Case Study Architecture for Industrial IoT and 

MA-MEC 

Figure 1 shows a high-level view of the MEC topology 

adopted in this study. In this scenario, due to resource and 

computation limitation of the IIoT devices, they heavily 

depend on MEC nodes to execute their workload. Therefore, 

tasks are offloaded from the IoT devices to be executed on 

an MEC platform. The distributed edge nodes communicate 

with each other through SDN. IoT requests that are not 

available on the edge node would be forwarded to the cloud 

through the API (Application programming interface). To 

reduce latency in this research, traffic to the cloud is 

generally avoided. The SDN controller uses it North Bound 

(NB) interface to communicate with the cloud and 

communication with the edge nodes is done using the South 

Bound (SB) interface. Each edge node comprises of a 

monitoring tool which calculates the resource utilization of 

the node (CPU, RAM and Memory). This information is 

shared between the edge nodes as metadata. Therefore, each 

edge node that forms a part in the network is assumed to keep 

resource utilization information about the entire destination 

within the system. This helps the edge nodes decide the most 

suitable edge if re-offloading is required. 

Optimal routes are also considered when sharing metadata 

among edge nodes. Each edge node in the network sends 

updated metadata after each event. This metadata describes 

the resource utilization of the edge node after the event. The 

term network is used here loosely to describe the Multi-

access edge architecture. 

 

III. SYSTEM MODEL 

In this work, a distributed architecture which consists of a 

pool of Multi-Access Mobile Edge Computing (MEC) nodes 

is considered as a platform for resource provisioning. The 

tasks seeking to be offloaded will utilize the MEC resources 

through a request-response mechanism. Hence the problem 

can be modelled as a Directed Regular Graph. The target 

scenario stands out to be soft real-time and high volume of 

offloading traffic from an underlying scalable network.  

Let’s consider a mesh network of a finite non-empty set of 

edge nodes CL ={𝐶𝑙1, 𝐶𝑙2 … 𝐶𝑙𝑛} and a finite non-empty 

set of mobile station M = {𝑚𝑠1, 𝑚𝑠2 … 𝑚𝑠𝑛} connected 

to the edge network such that 𝑚𝑠𝑖 ∈ 𝑀 and 𝐶𝑙𝑗 ∈

𝐶𝐿 maintains a disjoint many-to-one cardinality. Here an 

edge node is connected to many mobile stations, but no 

mobile station is connected to multiple edge nodes. 

Communication between CL and M happens over a wireless 

band with a fixed number of channels {𝑐ℎ𝑖|1 ≤ 𝑖 ≤ 𝑘} 

and collision is prevented by CSMA/CA protocol [28]. The 

CSMA/CA maintains a back off time less than the real-time 

deadline 𝜏𝑑𝑙  making the system scalable and dynamic. The 

system model comprises of the communication model and 

Figure 1 Case Study Architecture 
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the computation model. The communication model deals 

with the optimization of communication parameters for 

better energy savings and the computation model for 

optimizing the execution time with deadlock immunity. 

a. Communication Model  

Let’s consider a workload W = {𝑇1, 𝑇2 … 𝑇𝑛} which contain 

a set of tasks 𝑇𝑖  to be offloaded by a mobile station. The 

workload, denoted by W [𝑐𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑑𝑖] is characterized by 

CPU, memory, network and data size respectively. During 

IIoT application development, the developer specifies which 

fraction of the total workload can be offloaded (Remotable 

Object) and which part should be executed locally. 

Therefore, the offloadable data size of any task 𝑇𝑖  can be 

denoted as a fraction 𝛼𝑖 of total workload data size 𝑑𝑖. 

Therefore, 𝑙𝑖 =  𝛼𝑖𝑑𝑖 is the offloadable data size of 𝑇𝑖 . The 

transmission time 𝑡𝑖  = (
𝑙𝑖

𝑟𝑖
) where 𝑟𝑖  is the transmission rate 

which can also be expressed as 

𝑟𝑖 = 𝐵 log2 (1 +
𝑃𝑖𝑔𝑖

2

𝑁0𝐵
) 

     

     (1) 

where B is the bandwidth, g is the gain and P is the transmit 

power. Hence the equation can be rewritten for 𝑃𝑖  as (eq 2) 

                      
𝑁0𝐵(2

𝑟𝑖
𝐵 −1)

𝑔𝑖
2 =  

1

𝑔𝑖
2 ℎ (

𝑙𝑖

𝑡𝑖
) 

       (2) 

where 

                       ℎ(𝑥) = 𝑁0𝐵 (2
𝑥

𝐵 − 1) 

(3) 

which is monotonically increasing with x. Hence the energy 

consumption for the offloading task is (eq 4) 

 

                     𝐸𝑖,𝑜𝑓𝑓 =
𝛼𝑖𝑑𝑖𝑃𝑖

𝑟𝑖
=  𝑡𝑖𝑝𝑖 =  

𝑡𝑖

𝑔𝑖
2 ℎ (

𝑙𝑖

𝑡𝑖
) 

(4) 

Therefore, 𝐸𝑖,𝑜𝑓𝑓 = 𝑂(𝑡𝑖) (Lemma 1). Energy optimization 

can be obtained by the following model. 

 

           𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝐸𝑠𝑎𝑣𝑒𝑑 = ∑ (𝐸𝑙𝑜𝑐𝑎𝑙 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑)𝑖  

subject to, 

                  𝜏𝑙𝑜𝑐𝑎𝑙 + ∑ 𝜏𝑟𝑜𝑢𝑡𝑒 + ∑ 𝜏𝑤𝑎𝑖𝑡 ≤ 𝜏𝑑𝑙 . 
where 𝜏𝑙𝑜𝑐𝑎𝑙  is the time spent to calculate if the task should 

be offload, while 𝜏𝑟𝑜𝑢𝑡𝑒 is the time spent in routing the task 

from the local device to the edge for execution. 𝜏𝑤𝑎𝑖𝑡   is the 

time the task spends on the edge node before being executed. 

The edge nodes are assumed to be in a mesh topology, hence 

𝜏𝑟𝑜𝑢𝑡𝑒 = 𝑂(1), whereas 𝜏𝑤𝑎𝑖𝑡 = 𝑂(𝑛𝑘) . As deadlock 

freezes the system, the waiting time keeps increasing by 2𝑘 

until it reaches the maximum k value and times out due to 

CSMA binary exponential back-off characteristics [32].  

b. Computation Model  

Computation starts after the offloaded data stream is 

received by an edge node. Here a decision is made whether 

the requested task gets executed on the subjected edge node 

or re-offloaded to another one. The decision is made based 

on resource request WFG of each individual edge node and 

availability of the other nodes in the mesh. Hence the system 

is a mesh of interconnected priority queues. Note that the 

WFG is made for each MEC node and not distributed across 

all nodes. The priority is based on a safe sequence from 

banker’s algorithm which guarantees no deadlock using a 

preventive and avoidance measure. The precomputing delay 

contributes to 𝜏𝑤𝑎𝑖𝑡  and ensures it is below deadline. The 

edge node maintains two queues. First, a prioritized 

indefinite length job queue whose priority is maintained by 

the publisher (Rate Monotonic Criteria). To achieve real-

time criteria, Rate Monotonic Scheduling (RMS) suggests 

that frequent occurring tasks should be given higher priority 

[29]. Tasks get popped out in Job queue in FIFO order and 

then checked if the requested resource can be accommodated 

by the subjected edge node 𝐶𝑙𝑖. If not, it finds another edge 

node 𝐶𝑙𝑗 that is most eligible and offloads. If 𝐶𝑙𝑗 executes the 

task on time, then 𝐶𝑙𝑖 increases the 𝑗𝑡ℎ index on its 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦𝑖 

vector that it maintains, decreases otherwise. This affinity 

vector is initialized with 0 and used to maintain reliability 

record and tie-breaker purpose. A Request ≤ Available is said 

to be valid and put into the Ready Queue which is finite with 

size 𝑆𝑖𝑧𝑒𝑟 and prioritized with Banker’s generated safe 

sequence. 

𝑆𝑖𝑧𝑒𝑟 = [
𝐵𝐷𝑃

𝑚𝑒𝑎𝑛(𝑙)
] = [

𝑛𝐵 𝑅𝑇𝑇

2 ∑ 𝑙𝑖
𝑛
𝑖=1

] 

       (5) 

BDP shows the number of bits the channel can 

accommodate, hence the ratio of BDP and average task is the 

number of task that can be queued ensuring mutual exclusion 

property. When a task is inserted into a ready queue, it gets 

an index based on its resource requirement. Starvation is 

handled with aging. If a task 𝑇𝑖  gets placed into a ready queue 

with index i, then the expected turnaround time 𝑇𝑇(𝑇, 𝑘) =
𝑖 ∗ 𝑎𝑤𝑡𝑘. Where 𝑎𝑤𝑡𝑘  is the average waiting time of edge 

node 𝐶𝑙𝑘. 

In worst case scenario, for n processes and m resources 

Banker’s algorithm takes 𝑂(𝑛2𝑚) time. Since the number of 

resources are fixed (k), hence the time complexity is  𝑂(𝑛2𝑘) 

= 𝑂(𝑛2). Since the algorithm is applied on the ready queue 

the maximum task it can retain is  𝑆𝑖𝑧𝑒𝑟 × 𝛼 𝑑𝑒𝑙𝑎𝑦 = 𝑡𝑖 , 
Hence banker’s algorithm takes 𝑂(𝑡𝑖

2) to generate a safe 

sequence. 

 

 

 

 

 

 

 

Lemma 1: The consumed energy for offloading and the 

transmission time shares a linear relationship. 
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Proof.   From equation 3 & 4 it can be inferred that, the 

partial relationship between 𝐸𝑖,𝑜𝑓𝑓  & 𝑡𝑖 for a given gain (𝑔𝑖) 

and offload length (𝑙𝑖) is,  

𝐸𝑖,𝑜𝑓𝑓 =  
𝑡𝑖

𝑔𝑖
2 ℎ (

𝑙𝑖

𝑡𝑖

) = 𝑡𝑖2
1
𝑡𝑖 

Using asymptotic analysis of the given function, 

𝑂(𝐸𝑖,𝑜𝑓𝑓) = 𝑂(𝑡𝑖) × 𝑂 (2
1
𝑡𝑖) 

Now the second element is a monotonically decreasing 

sequence with lower bound 0. Hence, it has a constant 

asymptotic upper bound 𝑐 ∈ 𝑅, therefore 𝑂(1). 

Hence,    

 

𝑂(𝐸𝑖,𝑜𝑓𝑓) = 𝑂(𝑡𝑖) × 𝑂(1) = 𝑂(𝑇𝑖) 

              (6)  

This can be verified by plotting equation 4. (Figure 2) 

 

IV. Proposed algorithm  

In this section we discuss the design and analysis of the 

proposed resource provisioning algorithm (RPA). The 

algorithm fetches tasks from the task queue which is RMS 

scheduled, therefore most frequently used tasks get higher 

priority. Tasks from Job queue then migrates to ready queue. 

The proposed algorithm alters the order in which the tasks 

leave the job queue and stays in the ready queue. The 

following are the criteria used for the ordering.  

 

Case 1. Overdemand: each task comes with its maximum 

resource need, recorded in the MAX vector. If the maximum 

need exceeds the total available resources, then it searches 

for an MEC node which satisfies the constraint. If no such 

MEC node is found the task waits for a certain amount of 

time which increases in a binary exponential order with each 

iteration of request before it times out. 

 

Case 2. Unsafe Request: if the MAX is less than the current 

node’s AVAIL then the tasks enters Banker’s safe state 

algorithm and be given a safe sequence index at which the 

task gets executed. Banker’s algorithm guarantees a safe 

sequence never causes deadlock. 

 

Case 3. Time feasibility: A resource hungry task in a resource 

constrain MEC may suffer from starvation by waiting. Aging 

is used here to improve waiting time, although it requires the 

process to stay waiting to age. Hence the algorithm calculates 

waiting time by the product of the average waiting time of 

the current node and the index of the task. If the waiting time 

exceeds the soft deadline of the task, it finds an alternative 

node to meet the criteria.     

 

Algorithm 1: Resource Provisioning Algorithm (RPA) 

Input: W [𝑐𝑖, 𝑚𝑖, 𝑛𝑖, 𝑑𝑖] 
Output: Resource Provision Plan for 𝑡𝑖 
Steps 
1. Do 

2.     Job. Insert(𝑡𝑖) 

3.     𝑘 ← 0 ; max_k = input(‘maximum retry attempt :’) 
4.     While (Ready.isfree() = true) do 

5.            Ready. Insert(Job.delete(𝑡𝑖)); 

6.            J-cur   Ready.delete (𝑡𝑖); 

7.      J-Cur. Status = Assigned ; 
8.      If 𝐽𝑐𝑢𝑟 .MAX< node.AVAIL: 
9.                Ind = banker’s (jcur) 
10.                Time = (AWT)X(Ind) 

11.                If Time < 𝑡𝑖
𝑙  ; 

12.                        Assign; 
13.                  Else Goto step 14  

[End If] 
Else  

14.         Find 𝐶𝑙𝑖 from CL [nodes] : 
15.         Max

𝑖
(𝐶𝑙𝑖 . 𝐴𝑉𝐴𝐼𝐿 – 𝐽𝑐𝑢𝑟 . 𝑀𝐴𝑋)   

16.                          Send(Jcur); 
17.                          Wait until (response) 
18.         If response = Success : 
19.    Return result 

20.         Else wait(2𝑘++)   // k : iteration count   
21.                If (Timeout OR k = max_k): 
22.     Return “Fail” 

                         [End if] 
        [End if] 
          [End If] 
      [End Loop] 
 While (True) 
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A task is said to be feasible if it doesn’t overdemand and the 

generated waiting time is less than its latency constraint. The 

waiting time of a task is the product of average waiting time 

of the executing node 𝐶𝑙𝑖 and the safe index bankers’ 

algorithm produces. The algorithm allows a feasible task to 

execute locally else it gets executed remotely. A task that 

demands resources that are not available on the local MEC 

or a task with unsuccessful execution by a remote MEC must 

be kept on waiting until it’s timeout. The waiting period 

increases with a binary exponential order with each attempt. 

A registry is also maintained to keep track of the tasks 

submitted for remote execution and their status.  Figure 3 

depicts the complete workflow of RPA. 

 
Lemma 2: RPA is not suitable for hard real-time but soft 

real-time tasks. 

The response time of the algorithm depends on various 

timing factors such as  

i. Queuing Delay: Takes place due to processing 

overhead, context switching etc. of other processes 

rather than the subjected one. It also depends on system 

specification and load.  

ii. Transmission Delay: An offloaded task’s total 

execution time includes the transmission delay which 

varies with network conditions.  

 The given uncertainty conditions makes a hard deadline 

infeasible as opposed to a soft deadline (lemma 3), hence the 

statement.  
 

 

Lemma 3: If there exists a feasible MEC node for a task, 

RPA handles the task within a finite time. 

 

To prove the lemma, we’ll prove for each three feasibility 

cases discussed earlier, a task waits a finite amount of time 

under RPA.  

 

Case 1: If the task over demands resources to its original 

MEC node and a remote node failed to execute, it must wait 

twice the time for resubmission hence the timeout occurs in 

log2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 iteration.  

 

 

Case 2: if the task makes an unsafe request, it looks for a 

remote node to get offloaded. Since all the AVAIL 

information are reactively shared and the decision is made 

based on the global map of AVAILs. Therefore, the task gets 

offloaded only once and onto the optimal remote MEC node. 

This prevents node hopping and total execution time can be 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑙 + 𝑇𝑟 + 2𝐶𝑙𝑟  where 𝑇𝑙 , 𝑇𝑟 & 𝐶𝑖𝑗 are local 

execution, remote execution and transmission time 

respectively. 

 

Case 3: If a task makes a safe request but has a large NEED, 

it must wait for the resources to be available. If a remote node 

can execute it in less time, it is offloaded (𝑇𝑙 < 𝑇𝑟). 

Therefore, this guarantees the optimal remote node selection.       

Figure 3 RPA workflow  
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V. SIMULATION  

 
Simulations were performed to demonstrate the validity of 

the proposed technique. The simulations were based on the 

complexity analysis of the algorithm and energy 

optimization as discussed in the previous section. The 

energy, 𝐸𝑖,𝑜𝑓𝑓 required by an edge node 𝐶𝑙𝑖 to offload a task 

of 𝑙𝑖  𝑠𝑖𝑧𝑒 for 𝑡𝑖 unit time through a channel of 𝐵𝑖  bandwidth 

using an antenna of 𝑔𝑖 and a signal to data ratio 𝑁0 is (eq 7). 

𝐸𝑖,𝑜𝑓𝑓 =
𝑡𝑖

𝑔𝑖
2 𝑁0𝐵 (2

𝑙𝑖
𝐵𝑡𝑖 − 1) 

      (7) 

Since gain, bandwidth, data size and signal-to-data ratio is 

predetermined by the communication system hence the 

relation can be squeezed into an asymptotic upper bound 

form as (eq 8). 

 

𝐸𝑖,0𝑓𝑓 = 𝑂 (𝑡𝑖
𝑙. 2

𝑙𝑖

𝑡𝑖
𝑙
) 

      (8) 

The graph in figure 2 shows a critical value of transmission 

time and payload length the energy consumption by the 

antenna starts rising exponentially. Context suggests that if 

there’s a deadlock then the waiting time component will 

increase indefinitely resulting to a significantly large energy 

consumption. Since the transmission time is a function of the 

data length and a constant data rate, therefore the 

transmission time is a random variable distributed over a 

Bernoulli’s probability density function (collision control is 

CSMA/CA). To find the expectation (E) this can be shown 

that the surface integral mentioned below cannot be 

expressed in a closed form (eq 9). 

 

∫ ∫ 𝑡𝑖2
𝑙𝑖
𝑡𝑖𝑑𝑡𝑖𝑑𝑙𝑖

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

0

𝐵𝐷𝑃
𝑛

0

 

      (9) 

Equation 9 states the Growth rate of 𝐸𝑖,𝑜𝑓𝑓. Plotting this 

growth characteristic within a close range of [0, 50], the 

response characteristic surface in figure 4 is obtained. Each 

spike on the graph depicts the exponential growth of energy 

discussed earlier. With an increase of transmission time and 

length the peak energy consumption grows at a constant rate 

of ln 2. The growth characteristics of the 𝐸𝑖,𝑜𝑓𝑓 in equation 8 

can also be shown by the partial derivatives with respect to 

latency (𝑡𝑖) and offload length (𝑙𝑖) 

𝜕2𝐸𝑖,𝑜𝑓𝑓

𝜕𝑙𝑖𝜕𝑡𝑖

= − (ln 2
2

𝑙𝑖
𝑡𝑖

𝑡𝑖

  ) 

      (10) 

Figure 5 growth characteristics of the rate of change in offload energy with varying latency and offload length in a 
close range. Slope gets steeper with increasing range, saturates at [1,40] 

Figure 4: offload energy characteristics 
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Energy Characteristics in a discrete space of time and offload size 
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The surface plot of the equation 10 is depicted on figure 5. 

Analytically equation 10 signifies the rate of change of 

energy consumption with respect to varying offload length 

and latency. The value of (𝑡𝑖 , 𝑙𝑖) is taken in a close range. It 

can be shown in table 2 that the growth gets steeper as the 

range increases. It can be observed that the plot saturates 

after the range [1,40].  

 

Table 2: growth characteristics of change in energy in 

discrete time & size. 

(𝑡𝑖, 𝑙𝑖) range Rate of change of 𝐸𝑖,𝑜𝑓𝑓 

[1,10) 3.5 × 102 

[1,20) 3.5 × 105  
[1,30) 3.5 × 108 

[1,40] 3.5 × 109 

[1,100] 3.5 × 109 

  

c. Experimental Results 

Since there exist no related experiments with MEC context 

in the literature, we performed the experiment by comparing 

results of a system with and without using RPA.    

Fig 6 shows time comparison graphs between a system with 

no deadlock prevention measures and a system running the 

proposed algorithm. The graphs were plotted with their 

corresponding time complexities for n number of tasks 

subject to a constant k (timeout order: this value is 

application dependent). It can be seen in fig 6 that as k 

increases, the time consumption of the system with no 

deadlock measures surpasses the system running the 

proposed algorithm. Since time is directly proportional to 

energy, it can be deduced that the algorithm optimizes the 

energy of a system by eliminating deadlock. 

 

d. Complexity analysis of the proposed model 

If 𝑁𝑇𝑜𝑡𝑎𝑙 tasks are submitted to an edge node, the job queue 

will hold them in priority as generated by Rate Monotonic 

Scheduling (RMS) Algorithm which takes 𝑡𝑟𝑚𝑠 time. Based 

on tasks’ request and the subjected edge node’s availability 

or resources, 𝑁𝑜𝑐  tasks are offloaded to an eligible edge node 

𝐶𝑙𝑗 as overcommitted task. An efficient binary search 

implementation can find such 𝐶𝑙𝑗 in log2 𝑐 − 1 time. The 

remaining 𝑁𝑇𝑜𝑡𝑎𝑙 −  𝑁𝑜𝑐 tasks will be put into banker’s 

algorithm that takes 𝑡𝑏𝑎 time to find the safe sequence in 

worst case scenario. If a task 𝑇𝑘 gets a safe index k, and the 

TT(k, i) > Q(deadline of 𝑇𝑘  ) then, the task will be offloaded 

to another MEC node that can perform the execution within 

the deadline. The function queue calculates the probability 

of executing the task and maintaining the deadline after all 

the communication and queuing. This is done by maintaining 

the affinity matrix. Hence, the time complexity of Q is 

𝑁𝑟𝑒𝑜𝑓𝑓 log2 𝑁𝑟𝑒𝑜𝑓𝑓  where 𝑁𝑟𝑒𝑜𝑓𝑓  is the number of tasks to be 

re-offloaded. Therefore, the maximum time a task can take 

to be executed if it got offloaded twice and being the 

lengthiest task can be expressed as 

 

𝑇𝑚𝑎𝑥 = 2[𝑙𝑛2 + log2(𝑐 − 1) + 3(𝑁𝑇𝑜𝑡𝑎𝑙 − 𝑁𝑜𝑐)2 

                                  + 𝑁𝑟𝑒𝑜𝑓𝑓 log2 𝑁𝑟𝑒𝑜𝑓𝑓 + 𝑟𝑡𝑡] + 𝑡𝑒𝑥𝑒𝑐 

         (11) 

The worst-case complexity of RMS and Bankers algorithm 

can be deduced to ln2 and 3𝑛2 respectively 

VI. CONCLUSION  

In this paper, a Resource Provisioning Algorithm for 

Deadlock Avoidance for Multi-Access Edge Platform was 

presented with an aim to maintain a more reliable network 

system for IIoT devices. As edge nodes have a finite amount 

of resources, continuous increase in the number of users 

dependent on the edge resources might lead to over-

provisioning which may result in a system deadlock because 

of many devices contending for limited and shared resources. 

The simulation results confirm this behaviour. In this paper 

we build on previous work on MEC by using a modified 

resource request banker’s algorithm which can also re-

Figure 6: comparison of time consumption of system with & without using RPA 
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distribute tasks to satisfy the latency constraint. Simulation 

test confirms deadlock if the system is in an unsafe state and 

there is a continuous increase of IIoT applications dependent 

on the edge node. On applying the proposed algorithm, 

results show that system deadlock can be avoided, which 

ultimately leads to a more reliable network interaction 

between IIoT devices and MEC platforms. 

 

VII. FUTURE WORKS  

The proposed RPA is an algorithm for distributed systems 

and not a distributed algorithm. Further works on this topic 

will be to improve the algorithm into distributed algorithm 

for MEC which can map the WFG of all the MEC nodes 

together rather than individual MEC WFG node mapping. 

Another direction would be comparison of RPA with 

Banker’s integration to another version of RPA using 

different deadlock avoidance algorithms. 
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