
Feasibility of Serverless Cloud Services for Disaster Management
Information Systems

Tayyaba Asghar
University of Lahore
University of Gujrat

Gujrat, Pakistan
tayyaba.asghar@uog.edu.pk

Saqib Rasool
Information Technology University

University of Gujrat
Gujrat, Pakistan
saqib@ieee.io

Muddesar Iqbal
School of Engineering

London South Bank University
London, UK

m.iqbal@lsbu.ac.uk

Zia ul Qayyum
University of Gujrat

Gujrat, Pakistan
Ziaqayyum@gmail.com

Adnan Noor Mian
Information Technology University

Lahore, Pakistan
adnan.noor@itu.edu.pk

George Ubakanma
London South Bank University

London, UK
ubakang@lsbu.ac.uk

Abstract—Serverless is the new generation of cloud services
that supports the pay-per-use policy in true spirit by charging
only for the execution time of the hosted code. Amazon
introduced serverless service of Lambda in 2014 and it is
consider as the most popular serverless cloud service till date.
This paper focuses on the serverless cloud services of Lambda
and elaborates the importance of Lambda based serverless
cloud services for hosting the disaster management information
systems (DMIS). We have identified two repeatedly occurring
phases of the life cycle of a DMIS viz. low activity phase
and high activity phase. Our findings state that serverless
cloud services are well-suited for both of these phases of a
DMIS. Serverless reduces the operational cost during the low
activity phase by detaching the code from running containers
and it improves the scalability during the high activity phase
by quickly assigning the already available containers from
the container pool. However, this all comes with the price
of reduced QoS (Quality of Service) for initial requests after
specific idle duration and our experimental results report the
QoS degradation with respect to idle time for Lambda service.

Keywords-FaaS; Serverless; Lambda; QoS; DMIS; Disaster;

I. INTRODUCTION

Serverless cloud services offer the fine-grained pay-per-
use access to auto-scaling cloud resources and is achieved
by applying no charge policy for idle applications [1].
Serverless services are also known as FaaS (Function as a
Service) [2] as each service corresponds to a stateless (often
light-weight) function. Each of these functions are inherently
capable of quickly scaling against the bursty traffic and this
scalability is entirely achieved by the cloud vendor without
requiring any scalability knowledge by the user hosting that
functions. Lambda [3] is the most popular FaaS and it
was launched by Amazon in late 2014. Although Amazon
deploys the serverless Lambda functions through containers
but these are more robust and scalable [4] as compare to the
Elastic BeanStalk, a server based container service [4].

V. Cardellini et. al [5] has identified the missing support
of efficient resource allocation by cloud service providers for
reducing the cost and ensuring the auto-scalability against
two types of traffic viz. 1) bursty and 2) unpredictable.
S. Hendrickson et al. [4] have proved that Lambda has
solved the first problem of efficient auto-scaling against the
bursty traffic by sharing a pool of containers among multiple
instances of different applications. However, Lambda is not
much effective for the unpredicted traffic.

J. Weinman [1] has identified the limitation of Lambda to
handle the second problem as it is not capable of maintaining
Quality of Service (QoS) for the initials requests after an
idle time duration. It is also suggested to evaluate the per-
formance of Lambda against the personalized requirements,
before using it in production. Reason for reduced QoS is
cold start [6] which removes the idle functions and restores
back these after the next request arrives. Although it ensures
the optimal utilization of resources but it also reduces the
QoS for the initial requests sent after a specific idle time.
More details of cold start are covered in section three.

Disaster Management Information System (DMIS) helps
in the better execution of the assistance operations during
and just after the disaster. It also helps in applying the
lessons learned from previous disasters to improve the relief
operations [7]. However, DMIS mostly remains idle during
the time between two disasters and it suddenly generates
the bursty traffic during the rehabilitation process. We have
termed both of these phases as low and high activity phases
respectively. In this paper, we have presented that serverless
can support both of these phases with a QoS tradoff for
few initial requests. Section two elaborates the evolution of
virtualization with respect to optimal resource utilization.
Section three explains the effectiveness of serverless for
low and high activity phases of DMIS. Section four enlists
related work and last section concludes the paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/227106529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. Evolution of virtualization from bare-metal deployments to three different virtualization models of cloud services

II. EVOLUTION OF VIRTUALIZATION

In early days, the computation was tightly bound to hard-
ware and applications ran directly on hardware machines.
It not only resulted in wastage of system resources but
also confined applications to vertical scalability [8] which
is achieved by increasing the capacity of an individual
machine. Bare-metal deployments also make it difficult to
horizontally scale [9] the applications which is achieved by
distributing an application over multiple machines to share
the load among these.

Attaining the horizontal scalability through physical hard-
ware results in two main challenges of 1) quickly launching
new machines for handling the busty traffic and and 2)
handling the sudden and unexpected hardware failures of
physical machines. Virtualization offers the solution to both
of these problems by efficiently managing and distributing
the physical resources and also by imposing different appli-
cation development practices for simplifying the horizontal
scalability of deployed applications and this led to the
beginning of cloud era.

Fig. 1 contains four parts where part A is showing a bare-
metal server without any virtualization while other three
sections represent three major virtualization phases in the
history of cloud computing with respect to the optimization
of cloud resources. There are four different colors used in
Fig. 1 and each of these are listed below:
Background color of Black represents the virtualizaiton
which is controlled by the cloud service provider.
Background color of Grey represents the platforms that are
used by the developers for hosting their codes on virtualized
cloud infrastructure.
Background color of Red represents the wasted resources
of the hosting platforms.
Background color of White represents the resources that
are purely controlled by the developers that are using cloud
services hosting their applications.

A. Hardware virtualization through VM
VMs (Virtual Machines) offer the hardware virtualization

which enables the sharing of a physical machine among mul-
tiple applications. However, it does not ensure the efficient
resource consumption during the low activity phase of a
DMIS. This is because each VM has its own OS (Operating
System) and it holds the computational resources; even if
the application is in idle phase. Moreover, if applications
are in running phase, it is not very often that these will be
utilizing all the designated resources of a VM. Red color in
part B of Fig. 1 represents the resources that are wasted due
to the under-utilization by the VM.

B. OS virtualization through Container
Containers ensure the OS virtualization by sharing same

kernel for offering multiple runtimes. Each runtime is fur-
ther designated for an individual application. Containers
are amongst the light-weight virtualization options with
relatively less startup time as compare to the VMs. However,
multiple containers can share only a single type of OS-
kernel [10]. Part C of Fig. 1 shows that more containers
can be deployed with relatively less resources as compare
to VM. Moreover resource wastage is also less in containers
as compare to VMs which can also be interpreted from the
difference of red color in both part B and C of Fig. 1.

C. Runtime virtualization through FaaS (Serverless)
Both VM and containers do not impose application de-

velopment patterns for achieving the horizontal scalability.
However, runtime virtualization imposes the application
developers to divide the application functionality into fine-
grained, light-weight and stateless functions and deploy each
of these functions as an independent service and therefore, it
is also known as Function-as-a-Service. It not only ensures
the maximum resource sharing but also improves the con-
sumption of allocated resources and same is depicted from
less amount of red color in part D of Fig. 1.



Figure 2. QoS degradation of a Lambda service against the time-varying
workloads

III. FEASIBILITY OF SERVERLESS FOR DMIS

Life time of a DMIS can be divided into two distinct
phases of 1) low activity phase during the time duration
between two disasters and 2) high activity phase during
the relief operation of a disaster. This section explains the
low and high activity phases of a DMIS with respect to
three virtualization models discussed in last section and also
elaborates the reason for reduced QoS due to the cold start
in serverless deployments.

A. Low activity phase

Information systems for disaster management generates
bursty traffic during the disaster but remain almost idle
for the time period between two disasters. Therefore, if
a DMIS is hosted at VM or container based virtualized
infrastructure then it will waste the resources during the
idle time. However, in case of deployment on a serverless
infrastructure, it will result in the reduction of operational
cost due to cold start.

B. High activity phase

DMIS generates huge traffic during the relief operations
after a disaster. If a DMIS is hosted on a VM or a container
it will take time to launch new VM and containers and it
reduces the overall QoS. This reduction in QoS will be ex-
perienced during the launch of every new instance due to the
increased traffic on existing instances. Hence, QoS will not
remain consistent throughout the relief operations. However,
when same DMIS is hosted on serverless infrastructure, it
will initially experience the degradation in QoS due to the
cold start. However, after the first few requests, QoS will
remain consistent due to the scalable nature of the serverless
cloud services. In case of serverless deployments, no time is
wasted for launching new containers or VMs because a pool
of containers is already maintained and just the allocation of
code to a container needs to be done for scaling to support
the bursty traffic of an application hosted on serverless.

C. Reduced QoS in serverless due to cold start

QoS and SLA (Service Level Agreement) guarantees are
considered amongst the major challenges of cloud services
and these are more crucial for FaaS due to the ad-hoc
assignment of containers to serverless functions. This au-
tonomous process of resource management and assignment
degrades the QoS for initial requests as it is focused on
reducing the operational cost of cloud vendors. A container
pool is maintained by the Amazon and a Lambda function
is assigned to one container upon the request. After the
completion of function execution, container is released back
to the container pool, if no other execution request is arrived
for the some time.

Ad-hoc algorithm of resource management tries to assign
the same container to the function on any future requests.
However, there is no guarantee that same container is
assigned again for the same request and it further increases
the response time. This increase in response time results in
further degradation in QoS because both QoS and execution
time are inversely proportional.

We have performed extensive experiments for finding
the QoS degradation in Lambda Service of Amazon by
sending 1100 requests in two sets of different ranges of
inter-transactional delay. First set contains 500 time-varying
requests with inter-transactional delays of 1, 2, 3, 4 and 5
seconds each and second set contains 600 requests for inter-
transactional delays of 10, 20, 30, 40, 50 and 60 each. Av-
erage of 100 requests against each of the 11 different inter-
transactional delays is presented in Fig 2. It can be deducted
from the presented results that the inter-transactional delay
is the prominent factor for deciding the container detaching.
For lesser inter-transactional delays, there were few chances
of container detaching and it resulted in less average ex-
ecution time. However, once a container is switched and
function is assigned to a new container, it increases the
execution time which resulted in QoS degradation.

Results presented in Fig. 2 were collected in June 2017
and were based on 1100 non-overlapping requests to a
Lambda function. However, in case of overlapping requests,
almost all initial request experience the similar degradation
in QoS and this can further reduce the average QoS values
presented in Fig. 2. Moreover, memory size of hosted func-
tion also effects the invocation time of a function. Detaching
of code from the containers results in cold start and this
problem can be solved by warming the serverless functions
through periodic invocation of the deployed functions.

IV. LITERATURE REVIEW

In this paper, we have focused on finding the feasibility of
serverless cloud services for hosting the DMIS. Serverless
cloud services has already been used for hosting few func-
tionalities during the relief operation of a disaster. However,
it is not proposed for hosting DMIS by identifying its
support for both low and high activity phases of a DMIS.



Serverless cloud services are used by a system for disaster
managers, known as CongiCity [11]. However, this whole
system was not hosted on the serverless and they deployed
just a single reporting module on serverless. This reporting
module uses the real-time social media streams from twitter,
facebook, telegram and used these for flood mapping in
Chennai, India. This flood mapping through social media
streams helped in the efficient decision making during the
flood. This study has used the Lambda service of Amazon
for deploying the real-time reporting module from social
media accounts while we have proposed the deployment of
whole DMIS on serverless cloud service.

Serverless has also been used for reducing the reunifica-
tion time of children during the disaster scenarios [12]. This
is achieved by running an image processing algorithm over
the pictures of the separated children for finding their legal
parents. This whole module was deployed on an opensource
serverless platform by IBM, known as OpenWhisk [13].
Serverless deployment of this module reduces the reuni-
fication time of children with their legal parents due to
high scalability of serverless cloud services. They have also
deployed only a single module over serverless while we have
proposed the deployment of whole DMIS on serverless cloud
services. We have not only presented serverless for hosting
DMIS but also reported the QoS degradation due to cold
start in serverless.

V. CONCLUSION

We have identified two repeatedly occurring phases of
a DMIS life cycle. First phase is the high activity phase
which occurs during the relief operations of a disaster
and second is the low activity phase which is based on
the duration between two disasters. Serverless is good for
efficient resource management by removing the running
code of DMIS during the low activity phase for reducing
the operational cost. It also gives more scalability during the
high activity phase of DMIS by using an already maintained
pool of containers.

This paper has identified the strength of serverless for
supporting both low and high activity phases. We have also
evaluated one of the limitation of serverless, known as cold
start, which results in the reduced QoS for initial request
after an idle time duration. We have performed experiments
on Lambda, which is the most popular serverless cloud
service by Amazon and we have reported the extent to which
QoS is degraded with respect to idle time in Lambda service
of Amazon.

ACKNOWLEDGMENT

The authors are grateful for the support received from
the transnational CiProVoT (Civil Protection Volunteers
Training) project. The project is co-funded by ERAMUS+
programme of the European Union.

REFERENCES

[1] A. Eivy, “Be wary of the economics of” serverless” cloud
computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 6–12,
2017.

[2] J. Spillner, “Snafu: Function-as-a-service (faas) runtime de-
sign and implementation,” arXiv preprint arXiv:1703.07562,
2017.

[3] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slomin-
ski, “Status of serverless computing and function-as-a-
service (faas) in industry and research,” arXiv preprint
arXiv:1708.08028, 2017.

[4] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless
computation with openlambda,” Elastic, vol. 60, p. 80, 2016.

[5] V. Cardellini, E. Casalicchio, and L. Silvestri, “Service level
provisioning for cloud-based applications,” in Grid and Cloud
Computing: Concepts, Methodologies, Tools and Applica-
tions. IGI Global, 2012, pp. 1479–1500.

[6] M. Stigler, “Understanding serverless computing,” in Begin-
ning Serverless Computing. Springer, 2018, pp. 1–14.

[7] J. Lee and T. Bui, “A template-based methodology for dis-
aster management information systems,” in System Sciences,
2000. Proceedings of the 33rd Annual Hawaii International
Conference on. IEEE, 2000, pp. 7–pp.

[8] L. Mei, W. K. Chan, and T. Tse, “A tale of clouds: Paradigm
comparisons and some thoughts on research issues,” in Asia-
Pacific Services Computing Conference, 2008. APSCC’08.
IEEE. Ieee, 2008, pp. 464–469.

[9] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey
of cloud computing systems,” in INC, IMS and IDC, 2009.
NCM’09. Fifth International Joint Conference on. Ieee, 2009,
pp. 44–51.

[10] P. Andreetto, J. Astalos, M. Dobrucky, A. Giachetti, D. Re-
batto, A. Rosato, V. Tran, M. Verlato, and L. Zangrando, “Egi
federated platforms supporting accelerated computing.”

[11] D. Sridhar and M. Priyaa, “Real-time flood mapping for
disaster management decision support in chennai,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2017.

[12] K. Coleman, F. Esposito, and R. Charney, “Speeding up
children reunification in disaster scenarios via serverless com-
puting,” in Proceedings of the 2nd International Workshop on
Serverless Computing. ACM, 2017, pp. 5–5.

[13] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, and A. Youssef,
“Leveraging the serverless architecture for securing linux
containers,” in Distributed Computing Systems Workshops
(ICDCSW), 2017 IEEE 37th International Conference on.
IEEE, 2017, pp. 401–404.


