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Abstract Machine intelligence is increasingly entering
roles that were until recently dominated by human
intelligence. As humans now depend upon machines to
perform various tasks and operations, there appears to be a
risk that humans are losing the necessary skills associated
with producing competitively advantageous decisions.
Therefore, this research explores the emerging area of
human versus machine decision-making. An illustrative
engineering case involving a joint machine and human
decision-making system is presented to demonstrate how
the outcome was not satisfactorily managed for all the
parties involved. This is accompanied by a novel frame-
work and research agenda to highlight areas of concern for
engineering managers. We offer that the speed at which
new human-machine interactions are being encountered by
engineering managers suggests that an urgent need exists
to develop a robust body of knowledge to provide sound
guidance to situations where human and machine decisions
conflict. Human-machine systems are becoming pervasive
yet this research has revealed that current technological
approaches are not adequate. The engineering insights and
multi-criteria decision-making tool from this research
significantly advance our understanding of this important
area.

Keywords human intelligence & machine intelligence,
HI-MI, decision-making, artificial intelligence

1 Introduction

No one can deny there is a rapid increase in the reliance
upon computers to perform a variety of tasks. Ubiquitous
computing has become a major technology paradigm that
extends beyond the early work at places like Xerox PARC,
IBM Research and HP Laboratories (Krumm, 2016). New
efforts focus on developing machines that copy complex
decision-making techniques traditionally made by humans.
This includes so called artificial intelligence (Warwick,
2013), such as self-driving automobiles (Ohn-Bar and
Trivedi, 2016), or decision-making in healthcare applica-
tions (Tsoukalas et al., 2015). Human-technology interac-
tion has moved beyond occasional human intervention to
systems with ongoing collaboration between the human
and the machine, thereby increasing ‘co-dependence with’
or ‘training of’ algorithmic systems and resulting in people
being effectively subsumed into the algorithmic landscape
(Applin and Fischer, 2015).
In this context, the term Machine Intelligence (MI) is

used to describe the performance of computers when they
are able to select actions from options required to arrive at
specific desired outcomes (Cotter, 2015). As we make the
transition from decisions resulting from purely Human
Intelligence (HI) toward MI, we find ourselves in some
state midway between, where most decisions are made
with a joint HI-MI contribution (Jacko, 2012; Helander,
2014). Initial applications of HI-MI include mobile crowd
sensing and computing (MCSC), where a collective
knowledge discovery paradigm allows data fusion and
machine intelligence supported by associated collaboration
modes (Guo et al., 2015). However, Cotter (2015) notes
there is a relative void in this emerging research area into
how to manage these processes and there is an increasing
need for a body of knowledge geared toward HI-MI
decision-making and governance.
To illustrate this emerging need we can consider the case

of the self-driving automobile (Blyth et al., 2016). Some
circumstances must occur where the letter of the law
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cannot be adhered to (such as an obstacle in the driving
lane requiring crossing a solid line) and judgment beyond
the current state of MI is required. However, it is not clear
where, how, or by whom such decisions addressing these
types of scenarios will be made. Consequently, this article
is presented to demonstrate the urgency in the development
of robust guidelines to support HI-MI decision-making.
We propose that the collective sum of human knowledge
necessary to assess the decisions made by machines is at
risk of decreasing with increased use of MI. Human
reliance upon machines may cause humans to increasingly
view the machine results as the correct answer and humans
may be unable to provide more optimal solutions
compared against the machine offerings. We contend that
this represents a significant risk to the operation of
engineering systems, when such risk is not mitigated by
effective decision-making structures and supporting pro-
cesses.

2 Symptoms of the problem

At the close of the 20th century, some people speculated
the majority of existing computer programs risked failing
due to misinterpretation of the two digit year ‘00’ as either
1900 or 2000. This was known as the Y2K bug (Snow and
Keil, 2002). Companies expended large sums to prepare
against this Y2K risk, with USD $30 million being
common in larger organizations (Kennedy, 2010). A
participant at one technical society meeting in 1999
asked a seemingly straightforward question, “Why cannot
these companies simply look at the programming code and
logically determine how the year 00 will be interpreted?”
The answer, it seems, is that although humans created the
code viewed as a risk, increasing complexity reached a
point beyond the ability of these humans to understand
how programs function in unfamiliar circumstances. The
common chosen step forward for the Y2K risk was
replacing the legacy programs with newer hardware and
software capable of registering a 4 digit year.
A retired engineering management faculty member was

in a bank to co-sign a mortgage for his daughter. The
quoted monthly payment was much higher than the quote
to the daughter. The loan officer, who regularly entered
similar loan information into the bank’s financial system,
was not convinced any mistake was made. Using a
spreadsheet and classic formulas (Newnan et al., 2013), the
professor calculated a payment lower than either quote
provided by the bank. Digging further determined the
bank’s computer program was automatically including life
insurance premiums for the borrower. Since the professor
was in his 70s, the estimated premiums added almost USD
$600/month to the quote. The loan officer was university
educated in business and had manually calculated loan
payments in the past. Despite dealing with mortgages
continually at work, the output of the machine became

accepted as the correct number to this human user and the
manual mechanism for arriving at the calculated values
was questioned.
People old enough to remember grocery shopping

before bar codes will recall that the cashier job was a
higher skill job than at present. The cashier was expected to
know the prices of all produce sold by weight and could
quickly count cash and calculate appropriate change. A
dishonest cashier could ‘short change’ a customer by
mentally calculating a lesser amount to pay back from
large denomination bills and pocketing the difference
(Murphy, 2016). As foreseen by Sullivan (1990) the
introduction of smart registers has eliminated cashier as a
skilled occupation and replaced it with a job requiring
scanning items and handing the customer a device to enter
payment. In a study by Hardesty et al. (2014), scanning
errors occur at a rate of about 1 in 30 items (which exceeds
the US Federal Trade Commission’s standard). These are
generally not caught by the cashier and customers tend to
only report errors not in their favor. On a personal note,
there have been times when we purchased items that were
underpriced by 90% or more. On those occasions when we
alerted the cashier of the likely error, the items were re-
scanned and when the same greatly underpriced value was
registered, the cashier shrugged and continued with the
transaction. The price displayed by the machine was
accepted. As well, during cash sales when the change is
close to a round dollar value, under the manual system a
cashier would ask the customer if they had the small
amount to add to avoid handing back large amounts of
coins. Under the automated systems, cashiers are typically
confused when customers hand them a few coins in an
attempt to make up this difference, since they are no longer
routinely doing this type of mental math at their job
(Wehmeyer, 2015).
A local independent auto body shop considered joining a

national chain. A term of joining is that fees for all work
are calculated using an application required by insurance
companies for their work. This shop owner realized that
proceeding would eliminate an ability to set prices based
on customer driven factors, such as labor only jobs (with
parts supplied), or providing discounts for attractive
circumstances. Changing systems risks losing an estab-
lished customer base since this shop would be largely
indistinguishable from the next franchised shop. Not
discounting for strategic purposes is counter to established
best practice recommendations (e.g. Flynn, 2010). In this
case, the AI system greatly impaired the individual
operators in creating strategic advantages for their
businesses.
In the examples above, the main point we wish to

highlight is that implementing an MI system resulted in
decisions that may not align with the goals of management
if they were able to see the consequences. The bank risked
losing a customer since the quote provided was much
larger than what the actual payment would be. For the Y2K
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systems, the users were not able to understand how the
system would react to new situations. For the auto body
repair shop, the established prices did not allow for
modifying to suit certain situations. For the retail outlet, the
stores are losing when errors allow transactions to take
place much below the desired price. For the case of the
bank, the user knew how to calculate the answer at one
time but the automated answer was not challenged or even
suspected of being in error. For the retail outlet, the
workers prior to the implementation of MI had highly
developed skills that were no longer sought in the post
implementation workers. For all the examples, there was
no explicit decision by management to accept these
outcomes. The implementation of the automated system
is not likely to be reversed and the consequences are set. As
well, once implemented the MI decisions are generally not
challenged by the humans who previously made them and,
over time, the humans lose the skills required to understand
the workings of the machine.

3 The game may be changing

Skepticism of the ability for machines to match or exceed
human decision-making has deep roots in the history of the
existing engineering management body of knowledge.
Some older textbooks (e.g. see Upton, 1998 or Chase et al.,
2004) note how attempts to automate more complex
processes typically produced unsatisfactory or marginal
results. The USD $1 billion expenditure by K-Mart for
automation is offered as a major cause of their significant
loss of market share and profitability (Coleman, 2000).
Introducing an ERP (enterprise resource planning) system
at Hershey and a subsequent loss of customer confidence is
used as evidence of the dangerous allure of automation
(Barker and Frolick, 2003).
An extensive study of the financial benefit of automating

human processes performed a decade ago (Vemuri and
Palvia, 2007) found there was no clear evidence to justify
the considerable sums companies continue to invest. There
was no doubt, however, that the investment continues
whether or not it is supported from a fiscal viewpoint.
Vemuri and Palvia (2007) note once the initial large
investment is made, subsequent improvements and expan-
sions do provide clear positive paybacks within the new
automated environment. That is, once the change is made,
regardless of the merit of that choice, it does make sense to
continue down the same automated path.
As the role of machine intelligence increases, it

behooves engineering management specialists to better
understand the consequences of present decisions and to
ensure they stay current in the state of MI integration; not
pursuing such a course may be blindly walking into
accepting potentially significant risks to the operation and
performance of many HI-MI engineering systems that are
in operation today. In this regard, a tour of a new

processing facility by one of the authors sheds light on the
potential for rethinking standard management practices.
The company toured provides medical related products to
the healthcare industry and has USD $150 million in
annual sales. They have five manufacturing plants in
different urban centers and are building one more. The
particular plant toured was completed in 2015. Labor
represents 60% of their expenses. However, machines
determine the pace of production with humans required at
certain steps for processes not yet automated. The humans
either keep up to the pace set by the machine or are
replaced by people that can. In such an environment, the
company’s executives expressed no interest in the staples
of traditional operations management. The principles of the
learning curve (Adler and Clark, 1991) and continuous
improvement (Fryer and Ogden, 2014) to drive lower
production costs were considered irrelevant. The company
noted that there were start-up inefficiencies but after the
bugs are worked out they notice no material improvements
in production over time. Efficiency is driven by improve-
ments in technology following each new plant start-up.
The new plants level out at higher production rates per
person than the older plants. Efforts to improve individual
human productivity (Samnani and Singh, 2014) or
programs to promote highly effective teams (Douglas et
al., 2015) would have limited impact on the machine
driven production rates. Finally, employee turnover was
typically 30% a year. Although the company would prefer
lower rates due to the cost of hiring and retraining, they
were unconcerned with either a loss of organizational
knowledge (Hausknecht and Holwerda, 2013), nor retain-
ing or replacing a key lost employee (Durst and Wilhelm,
2012). As more businesses move to MI driven processes,
engineering management specialists may find themselves
unable to demonstrate how they can add value. As the
experience of this company suggests, the processes are
established at start-up and it is difficult to claim more
optimal options could be possible and even more difficult
to implement.

4 Cases in the literature

Trägårdh, Carlsson and Edenbrandt (2015) investigated
situations in the medical profession where machines work
in line with humans. Humans can provide considerably
different medical diagnoses based on many factors,
including situational circumstances, experience and skill.
When medical decisions are based on computer diagnoses,
the variability generally stems from which software is
used. Where the human diagnoses are aided by computers,
variability between physicians is removed when the same
software is used. This implies that the HI is brought in line
with the output of the MI. In a medical setting, the
decisions are generally based upon large numbers of
occurrences and outcomes are clearly recorded for
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particular inputs.
Hedén et al. (1997) tested diagnosing heart problems

from a collection of over 10000 EKG’s (electrocardio-
grams). They compared the ability of a heart specialist to
find patients with problems against a computer programed
to recognize the symptoms from the EKG data. They
determined a highly experienced human practitioner was
almost as good, but the machine did perform better.
Gawande (2010) notes where computers and humans are
jointly used to make diagnoses, there is general agreement
between the HI and MI in most cases. When there is a
difference, the computer is more likely to be correct.
Gawande (2010) recommends that including the human in
the process only slows down the system and does not
improve accuracy. Even so, Gawande (2010) provides
anecdotal situations where the senior physician did
overrule the machine diagnosis and the subsequent
treatment did support the medical doctor’s assessment,
thereby showing that the MI was not perfect.
Taylor and Cotter (2016) surveyed 77 aircraft pilots and

determined reliance on machine intelligence creates
complacency in the pilots. This poses a risk of pilots
being unsure of what to expect from the machine
controlling an aircraft. There is also a risk when problems
occur beyond the computer’s ability and the pilots are
unable to quickly determine the proper corrective action.
One incident occurred when a particular transmitter did not
function properly and the computer could not ‘see’ the
deficiency. When manual overrides were required, the
pilots forgot that the required actions were not the same as
when they trained on a manually controlled aircraft.
Human ability to assess complex situations decreases

with lack of use. In a study of taxi drivers, Maguire et al.
(2000) found that the hippocampus (the part of the brain
associated with spatial orientation) increased in size with
decades of experience navigating the streets of London.
Regular GPS (global positioning system) users have a
lower ability to navigate on their own without MI support.
Brain imaging techniques show that the hippocampus is
very active during spatial interpretation, but is inactive
while driving using a GPS device. The equivalent portion
of the brain of mice atrophies when they are prohibited
from making decisions in navigation (Robbins, 2013).
Brown and Laurier (2012) assert that although the use of

GPS deskills a driver in spatial orientation and increases
reliance on technology, this is augmented by a requirement
to learn a new set of skills. An example is the need to know
when to intentionally deviate from the instructions
provided. With the absence of experience for performing
the specific task unaided by technology, however, Brown
and Laurier (2012) also show that the human will simply
follow the suboptimal solution provided by machine
intelligence.
Non-destructive testing (NDT) is an established techni-

que to detect defects in welds and is an essential part of
construction projects (Georgiou, 2009). Significant work is

underway to automate NDT since it is labor intensive and
requires skilled operators. Machine driven approaches are
likely to be implemented in the future but the current state
of the art is still contingent on the human input, for
example, in regard to interpretation of weak signals
detected through ultrasonic detection of possible weld
defects. For a related example, see the work on the issues
associated with NDT of steel bridge maintenance and
restoration (McCrea et al., 2002). In this scenario, there
needs to be improved HI-MI decision-making so the
human operator can work in collaboration with the
machine-driven fault diagnosis system.

5 Engineering was not an exacting
discipline when performed solely by humans

Henry Petroski (1985) explored the development of many
common items in use today, as well as the historical
perspective of how engineering design has evolved. His
books are required reading in many engineering curricula
(Nichols et al., 2000). Petroski (1985) explains that
engineers have a very imprecise understanding of the
reality in the elements they design. In civil engineering,
Petroski (1985) states that we have empirical tools to help
design structures. Where these tools lead to large factors of
safety, there may be no change to how we calculate. Where
the assumptions over-estimate the robustness of the design,
a subsequent catastrophic failure causes a review of the
tools used to produce that design. Petroski (1985) foresaw
computers replacing slide rules as the calculating tool of
choice for engineers. He predicted that engineers may lose
some ability to grasp the overall magnitude of a result by
relying heavily on a machine that will provide an answer to
6 decimal places and become over confident in results
repeatable to exact numerals when calculated many times
to ‘recheck’ the work.
Kennedy and Whittaker (2000) interviewed engineers

from a variety of industries about their formal company
documents intended to direct their work. The detailed
content of these manuals were a very unreliable guide if
taken at face value. Some organizations directed their
younger engineers to not look at these documents for fear
they would not know which sections had misleading
information. These manuals have false credibility derived
from being bound in a hard cover. Some of the time, the
writer of such manuals was only given that task as a way to
make work for a less productive individual during a slower
period. Design standards commonly had major errors in
the information provided. For example, one design
standard had two charts for required test pressures for
their facility. One chart was in imperial units and the other
was in SI units. Using proper conversion factors, the SI
chart showed test pressures 100 times higher than the chart
in imperial units and would have resulted in a catastrophic
failure had the chart ever been followed. The standard was
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in circulation for approximately ten years, but none of the
engineers questioned could offer an explanation as to why
the error had never been noticed.
As consultants, the authors have also witnessed recent

challenges in design and fabrication reviews. With laser
technology, the ability to measure to great precision has
become easier and cheaper than in the past. In one instance,
specifications required certain 30 m long steel columns to
be fabricated within 2 cm of straight over its length. The
computer-based finite element analysis determined
excessive bending stresses at the base with more than the
2 cm offset for the vertical load. As the columns were
made from flat steel plate, the warping inherent in welding
required repeated cutting and re-welding to keep the
structure true. The lead design engineer suspected that the
bending moment induced would slightly deform the
supporting foundation and this would alleviate the
problem. However, without being able to produce more
than speculation, the remediation work continued and a
final product that met the criteria was $125000 over budget
due to the extra effort required. This company manufac-
tured similar structures for many decades. They were asked
how they dealt with the problem in the past. The answer
was that the company did not have the sophisticated
modeling ability nor the laser tools to measure the
straightness as precisely in the past. None of the older
structures had problems with moments at the base,
suggesting the remediation work was not required.
If an MI modeling system is developed based upon

traditional engineering principles, one can see how
potential problems could result. The assumptions made
by humans to create designs may have served well within
certain constrained parameters, but the science behind the
methods may be drastically different than these assump-
tions. The people building an MI system may not be
technically savvy and not realize the design principles are
only empirically valid in a specific range. Lastly, there may
be errors in the information used to develop the model that
have existed for years and only those closest to the design
work may realize this information is flawed and should not
be used. Tacit knowledge is identified as that set of skills
that cannot be easily expressed and would be next to
impossible to convey into code for a machine to imitate.

6 Managing the human versus machine
intelligence decision process – A case study

6.1 Methodology

This case study is based on a narrative research approach
(Lieblich et al., 1998), where events associated with a
specific situation related to HI-MI decision-making are
reported. The observations were collected while working
within the organizations in project management roles and
are not the result of focused research specific to HI-MI

topics. The study of HI-MI decision processes is an
emerging area of research and there is currently a lack of
studies focused on the problems that may arise along with
supporting frameworks to enable decision-making pro-
cesses. Consequently, this qualitative research technique
was selected in order to provide sufficient engineering
context as well as a real-world application in order to
advance the HI-MI research agenda.
The case study includes reference to a stress analysis

model, which was built with a widely used deterministic,
finite element based software package. The engineering
design drawings were prepared using standard CAD
(computer-aided design) software. The stress analysis
software extracts the required information from the CAD
data. These methods are decades old as described by Dori
(1989). An algorithm recognizes dimensions from draw-
ings based on a syntactic/geometric approach and specific
deterministic finite automation (DFA). Humans are still
required to provide additional required parameters for the
model to determine peak stresses.

6.2 Background and engineering context

The engineering case studied for this article used stress
analysis software to aid in the design of a piping system for
facilities very similar to those in use by the company for
the past 50 years. The fluids involved had an operating
temperature range of – 20°C to 30°C, a relatively narrow
range in the piping design industry. The piping required
approximately 100 connections of NPS (nominal pipe size)
16 pipe as shown in Fig. 1. A design specification required
a minimal load of< 20 kN at the connecting flange at
location A in Fig. 1. The equipment downstream as
indicated by the arrow is sensitive to a load at the flange.
For the first 50 years of the operating company’s history,

engineering design work was performed in-house. For

Fig. 1 Original piping design
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large projects, shortfalls in staffing would be augmented by
bringing in contingent workers hired on temporary
contracts for the peak workload. If large engineering
firms were utilized, their workers would be seconded into
the owner organization to become part of the overall
structure. At the time of this case, a shift in the
management of projects was observed within industry in
general (e.g. see Burdon and Bhalla, 2005), where
operating companies increased their dependence upon
outsourcing the engineering design function as a discrete
transfer to large engineering organizations, such as Fluor,
Bechtel, or Jacobs (Bamber et al., 2016). The operating
company in this case similarly outsourced the design of a
major expansion project to a large engineering firm. The
quality of design was assured by the service provider being
ISO 9001 (International Organization for Standards)
certified for their established design and review processes.
When the design was 50% complete, the engineering

provider notified their customer that the traditionally used
piping arrangement creates too great a stress at the critical
position A. The stress analysts reached this conclusion
using the engineering firm’s standard software application
for modeling the process piping described above. The
unconstrained thermal expansion on 3 m of pipe over a
50°C temperature range is 1.8 mm. A schematic diagram
of this movement, under the constrained conditions, input
into the model is shown in Fig. 2. The force this produces
in NPS 16 pipe if fixed at both ends (zero movement
allowed) as assumed in the stress analysis program is
approximately 1800 kN using standard calculations
(Beedle and Tall, 1960).

To compensate for the load produced by this thermal
expansion, an alternate piping arrangement was proposed,
which is shown in Fig. 3. Such expansion loops are
common in long runs of process piping with high
temperature changes (> 200°C) (Pollono and Mello,
1979). Due to the extra weight of the added pipe, an
additional support was designed and is represented at
position C in Fig. 3.
A rough cost estimate for the materials and installation

to accommodate the proposed piping with the expansion
loops was provided as USD $15000 each. Since there were
approximately 100 such connections, this proposed change
came with an estimated extra cost of USD $1.5 million for
the entire facility. The change adds approximately 1000 m
of pipe to the process flow, with the associated operating
pressure loss plus additional maintenance. As expected, the
customer questioned the veracity of this proposed change,
given the 50 year history of operating similar facilities
without experiencing any noticeable problems despite not
having these proposed expansion loops. The customer
therefore requested a thorough review of the design that
determined this change is necessary.

6.3 Testing the human versus machine results

In response, the engineering design firm re-entered the
relevant parameters into their model and re-ran the stress
analysis software. The results were consistent with their
previous run, analogous to the situation with the bank
worker in the aforementioned case. When the customer
was still not satisfied, the stress analysts deferred their
work to the national home office to have their conclusions
verified. As with the diagnoses performed by MI aided
medical workers as reported, the re-entering of the same
data by other engineers in the home office produced the
same results.
Having demonstrated and verified their original recom-

mendations, the engineering design firm pushed to have
the proposed changes approved. Since the design and
construction drawings were to be stamped by the
engineering firm, their ISO 9001 certified processes did
not allow for any deviation from the standard procedures
which required using the stress analysis software to
validate all proposed designs. The engineering firm was

Fig. 2 Model parameters as input into stress analysis model

Fig. 3 Proposed piping design to satisfy stress analysis model
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hired as an expert and there is a reputational impact if work
is rejected by a client, thereby questioning the firm’s
professional competencies and credibility. Unlike MI,
humans may let initial conclusions bias the way new
information is integrated into their original understanding,
commonly termed ‘confirmation bias’ (Irani et al., 2015).
The customer organization had heavily experienced

people on staff who began their own investigation into the
perceived problem. Their initial suspicion of the proposal
was based on the absence of any problems with the original
piping throughout the company’s history which remained
unchanged for several decades. Reviewing the stress
analysis, the customer’s engineers noted the model was
very conservative. For example, the selected temperature
range used was 50°C. The engineering firm’s personnel
stated since it could not be known for certainty what the
ambient temperature would be when the piping was
installed, the safest scenario is to allow for the full range of
possible expansion.
Prior work suggests clients may find decisions made by

outsourcing design are much more conservative than the
client would make if the choices were made internally
(Kennedy and Whittaker, 2002). The client engineers in
this case recognized the restriction on the loads at the
nozzle indicated at location A in Fig. 1 were not based on a
concern for any safety risk. The load limit was imposed
because stresses downstream of that point could impact the
life of certain sensitive components in the system. In
addition, the normal operating temperature range of the
piping was 4°C to 14°C. Only in rare circumstances would
the piping see the extreme design temperatures of – 20°C
to 30°C. The experienced operators found the vibrations in
the operating equipment tended to alieve initial stresses by
slight shifting at bolted connections or supports. The client
engineers concluded that a more representative tempera-
ture change for calculating expansion would be+/-5°C
using 9°C as the initial state and this assessment was based
on their mental model of the engineering system derived
through years of experience.
The client engineers questioned the stress analysts who

performed the data entry and asked how the engineering
model treated the neoprene pad located at location B in
Fig. 1. This pad was added at some point in the company’s
past and was intended to compensate for thermal
expansion. This pad had been sized so its compression
approximated the estimated flexibility of the “rigid”
equipment downstream of location A. This compression
is 180 kN/mm, which sounds very inflexible initially, but
given the small expected expansion of 1.8 mm for a 50°C
temperature change, the neoprene pad was determined to
be sufficient to absorb the thermal stress. The stress
analysts replied that the particular program they used only
had accommodation for one of three choices of rigid
anchors, sliding supports or no support. It was an inherent
limit to the program that the neoprene lined support and the
small flexibility of the equipment could only be treated as a

fully rigid anchor as the best approximation. Using the 5°C
temperature change and allowing for a small amount of
compressibility of the support and equipment as repre-
sented in Fig. 4, the client engineers then hand calculated
the stress. For the original design this is 80 kN due to
thermal expansion or only 5% of that predicted by the
engineering firm using the MI driven model.

The client organization deemed these loads acceptable
and the proposed expansion loops were not required.
Despite this reasoning, the stress analysts stuck to their
conviction that the results provided by the engineering
model should be used and resisted accepting the original
design; they essentially resisted inputs derived from mental
models based on tacit knowledge and experience (see
Reber, 1989 for background material on the concept of
tacit knowledge).
One client engineer worked for the client company for

20 years. At the time he started, an engineer with 30 years’
experience passed on to him that in order to assure low
stress at the flange in question, no support should be near
location A. This was not followed by the MI driven plan
which called for a support as shown at location C in Fig. 3.
The client engineers assessed the proposed support and
determined that it would act as a fulcrum when the piping
contracted at lower temperatures as shown in Fig. 5.
Problems likely occurred in the company’s past, which led
to the tacit knowledge in the engineer who worked there
decades ago. The client engineers also determined that
when temperatures rose and the piping expanded, the

Fig. 4 More representative model for real situation

Fig. 5 Stresses introduced by proposed support C during thermal
contraction
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piping would rise off the support, as shown in Fig. 6.
Neither of these scenarios was evident in the MI driven
model. The client engineers concluded that the expense
and effort to construct a support at location C either
aggravated the problem it was intended to solve or else did
nothing. Since the client could not conceptualize any real
benefits to the proposed USD $1.5 million additional
expenditure, and suspected it may be a worse design that
the original, they did not approve the change. The
comment was made by the client that the better solution
was not to spend resources to alter the design to satisfy the
engineering model but rather to alter the model to better
reflect the physical reality.

6.4 Resolution of the HI-MI conflict

The engineering case described above highlights the lack
of guidance for decisions involving situations where HI
and MI reach different conclusions. It also illustrates how
rigidly sticking to an engineering model, whether determi-
nistic or stochastic based, can result in negative con-
sequences where the underlying assumptions of the model
are not valid and do not consider tacit knowledge. It also
suggests that when HI andMI are integrated, the HI may be
adjusted to match the conclusions reached by the MI as
was observed in the introductory examples.
The engineering firm was contracted to design the

facility in accordance with their ISO 9001 validated
processes and the drawings were to be stamped by the
firm’s responsible professional engineer. The client con-
cluded that the MI driven design did not meet the HI
determined requirements. The engineering firm maintained
their design was the proper choice and did not agree with
their client’s assessment. The engineering firm produced a
full set of stamped construction drawings incorporating the
proposed expansion loops within the completed design. To
avoid any contractual disputes, the client paid for the
services in full, including the resources required to prepare,
verify, and debate the stress analysis exercise. The cost for
this last portion including producing the drawings for the
expansion loops was approximately USD $200000.
The client organization produced their own set of

alternate drawings for the piping in question using their
original design details. The pertinent stamped drawings
were removed and these new drawings were substituted in.
The facilities were constructed in accordance with the

details of the hybrid drawings. Questions regarding the
overall responsibility for the design from a professional
engineering perspective were left open. The company
deemed the risk of future consequences for this ambiguity
were acceptable to assume without resolving at this
juncture. The engineering firm maintained their conviction
that the MI driven design was appropriate for this
application. The engineers working for the client kept
their view that the HI driven design was best. No definitive
resolution to the differences, the final responsibility for the
design, or even the need to revise the capabilities of the
stress analysis model was reached. The stress analysis
model therefore continued to be based on a flawed set of
underlying assumptions and did not properly integrate
experience driven inputs from the engineering operators.
Kennedy and Whittaker (2002) determined external

consulting firms typically place a high priority on being
conservative on design and are less concerned about cost
performance. Owner engineers may be more willing to risk
failure from a design change and gain on organizational
learning.

6.5 Implications for the engineering manager

It is useful to examine the factors that potentially
contribute to HI-MI decision-making and analysis as in
the case for multi-criteria decision-making (MCDM)
(Triantaphyllou, 2013; Kahraman, 2008). The need for
improved decision-making tools was highlighted in the
literature review and the case study investigation, which
would have benefited from such tools being available to
the engineering team. Such a decision-making framework
is contingent on multiple selection criteria being available
that allow an informed decision to be made on the best
action alongside other competing actions. An MCDM
approach allows HI-MI decisions to be taken that are
related to both human and machine based factors (i.e. the
criteria), recognizing that such factors are not necessarily
mutually exclusive although in many cases it will be
possible to associate primarily to one or the other. HI-MI
situations represent complex systems and we propose a
supporting framework be developed based on multiple
factors. Adopting a process of inductive reasoning (Klauer
and Phye, 2008) allows specific instances to be converted
into generalized conclusions. Therefore the authors
considered the literature related to HI-MI decisions as
well as the insights from the engineering case study and
through inductive reasoning it is possible to derive four
main groups of factors (or decision criteria) that have the
potential to significantly impact HI-MI decisions. These
are human factors, machine factors, knowledge factors,
and process factors. This group of factors represent a
holistic view of the decision criteria for HI-MI systems,
including both techno and social aspects, which is needed
for interconnected systems where humans are interacting at
multiple levels within the system (Vespignani, 2009).

Fig. 6 Proposed support C during thermal expansion
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Human factors include the features and mechanisms
through which humans interact with other elements within
a given system (see Stanton et al., 2013). Conversely
machine factors relate to the design, manufacture and
operation of the system, such as an electromechanical
actuator driven by an electric motor used in a manufactur-
ing process (see Kalpakjian and Schmid, 2014). Human
operators and machines are clearly dependent on the
availability of knowledge (in the form of engineering data
and generated information) and hence it is appropriate to
consider knowledge based factors (see Studer et al., 1998).
Finally, the process adopted for knowledge to be utilized
by either the human operator or machine is important and
hence it is appropriate to consider process factors (see
Becker, et al., 2013).
We can consider the definitions for these groups of

factors (or criteria) in regard to establishing an MCDM for
HI-MI decisions and these are as follows:
Human factors: understanding how humans interact with

systems, including physical and non-physical aspects
(especially relating to social and interpersonal relations).
These social-based factors include areas such as trust,
communication, openness and level of reciprocity in
relations. Interaction of the human element with the
system is pivotal to capture but also interaction between
the human actors in the system, i.e. peer-to-peer interac-
tion.
Machine factors: understanding how the engineering

system is designed and operates from a technical
perspective, including the operating specification and
performance levels. The machine factors involve the
programming of the machine intelligence, including
control algorithms and approaches such as instance
and rule-based learning. The level of autonomy of the
system can also be considered, i.e. autonomous or semi-
autonomous.
Knowledge factors: understanding how data and

information is created, communicated, utilized and stored
in accordance with the engineering requirements for the
system. The knowledge factors involve the data and
information processed by the system, including both
codified and tacit knowledge. Knowledge availability as
well as knowledge integrity need to be considered and in
the case of model-based systems an understanding of the
deterministic or stochastic elements.
Process factors: understanding how engineering activi-

ties are undertaken for the system requirements to be
delivered. The process factors involve both local proce-
dures (i.e. standard operating procedures) as well as any
national or international standards, such as ISO 9001.
Appropriate project management and risk management
factors can also be considered.
Figure 7 provides a conceptual framework to support

multi-criteria HI-MI decision-making based on these four
main groups of factors. The need for a HI-MI decision-
making model is an emerging requirement that will benefit
from an organizing framework in order to advance the
research agenda and inform future studies as well as being
a tool to support practitioners engaged in HI-MI decisions.
See Philbin and Kennedy (2014) for an example of a
management framework developed to act as a diagnostic
and health check tool for engineering and technology
projects.
The framework includes proposed supporting criteria

according to each of the four areas need to be considered
for HI-MI decision-making applications. This approach of
assembling multiple criteria is recognized for developing
decision-making tools, for example, in the case of multi-
criteria decision making for sustainable energy planning
(Pohekar and Ramachandran, 2004). The criteria included
in the HI-MI decision framework have been developed
through drawing on the insights generated in the case study
in conjunction with the other cases from literature.
Although this is a single case, since HI-MI decision-

Fig. 7 Conceptual framework to support HI-MI decisions based on a multi-criteria decision-making (MCDM) approach
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making is an emerging and important engineering manage-
ment area to be considered, it is necessary to propose a
framework that builds on the engineering case described in
order to advance the understanding of this area and act as
the basis for a future body of knowledge on HI-MI
systems. It is recognized that the framework is an initial
attempt to move forward the state of the art for the
emerging subject of HI-MI decision-making. Conse-
quently, further development of the framework will be
required in due course, e.g. understanding the relative
importance of the four main areas of factors and how they
vary according to the circumstances of the engineering
system (i.e. related to contingent theory). This contingency
includes a temporal perspective of the HI-MI system, with
the relative contributions of the four areas likely to change
over time.
The decision-making framework can, for illustrative

purposes, be applied to the case study investigation. This
illustrates how the tool could have been used to support HI-
MI decision-making and represents an initial validation of
the utility of the conceptual framework. Considering the
findings from the case study, it is possible to derive the
main areas that should have been addressed by the
engineering company. This is summarized in Table 1.
This validation is achieved through qualitatively describ-
ing the factors from the case study according to the four
main areas of the decision-making tool (i.e. human,
machine, knowledge, and process-related factors). As can
be seen, there are a number of factors that should have been
considered. If this form of analysis was available to the
engineering team and there was a suitable opportunity to
present and analyze these findings, it is proposed by the
authors that a different outcome may have been possible. If
this model had been adapted, the client company could
have saved USD $200000 and ensured a more robust and
reliable engineering solution was adopted.
In regard to the implications for engineering managers

and HI-MI decisions, there needs to be a greater awareness
of the supporting factors to be considered for HI-MI
systems. Increasingly we are moving from systems based
on either purely HI operations or purely MI operations to
mixed mode systems. In these mixed mode systems,
effective collaboration and cooperation between the HI and
MI sub-systems is needed. Adopting a systems viewpoint
is encouraged so a holistic perspective can be engaged

when undertaking the potentially complex decision-
making associated with HI-MI engineering applications.
Engineering managers need to gain access to a new set of
tools and techniques to help them navigate the HI-MI
world.

7 Proposed research agenda on HI-MI
engineering systems

We propose the following research agenda to inform the
development of a new body of knowledge on HI-MI
engineering systems. This research agenda builds on the
aforementioned HI-MI literature and case study investiga-
tion as well as the conceptual framework that has been
developed. The research agenda is provided in order to
help guide other researchers interested in investigating HI-
MI systems and the issues that need to be addressed. To
allow prioritization, we have synthesized the key research
areas to be developed over the short, medium and long-
timeframes.
Short-timeframe research areas (0–2 years)
� Development of HI-MI decision support tools,

including refinement of the proposed multi-criteria deci-
sion-making (MCDM) approach.
� Numerical models that simulate the performance of

HI-MI engineering systems.
� Control and monitoring algorithms supporting adap-

tive applications of HI-MI engineering systems.
Medium-timeframe research areas (2–5 years)
� Planning tools to support HI-MI system integration in

regard to design of organizational structures and processes.
� Comparative studies on HI-MI engineering systems

from different industrial sectors, e.g. manufacturing,
transport, telecommunications, etc.
� Understanding the role of tacit knowledge in HI-MI

systems and methods to support codification of such
knowledge.
Long-timeframe research areas (5–10 years)
� Learning algorithms that allow HI-MI engineering

systems to self-improve across the system’s operational
parameters.
� Understanding the societal implications of HI-MI

system adoption and the impact on specialized expert job
roles.

Table 1 Application of HI-MI decision-making framework to case study findings

Human factors Machine factors Knowledge factors Process factors

� Engineering team’s lack of flexibility
in regard adapting the stress model for
the process piping.
� Recognizing minor impact of nonzero
factors.
� Pride and professional reputation.
� Situational bias.
� Personality conflicts.

� Algorithms for stress analysis
(based on a deterministic model
approach using finite element analysis).
� Scope for reduced bias.
� Repeatability associated with
machine operation.
� Difficult to question machine-based
outputs.

� Tacit knowledge of the client
engineers on process history.
� Need for strict adherence to the
stress analysis model for consultants.
� Consultants have wide experience
in different industrial settings.
� Client has deep knowledge base in
the engineering application.

� Company adoption of ISO 9001
quality management system.
� Standard operating procedures
(SOPs) for each client.
� Flexibility for in-house decisions.
� Contractually binding processes for
the outsourced design.
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� Development of a new international standard to
support the design and operation of HI-MI engineering
systems.

8 Conclusions and future work

This article explores what began as anecdotal observations
suggesting that MI is advancing faster than the HI is able to
change to adequately assure desired outcomes will result.
In the case study, the humans continually interacting with
MI resisted challenges to the decisions made by MI. Those
humans less familiar with the MI processes believed they
could see flaws in the MI decisions and that they could
explain why the errors were produced. The outcome of the
case demonstrated that there were insufficient guidelines to
resolve the differences between the results produced by the
MI and HI experts. The two groups went separate ways
each believing they were more correct than the other. Many
questions remained unanswered such as who is ultimately
responsible at a professional level if future problems occur
with the final design. Although the client agreed to pay for
the services they did not ultimately use, future similar
incidences could result in contractual disputes.
The subject of HI-MI decision-making is an emerging

area and consequently we have proposed an innovative
conceptual framework to support HI-MI decisions based
on a multi-criteria decision-making approach. This frame-
work has been synthesized through considering the
extensive literature sources that have been reviewed as
part of this work along with the case study. To illustrate the
areas to be considered when applying such a framework,
the HI-MI decision-making tool was applied to the findings
from the case study. In the rapidly changing work
environment with HI-MI integration increasing in fre-
quency and complexity, the future engineering manager
will need tools to provide clear guidance to resolve
conflicting results between the two systems. To be seen to
add value to organizations, engineering management must
quickly develop a body of knowledge to provide this
guidance to HI-MI decision-making. Nevertheless the
conceptual framework and research agenda proposed here
provides an initial attempt to inform this body of
knowledge and consequently will be useful for both
researchers and practitioners concerned with understand-
ing the emerging HI-MI system paradigm and the
associated issues to be addressed.
Future work is suggested in a number of areas. It is

proposed that empirical research is carried out in different
industrial applications for HI-MI systems, for example, in
construction, manufacturing, transport, telecommunica-
tions and financial services. Such sectors are seeing a rise
in HI-MI systems and there is an emerging need for
developing new quantitative models for engineering
managers to support HI-MI decisions. Adopting systems

approaches is also proposed as a tool to model HI-MI
decisions through developing cause and effect models.
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