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ABSTRACT 
Polymer flooding is a commercially verified technology to enhance the recovery of residual oil from oil 

reservoirs. Polymers are used to increase the viscosity of the displacing phase. Accordingly, they resulted in 

a significant reduction in the mobility ratio between the water and oil. Due to the decrease in the mobility 

ratio, the sweep efficiency will significantly increase compared to water flooding. This paper aims to provide 

a comprehensive review on thermal and chemical stability and the rheological properties of various water-

soluble polymers used in sandstone and carbonate reservoirs. The properties of conventional and novel 

water-soluble polymers applied in enhanced oil recovery (EOR) are discussed along with their limitations. 

Moreover, field and laboratory core flooding data of different water-soluble polymers are presented. This 

review covers current research studies on the application of polymer flooding to high-temperature and high-

salinity reservoirs. It also provides recommendations for future work on synthesis of novel polymers with 

higher stability under harsh reservoir conditions. 
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1 INTRODUCTION 
Crude oil is an essential material for energy and many petrochemical industries. Due to the increasing 

demand of energy, it is essential to maximise the recovery from oil reservoirs and increase the exploration 

activities of new fields. It is estimated that only 30% of original oil in place (OOIP) can be recovered using 

the conventional oil recovery methods. Enhanced oil recovery (EOR) techniques are considered to recover 

oil that cannot be produced using the primary and secondary recovery methods. Chemical EOR which 

involves polymers, surfactants, and/or alkali flooding is considered as one of encouraging EOR methods [1]. 

 

In 1960, polymer flooding was proposed as an EOR technique to improve the mobility ratio between the 

displacing phase (water) and displaced oil. Many studies and field applications were implemented in 

polymer flooding during 60s-70s. Nowadays, polymer technology is one of the most widely applied mobility 

control techniques. Water-soluble polymers with high molecular weight are utilised to increase water 

viscosity and consequently, improve displacement and volumetric sweep efficiencies[2]. Researchers at the 

Daqing oil field performed a significant number of polymer flooding experiments in a microscopic model 

which made momentous development in polymer flooding technology[3]. They concluded that polymers’ 

viscoelastic properties can improve volumetric sweep and microscopic displacement efficiencies as it can 

mobilise residual oil in small pores and oil droplets trapped by capillary forces. However, given a severe 

reservoir conditions of high temperature and high pressure that exist in many oil reservoirs, new limitations 

appear with the usage of water-soluble polymers as they must be stable in a saline environment, high 

concentration of divalent ions, and elevated reservoir temperatures (>70°C) [4].  

 

There are numerous polymers that are commercially used for EOR applications. The most applied polymer 

in EOR applications is partially hydrolysed polyacrylamide (HPAM), which is a co-polymer of acrylamide 

and acrylic acid. Many attempts were reported about chemical modifications of the conventional HPAM. In 

this review, the latest proposed chemical modifications to HPAM have been summarised and their structure-

property relationship has been discussed. 
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2 TYPES OF POLYMERS USED IN EOR 

2.1  Partially hydrolysed polyacrylamide (HPAM) 
 

Water soluble polyacrylamide (PAM) is commercially used for EOR application, is known as partially 

HPAM, and is composed of a copolymer of acrylamide (AM) and acrylic acid. This polyelectrolyte co-

polymer has high tendency to interact with solution ions. Due to its flexible polymer chain structure, the 

viscosity of this polymer is dependent on the ionic strength of aqueous solution [5]. 

Rheological Properties of HPAM 
The presence of electrolytes in aqueous solution decreases the electrostatic repulsion between the 

carboxylate groups that exist on the polymer backbone structure. This phenomenon is called “shielding 

effect” which reduces the existing layer of negative charge that formed due to carboxylate groups [6]. 

Shielding effect progresses with increasing salt concentration, which cause a significant decrease in 

electrostatic repulsion between negatively charged carboxylate groups. It was estimated that the viscosity of 

the polymer solution decreases 10 times of its initial value when the NaCl salt concentration increases with a 

factor of 10 above 3% [7]. Additionally, the effect of divalent cations is greater than monovalent ions (Na+ 

and K+) at the same concentration. Accordingly, the salt concentration at which the polymer backbone coils 

up is lower in the presence of divalent ions [6]. 

 

Chang [7] concluded that the hydrolysis rate is significantly affected by the change of temperature and/or 

pH. The degree of hydrolysis (DOH) increases with an increase in temperature. Accordingly, rapid rate of 

hydrolysis is observed at 90◦C, modest at 70◦C, and insignificant at 50◦C. According to the rheological study 

conducted on HPAM polymer sample aged for few days at 100◦C, the DOH reached 90%. However, the 

sample reached 70% when aged for 100 days at 83◦C. Moradi et al.[8] , also concluded that HPAM can be 

applied in EOR applications in the presence of calcium ions up to reservoir temperature of 75◦C. They have 

reported that when water salinity is less than 200 ppm, HPAM can be safely used up to 100◦C. 

 

2.2  Hydrophobically associating polyacrylamide polymers (HAPAMs) 
 

Hydrophobically associating polyacrylamide polymers (HAPAMs) were synthesised by modifying partially 

HPAM through the incorporation of hydrophobic chain linked with the main hydrophilic backbone. It also 

synthesised by copolymerisation of a hydrophilic monomer (e.g. acrylamide) with another monomer that 

contains a hydrophobic group [9]. Due to the unique properties of this polymer, it is considered as a 

promising candidate for polymer flooding at harsh conditions [10]. Hydrophobic groups that linked with the 

polymer backbone aggregate and form microdomains. These microdomains are stronger in a block like 

structure than random one. The distribution of the hydrophobic groups is affected with the surfactant to 

micelle ratio (SMR). The formation of block-like structure is more likely at low values of SMR, conversely, 

a random structure is expected at high SMR. List of hydrophobic monomers have been illustrated in Table 1. 

Rheological Properties of HAPAMs 
The existence of the hydrophobic groups hinders the polymer solubility. Consequently, the solubility 

associated limitations are expected if the incorporation rate of hydrophobic groups exceeds a certain limit. 

This phenomenon has been observed with poly(di-n-octylacrylamide-co-acrylamide) in which phase 

separation is noticed when the incorporation rate of DOAM monomer exceeds 1.2 mol% [11, 12]. 

Hydrophobic groups with high hydrophobicity yield enhanced polymer thickening capability. Different ways 

in use to increase the hydrophobicity of the groups including the usage of win-tailed hydrophobes, increased 

hydrophobic group length and fluorocarbons rather than hydrocarbons. 

 

The critical polymer concentration at which hydrophobic aggregation arise is decreased compared to the 

classic associating polymers due to the strong interaction forces between the hydrophobic groups with high 

hydrophobicity,. The hydrophobic groups length is essential for aggregation as short hydrophobe will not 

form hydrophobic aggregation e.g. DDAM co-monomer. However, increasing the hydrophobicity to very 
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high-level cause solubility issues. Additionally, it has been proven that the introduction of phenyl containing 

monomer rises the thermal stability[12]. 

 

2.3  Ionic modified polyacrylamides 
 

Ionic modified polyacrylamides include polyelectrolyte and polyampholytes copolymers. Polyelectrolytes 

are those polymers that bear only one charge and involve the cationic and anionic copolymers. 

Polyampholyte which bears two different charges present at the same polymeric backbone was highly 

evaluated for EOR applications due to its unique characteristics. The rheological properties of these 

polymeric systems can be customised by careful molecular design, i.e. the ratio of the different monomers. A 

list of cationic and anionic monomers is indicated in Table 1. 

Rheological Properties of HAPAMs 
Polyelectrolyte polymer displayed high thermal stability and thickening capability in fresh water as it retains 

repulsive forces between the charged groups present on the polymer backbone. Consequently, it yields the 

maximum viscosity in fresh water. Nevertheless, in the presence of electrolytes there is a significant decline 

in its viscosity owing to the decrease in the repulsive forces between molecules, and hence the 

hydrodynamic volume shrinks. The viscosity of a polyampholytic solution increases with the increase in 

salinity under certain conditions [13]. 

 

In polyelectrolyte polymers, it was observed the type of the charge (e.g. carboxylate or sulfonate anion) 

influences polymer solubility and the association behaviour. This is not perceived in a zwitterionic polymer. 

Co-monomers with low charge density (e.g. carboxylate groups) showed stronger association beyond the 

critical association. However, co-monomers with higher charge density e.g. sulfonate anions have yielded a 

reverse behaviour. Polymeric systems which contain groups of high charge density are more prone to screen 

out in high concentration of electrolytes [13]. 

Table 1. Monomers used to increase acrylamide stability 

Hydrophobic monomers Ref. 

N-hexadecylacrylamide (Cn16-AM) [14] 

Allyl-β-cyclodextrin (A-β-CD) [15] 

Octadecyl dimethyl allyl ammonium chloride (C18DMAAC) [15] 

1-(4-dodecyloxy-phenyl)-propenone (DPP) [9] 

N-benzyl-N-octylacrylamide (BOAM) [16] 

Di-N-dodecylacrylamide (DDAM) [12] 

Di- N-octylacrylamide (DOAM) [12] 

Anionic Monomers 

Sodium acrylate (NaA) [17] 

Methacrylic acid (MAA) [18] 

2-(Acrylamido)-dodecanesulfonic acid (AMC12S) [9] 

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid 

(NIMA) 

[19] 

3-(Diallyl-amino)-2-hydroxypropyl sulfonate (NDS) [19] 

Cationic Monomers  

Acryloylmorpholine (ACMO) [20] 

Dimethylaminoethyl methacrylate (DMAEMA) [17] 

2-(Acrylamido)-2- methylpropyl]trimethylammonium chloride (AMPDAC) [13] 

 

3 LABORATORY AND FIELD APPLICATIONS OF VARIOUS POLYMER SYSTEMS 
 

The application of polymer flooding in severe reservoir conditions of high temperature and salinity is the 

actual challenge. HPAM injection in harsh condition requires high concentration due to its poor resistance to 
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chemical degradation. Consequently, polymers with better stability in higher temperature and saline 

environment were proposed. Moreover, a summary for the core flooding data of recently synthesised 

polymers along with incremental oil recovery after applying polymer flooding is illustrated in Table 2. It is 

clearly shown in Table 2 that polymer flooding is highly applied in sandstone reservoirs. 

 

Table 2. Laboratory Core flooding data of some selected polymers 

Polymer  Conc. 

 

(ppm) 

Porosity  

 

(%) 

Permeability  

 

(mD) 

Salinity 

  

ppm 

Oil 

viscosity 

cp 

Lithology 

 

T 

 
◦C 

Oil  

Rec. 

% 

Ref. 

HAPM 2000 31.6 2.49 2000 NR Sand pack 95 10.5  

[21] HAP-4 2000 32.1 2.51 2000 NR Sand pack 95 28.3 

HAP-CDE 2000 31.2 2.48 2000 NR Sand pack 95 34.8 

AM-MAA- 

(Cn16- AM) 

1000 23 7 5000 32 Carbonate 60 10.23  

[14] 

AM-MAA 1000 23 7 5000 32 Carbonate 60 4.9 

HPAM 2000 35 1.67 21000 NR Sand pack 80 5.6  

 

 

[15] 

AM-(A-β-CD)- 

(C18DMAAC) 

3000 35 1.69 21000 NR Sand pack 80 11.3 

AM-(A-β-CD)- 

(C18DMAAC) 

3000 35 1.72 21000 NR Sand pack 80 15.5 

HPAM 1000 23.62 7.841 7200 67.4 Sand pack 80 1.31  

[19] AM-AA- 

NIMA 

2000 23.60 7.840 7200 67.4 Sand pack 80 4.18 

AM-AA-NDS-

NIMA 

2000 23.59 7.838 7200 67.4 Sand pack 80 4.80 

HPAM 500 32.12 1.7356 NR 45.6 Sand pack 65 6.23  

[9] AM- AMC12S- 

DPP 

500 35.33 1.8223 NR 45.6 Sand pack 65 11.26 

AM- AMC12S-

DPP 

1500 33.56 1.7769 NR 45.6 Sand pack 65 15.67 

 

Polymer flooding has been widely applied in numerous oil fields. China is a leading country in applying 

EOR projects and it has the largest oil field “Daqing” where polymer flooding has been highly applied[3].  

Tables 3 summarises some recent polymer flooding field applications [22]. HPAM is widely applied in field 

applications even though the presence of many new polymers have been synthesised and characterised by 

laboratory evaluation. 

Table 3. List of polymers applied in various fields 

Field Polymer type Temp. 

 
◦C 

Salinity 

 

ppm 

Oil 

viscosity 

cp 

Incremental  

oil Recovery 

(OOIP %) 

Ref. 

Bohai Bay HAPAM 98 6071 70 3 [23] 

Grimbeek II HPAM 60 25000-

32000 

120 11 [24] 

North african field Acrylamide/ATBS/AA 74 86000 23 10.4 [25] 

Supermature Field HPAM 50 20000 19 5-10 [26] 

Brazilian Field HPAM 30 % acrylate and 

70 % acrylamide  

50 3800 NR 17 [27] 

Palogrande - Cebú 

Field 

HPAM 62 700 9.4 10 [28] 

Belayim land filed Polyacrylamide 76 200000 8 NR [29] 

Pelicon lake  HPAM NR 26000 25 25 [30] 
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4. CONCLUSIONS 
This review summarises the rheological properties, core flooding data, and field applications of polymer 

systems that have been applied recently in polymer flooding. These polymers include partially hydrolysed 

polyacrylamide, hydrophobically associating polyacrylamide and ionic modified polyacrylamides, which 

comprise anionic, cationic and polyampholyte. The essential parameters that should be considered for 

polymer flooding include reservoir temperature, formation brine salinity, oil viscosity and formation type. 

HPAM provide acceptable viscosifying effect if formation water salinity with less than 200 ppm and can be 

safely used up to 100oC. Hydrophobically modified polymers can yield good viscosification besides high 

thermal stability due to the formation of hydrophobic microdomains. For harsh conditions, different 

copolymers have been reported in the literature. The data summarised in this work indicate that most of the 

recent research is dedicated to synthetic polymers (e.g. acrylamide) especially hydrophobically associating 

polyacrylamides and most of the rheological evaluation studies have changed from HPAM to novel 

hydrophobically modified copolymers. However, HPAM is considered to be the most applied polymer 

especially in sandstone reservoirs due to its low cost. 
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