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Abstract. The kinematics of a robot manipulator are described in terms of the mapping
connecting its joint space and the 6-dimensional Euclidean group of motions SE(3). The associated
Jacobian matrices map into its Lie algebra se(3), the space of twists describing infinitesimal motion of
a rigid body. Control methods generally require knowledge of an inverse for the Jacobian. However for
an arm with fewer or greater than six actuated joints or at singularities of the kinematic mapping this
breaks down. The Moore–Penrose pseudoinverse has frequently been used as a surrogate but is not
invariant under change of coordinates. Since the Euclidean Lie algebra carries a pencil of invariant
bilinear forms that are indefinite, a family of alternative hyperbolic pseudoinverses is available.
Generalised Gram matrices and the classification of screw systems are used to determine conditions
for their existence. The existence or otherwise of these pseudoinverses also relates to a classical
problem addressed by Sylvester concerning the conditions for a system of lines to be in involution
or, equivalently, the corresponding system of generalised forces to be in equilibrium.
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1. Introduction. The direct or forward kinematics of a robot manipulator is
given by a mapping from its joint space M , an m-dimensional smooth manifold where
m is the number of degrees of freedom of its joints, into the Euclidean motion group
SE(3) of rigid motions of Euclidean 3-space E3—the space of positions for its end-
effector or hand. Under a choice of orthonormal coordinates for E3, the 6-dimensional
Lie group SE(3) is isomorphic to the semi-direct product SO(3) n R3, where the
components represent rotations about the origin and translations, respectively. Its
instantaneous kinematics are given by the derivative of the kinematic mapping at a
given configuration q ∈ M , and can be represented by a Jacobian matrix J , giving
a linear map from the space Rm ∼= TqM of joint velocities to the space of task or
end-effector velocities, i.e. the Lie algebra se(3) associated to the Euclidean group,
whose elements are termed twists.

A central problem in robotics is to determine the inverse kinematics, enabling a
path to be found in the joint space that will give rise to a desired motion of the robot
manipulator’s end-effector. The existence of a solution and its uniqueness will depend
on the number of joints—the manipulator may have redundancy (m > 6) or be under-
actuated (m < 6)—and the presence of singularities, that is rankJ < min(m, 6), even
in the case m = 6, is likely to have an effect. Explicit solutions are known for some
classes of serial manipulator, such as wrist-partitioned arms [18]. However, even when
a solution to the inverse kinematics is known it may involve high joint acceleration
and torques on the components, so control algorithms are employed. These generally
require inversion of the Jacobian. If the number of joints is different from six, so the
Jacobian matrix is not square, or in the presence of singularities of the kinematic
mapping, the need arises to adapt such control algorithms. To that end, Moore–
Penrose pseudoinverses have been employed [25].
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However, there is an intrinsic problem for the Euclidean group with this pseu-
doinverse [8]. Its definition and existence depend on the choice of positive-definite
inner product on the vector spaces involved. In the case of instantaneous kinematics,
the matrices in question are Jacobians of the derivative of the kinematic mapping
between differentiable manifolds so that one requires a Riemannian metric, conferring
such an inner product on each tangent space. In the case of the joint space M , one
can assign a positive definite inertia metric. Given that SE(3) is a Lie group, it is
preferable to employ a bi-invariant metric. However no such metric exists, as was
shown by Loncaric [15] and Lipkin and Duffy [14]. The latter pointed out that many
robot applications propose using Euclidean metrics on twists but these metric are not
bi-invariant and hence problems can arise. In particular, in some control applications
an error signal can depend simply on the choice of origin. Doty et al [8] observed
the related problem of incommensurate units in some robot applications: quantities
with different physical units have been combined to produce possible metrics used to
compare different systems. A different choice of units can alter the rank order of sys-
tems studied. This problem would be solved if the quantities derived were invariant
with respect to rigid changes of coordinates. Some application may require quantities
which are also invariant with respect to change of scale.

Since one would therefore wish the Jacobian matrix to be invariant under (orthog-
onal) transformation in the coordinates of the ambient space and the end-effector, then
the appropriate quadratic form on the Lie algebra should be adjoint invariant. While
there is no bi-invariant positive definite form, there exists a family of bi-invariant indef-
inite quadratic forms on se(3), the pitch forms parametrised by the pitch h ∈ R∪{∞}
that, apart from the exceptional case h =∞, are non-degenerate.

The aim of this paper is to determine the extent to which the theory of pseu-
doinverses can be applied to the instantaneous kinematics of manipulators using the
pitch forms. The theory of pseudoinverses for indefinite inner product spaces has been
developed by Kamaraj and Sivakumar [12]. There is also a growing literature on the
associated question of matrix decompositions (polar and singular value) for indefinite
inner product spaces [2, 3] that also has relevance for robot kinematics, since per-
formance indices such as manipulability [9, 16, 26] are defined in terms of a positive
definite inner product. The main tools used in the study are Gram matrices [21] and
the classification of screw systems due to Hunt and Gibson [10, 7].

In section 2, the theory of hyperbolic h-pseudoinverses is presented. Then, in
section 3, the role of the associated Gram matrices together with the existence of the
pseudoinverses is explored. In particular, the classical problem, solved by Sylvester,
of lines in involution is considered from this perspective in section 4. Section 5 ad-
dresses the existence of screw systems for which no h-pseudoinverse exists for any h.
Application of these h-pseudoinverses to projection operators in shared and hybrid
robotic control follows in section 6 before some concluding remarks.

2. Pseudoinverses in the Euclidean Group.

2.1. Invariant forms on the Euclidean Lie algebra. Notation for the Eu-
clidean group and its Lie algebra are briefly presented here. Further details can be
found in [20]. Given an orthonormal frame of coordinates Ox1x2x3 in Euclidean 3-
space E3, the Euclidean group SE(3) of orientation-preserving rigid displacements
is isomorphic to the semi-direct product SO(3) n R3 of rotations about the origin
and translations. Without such a choice of coordinates, there is no means to identify
points of E3 nor elements of SE(3). So, to avoid unnecessary complication, it is usual
to assign a preferred choice of coordinates (and hence identify E3 with R3) with re-
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spect to which SE(3) will be identified with the semi-direct product. From now on
we assume this is the case.

It is frequently useful to identify the translation vector t = (t1, t2, t3)T ∈ R3

with the skew-symmetric matrix T whose action on x ∈ R3 is identical to the vector
product Tx = t× x, namely

T =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 .

Hence an element of SE(3) can be represented by a pair (R, T ) where R ∈ SO(3), so
RTR = I3, detR = 1, and T is skew-symmetric. Let R(θi) denote rotation about the
axis Oxi by an angle θi and T (ti) denote translation by ti parallel to Oxi, i = 1, 2, 3.
Composition in the semi-direct product is given by:

(R2, T2) ◦ (R1, T1) = (R2R1, R2T1R
T
2 + T2).

Note that the translations form a normal subgroup while the rotation subgroup is not
normal.

The Lie algebra se(3) of the Euclidean group is a 6–dimensional real vector space.
Writing I3, O3 for the 3× 3 identity and zero matrices respectively, let

(1) ωi =
d

dθi
(R(θi), O3)

∣∣∣∣
θi=0

, vi =
d

dti
(I3, T (ti))

∣∣∣∣
ti=0

, i = 1, 2, 3.

Then (ω1,ω2,ω3,v1,v2,v3) forms a basis for the Lie algebra. The first three elements
are infinitesimal rotations about the coordinate axes and the last three infinitesimal
translations parallel to those axes. Coordinates with respect to this basis are termed
Plücker coordinates and they form a natural generalisation of the coordinates of the
same name used for lines in projective 3-space. An element s ∈ se(3) is called a twist.
By a slight abuse of column vector notation, we generally write a twist in Plücker
coordinates as s = (ω,v). It is also convenient to introduce the skew-symmetric
matrices Ω and V that are determined by the actions: for all x ∈ R3, Ωx = ω × x,
V x = v × x, respectively.

A change of orthonormal frame in E3 (or origin and axes in R3) corresponds to
conjugation in SO(3) n R3 and this gives rise to the adjoint action of the group on
its Lie algebra. Specifically, this action is described in Plücker coordinates by:

(2) Ad (R, T )(ω,v) =

(
R O
TR R

)(
ω
v

)
.

Differentiating the adjoint action with respect to SE(3) gives the adjoint of the Lie
algebra, namely its Lie bracket. This has the (partitioned) matrix form:

(3) ad (ω1,v1)(ω2,v2) =

(
Ω1 O
V1 Ω1

)(
ω2

v2

)
or in Plücker vector form:

(4) ad (ω1,v1)(ω2,v2) = [(ω1,v1), (ω2,v2)] = (ω1 × ω2,ω1 × v2 + v1 × ω2).

A natural geometry intrinsic to se(3) is given by a bilinear form 〈·, ·〉 invariant
under the adjoint action of the Lie group or algebra in the sense that for all s1, s2 ∈
se(3) and G ∈ SE(3):

〈s1, s2〉 = 〈Ad (G)(s1),Ad (G)(s2)〉(5a)
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or, equivalently, for all s ∈ se(3)

0 = 〈[s, s1], s2〉+ 〈s1, [s, s2]〉(5b)

The following theorem describing the invariant forms on se(3) is well known. An
equivalent version relates to the form of pseudo-riemannian metrics on SE(3) [15].

Theorem 1. A quadratic form 〈·, ·〉 on se(3) is adjoint-invariant if and only if it
has the form, for all s1, s2 ∈ se(3):

(6) 〈s1, s2〉α,β =
1

2
sT1

(
−2αI3 βI3
βI3 O3

)
s2 =: sT1Qα,βs2,

for some α, β ∈ R.

Any two such forms for which the pairs (α, β) differ only by a non-zero multiplicative
constant are essentially the same, so that there is a pencil of invariant forms. If β 6= 0,
then let h = α/β and let Qh denote the matrix in (6) scaled by 1/β and 〈·, ·〉h the
associated bilinear form. In the case β = 0 then for α = 1, denote the matrix and
form by Q∞ and 〈·, ·〉∞ respectively. Clearly Qα,β = αQ∞ + βQ0. Note that Q∞
is one-half of the Killing form of se(3); Q0 is termed the Klein form. Not only do
these forms span the invariant quadratic forms but they also generate the ring of all
polynomial invariants of the adjoint action [6].

It is straightforward to confirm that for h 6=∞, Qh is non-degenerate but indefi-
nite with index (3, 3), while Q∞ is negative semi-definite of rank 3 (correlating to the
fact that SE(3) is not semi-simple). In particular, there is no adjoint-invariant inner
product on se(3).

2.2. Screws and screw systems. In Plücker coordinates, s = (ω,v) ∈ se(3),
the corresponding quadratic forms are:

(7) sTQhs = −hω.ω + ω.v

Hence, if ω 6= 0, s lies on the nullcone of Qh if and only if h = ω.v/ω.ω while if
ω = 0 then s lies on the nullcone of every Qh, h ∈ R∪{∞}. Denote by qh the quadric
hypersurface corresponding to Qh for h finite, and the 3-dimensional subspace ω = 0
for h =∞.

It is often more convenient to work projectively, that is in Pse(3). Let q̃h denote
the projective quadric and then the collection of subsets:

(8) {q̃h − q̃∞ : h ∈ R} ∪ {q̃∞}

partitions Pse(3). Viewed in this projective 5-space, a one-dimensional subspace in
se(3), spanned by a non-zero twist, is a point called a screw. The projective hyper-
quadrics have two rulings by (projective) planes: the α-planes corresponding to the
set of screws whose axes pass through a given point in E3 and the β-planes consisting
of those screws whose axes lie in a given plane in E3. Note that q̃∞ is the β-plane at
infinity.

From the point of view of the kinematics of rigid bodies in 3-space, a twist s =
(ω,v) ∈ qh determines a (Killing) vector field on E3. In the general case h 6=∞, the
corresponding exponential is the family of motions that fix a line in E3 and combine
rotation about that line with translation along it in the fixed ratio h. That is, the
integral curves are helices of pitch h about the axis. The component ω ∈ R3 of
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the twist’s Plücker coordinates represents the direction vector of the axis; v ∈ R3

combines the moment of the axis about the origin with the translation along it. The
case h = 0 corresponds to pure rotation: in this case the twist satisfies the Klein
quadric sTQ0s = 0. An element s ∈ q∞ corresponds to pure translation parallel to v.

The motions determined by the one-parameter subgroups, exp θs, s ∈ qh, are
precisely the motions of a rigid body constrained to move relative to the ambient
space by a one degree-of-freedom joint, where the joint is:

• revolute (R) if h = 0
• helical (H) if h 6= 0,∞
• prismatic (P) if h =∞.

Robot arms and manipulators typically consist of a chain of m rigid links con-
nected in series by such joints though, in practice, helical joints are rarely used. The
final link is referred to as the end-effector and its motion in E3 is a function of the joint
variables θ1, . . . , θm. This determines the kinematic mapping f : Rm → SE(3), whose
derivative describes the instantaneous kinematics of the end-effector. If one assumes
that for a given θ ∈ Rm, f(θ) = e, the identity in SE(3), then the derivative is a map
Rm → se(3) and can be represented by a Jacobian matrix J with respect to Plücker
coordinates in se(3). The columns of J are the twists s1, . . . , sm corresponding to the
current configuration of the arm’s joints.

The columns of J span its image and form a subspace of se(3) whose dimension
is the rank of J . Such subspaces are referred to as screw systems or, if the rank
is k, then simply k-systems. There is an action of SE(3) on the set of k-systems
(a Grassmannian manifold over the Lie algebra) induced by the adjoint action. A
classification of k-systems was established by Gibson and Hunt [10] and, along similar
lines, by Rico and Duffy [19]. A refinement and further properties of the Gibson–Hunt
classification were established in [7]. In particular, the invariance with respect to the
adjoint action was a central aspect of the last work cited.

Two twists s1, s2 ∈ se(3) are said to be reciprocal if 〈s1, s2〉0 = sT1Q0s2 = 0. In
particular, elements s ∈ q0 are self-reciprocal. Given a k-system S, define its reciprocal
subspace by:

(9) S⊥ = {s1 ∈ se(3) : for all s ∈ S, 〈s1, s〉0 = 0}.

Since Q0 is non-degenerate, S⊥ is a (6 − k)-system. This can be generalised for h
finite: s1, s2 ∈ se(3) are said to be h–reciprocal if 〈s1, s2〉h = 0 and for a screw system
S define the h–reciprocal screw system:

(10) S⊥h = {s1 ∈ se(3) : for all s ∈ S, 〈s1, s〉h = 0}.

2.3. h-pseudoinverses. The Moore–Penrose pseudoinverse of an n×m matrix
A (see, for example, [1]) that defines a linear transformation between Rm and Rn,
each equipped with the standard Euclidean inner product, is an m × n matrix A+

such that:
(P1) AA+A = A
(P2) A+AA+ = A+

(P3) (AA+)T = AA+

(P4) (A+A)T = A+A
For any matrix A, there exists a unique pseudoinverse A+ [17]. If m ≤ n and rankA =
m (so that it is injective as a linear transformation) then

(11a) A+ = (ATA)−1AT
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while if m ≥ n and rankA = n (A surjective) then

(11b) A+ = AT(AAT)−1.

However, when A does not have maximal rank then one requires full rank factorisa-
tions or algorithmic methods to evaluate A+.

The significance of the inner products is that the matrix transpose in (P3) and
(P4) corresponds to the adjoint transformation. That is, if L : V → W is a linear
transformation between real or complex vector spaces V,W equipped with hermitian
inner products 〈·, ·〉V , 〈·, ·〉W then the adjoint of L is the linear transformation L∗ :
W → V that satisfies, for all v ∈ V , w ∈W :

(12) 〈v, L∗(w)〉V = 〈L(v),w〉W .

The adjoint L∗ coincides with the dual of L under the identification of the dual spaces
V ∗, W ∗ with V,W induced by their respective inner products.

Recall that the Jacobian matrix of a kinematic mapping is a 6 ×m matrix rep-
resenting a linear transformation between the space Rm of joint velocities and se(3),
the space of twists. The joint velocity space carries a natural positive-definite inner
product—in physical terms the inertia matrix, which we shall assume to be in stan-
dard form and so represented by the identity Im. However the twist space carries
a pencil of indefinite forms Qh which are non-degenerate for h finite. In the case
that there are indefinite non-degenerate inner products on the domain and range of a
linear transformation, there is still a well-defined adjoint as in (12). If the symmetric
matrix representations of the inner products on V,W are M,N respectively then the
generalised adjoint of a matrix A representing the linear transformation L : V → W
has the form:

(13) A∗MN = M−1A∗N.

In particular, for a manipulator Jacobian J there is a one-parameter family of gener-
alised adjoints:

(14) J∗h = JTQh.

Kamaraj and Sivakumar [12] develop the theory of pseudoinverses in this gener-
alised setting. Adapting this to the case at hand, define an h–pseudoinverse of an
m–variable manipulator Jacobian J to be an m× 6 matrix J+h such that
(hP1) JJ+hJ = J
(hP2) J+hJJ+h = J+h

(hP3) (JJ+h)∗h = JJ+h

(hP4) (J+hJ)∗h = J+hJ
The existence of an h-pseudoinverse is not guaranteed, though if it exists then it is
unique. A theorem of Kalman [11], of which the following is a special case, provides
a criterion for existence.

Theorem 2. The 6 ×m Jacobian matrix J has an h–pseudoinverse J+h if and
only if rank J = rank (JJ∗h) = rank (J∗hJ).

The analogous equalities for the Moore–Penrose pseudoinverse hold automatically.
It is straightforward to show that rankA = rankATA = rankAAT. Likewise, the
imposition of a positive definite inner product on the space of joint velocities and the
non-degeneracy of Qh entails rank (JJ∗h) = rank (JJTQh) = rank (JJT) = rank J .
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However the condition rank J = rank (J∗hJ) = rank (JTQhJ) can fail because the
indefiniteness of Qh means that there exist non-zero h–self-reciprocal twists for any
h, that is s ∈ se(3), s 6= 0 such that sTQhs = 0.

This gives rise to the question whether, for any J , there exists at least some
h such that the h–pseudoinverse J+h exists. This is answered in section 3. Note
however that if rank J = 6 (and so m ≥ 6) then the conditions of Theorem 2 hold
and all h-pseudoinverses exist; in fact they coincide with the ordinary Moore–Penrose
pseudoinverse. By analogy with (11b), we can write:

(15) J+h = (JTQh)(JJTQh)−1 = JT(QhQ
−1
h )(JJT)−1 = JT(JJT)−1.

This pseudoinverse is used extensively in the kinematics of redundant manipulators
(m > 6). In the next section the more interesting (from the point of view taken in
this paper) case m < 6 is considered.

3. Gram Matrices, Screw Systems and Existence of h-Pseudoinverses.
In the case that the dimension of the domain (number of joints) m < 6, the Gram
matrices JTQhJ are central to determining the existence of an h–pseudoinverse. Sup-
pose that the 6×m matrix J , whose columns are twists in se(3), has rank m, so that
the twists are independent and span an m-system in se(3). Since the forms Qh are
invariants of the adjoint action, the existence of J+h depends only on the equivalence
class of this screw system. Note that in the maximum rank case the h–pseudoinverse
is determined by the formula analogous to (11a):

(16) J+h = (JTQhJ)−1JTQh.

The Gibson–Hunt classification [10, 7] of screw systems of a given rank m ≤ 3 is
based on the way the screw system, S, meets the pitch hyperquadrics. Types I and II
are distinguished by whether S does not, or does, lie entirely within a single qh. A
second level of distinction, A,B,C, . . . distinguishes the (projective) dimension of
S ∩ q∞ (A denotes empty intersection, and increasing dimension thereafter).

Further refinement for type I is provided by the projective type of the pencil of
intersections S ∩ qh. For example, Figure 1 shows a planar section of a 3–system and
its intersections with the family of pitch hyperquadrics qh. Note that there are three
values of h giving singular intersections: a real line pair and two singular points which
correspond to complex conjugate line pairs. These three values are termed principal
pitches (see subsection 5.3) and the corresponding projective type determines class
IA1. These principal pitches are, in fact, moduli (continuous families of invariants)
for the adjoint action of the Euclidean group on screw systems of given dimension.
A further class, IA2 arises when two of the principal pitches coincide. Other moduli
appear in the various Gibson–Hunt classes.

For m = 1, a 1-system is determined by a single non-zero twist. With respect to an
appropriate choice of coordinates, this can be chosen to have the form (1, 0, 0;h, 0, 0) if
the pitch h is finite, otherwise (0, 0, 0; 1, 0, 0). Each of these normal forms determines
a unique equivalence class under the adjoint action. However, it may be convenient
to collect all types where h 6=∞ into one class; equally the case h = 0 may be treated
as a special case. Mathematical justification for these different choices can be found
in [7].

For m = 2, 3, Table 1 and Table 2 list the classifications with normal forms for a
set of generating twists for each class of screw system. The reader is referred to the
cited works for further details. Classification in the cases m = 4, 5 is given in terms
of the type of reciprocal 2- or 1-system, respectively.
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Table 1
Classification of 2–systems.

Class Normal form Class Normal form

IA (1, 0, 0;hα, 0, 0) IIA (1, 0, 0;h, 0, 0)
(0, 1, 0; 0, hβ , 0) (0, 1, 0; 0, h, 0)

IB (1, 0, 0; 0, 0, 0) IIB (1, 0, 0;h, 0, 0)
(0, 0, 0; 1, p, 0) (0, 0, 0; 0, 1, 0)

IIC (0, 0, 0; 1, 0, 0)
(0, 0, 0; 0, 1, 0)

Table 2
Classification of 3–systems.

Class Normal form Class Normal form

IA1 (1, 0, 0;hα, 0, 0) IIA (1, 0, 0;h, 0, 0)
(0, 1, 0; 0, hβ , 0) (0, 1, 0; 0, h, 0)
(0, 0, 1; 0, 0, hγ) (0, 0, 1; 0, 0, h)

IA2 (1, 0, 0;hα, 0, 0) IIB (1, 0, 0;h, 0, 0)
(0, 1, 0; 0, hβ , 0) (0, 1, 0; 0, h, 0)
(0, 0, 1; 0, 0, hβ) (0, 0, 0; 0, 0, 1)

IB0 (1, 0, 0;h, 0, 0) IIC (1, 0, 0;h, 0, 0)
(0, 1, 0; 0, h, 0) (0, 0, 0; 0, 1, 0)
(0, 0, 0; 1, 0, p) (0, 0, 0; 0, 0, 1)

IB3 (1, 0, 0;hα, 0, 0) IID (0, 0, 0; 1, 0, 0)
(0, 1, 0; 0, hβ , 0) (0, 0, 0; 0, 1, 0)
(0, 0, 0; 0, 0, 1) (0, 0, 0; 0, 0, 1)

IC (1, 0, 0; 0, 0, 0)
(0, 0, 0; 0, 1, 0)
(0, 0, 0; 1, 0, p)

By Theorem 2, J+h exists if and only if the rank of the m×m matrix JTQhJ is
also m. The following theorem gives a set of equivalent conditions for this to fail.

Theorem 3. Suppose J is a matrix representing a linear transformation Rm →
se(3) where m < 6 and rank J = m. Let S denote the m-system formed by the image
of the transformation. For any finite h, the following are equivalent:

(i) rank (JTQhJ) < m.
(ii) S ∩ S⊥h is non-trivial.
(iii) S is contained in the tangent space to qh at some non-zero point.

Proof. By assumption, the columns of J , twists si, i = 1, . . . ,m, say, are linearly
independent.

(i)⇒(ii). Given (i), it follows that the kernel of JTQhJ is non-trivial, so there
exists a non-zero vector λ = (λ1, . . . , λm)T such that:

(17) (JTQhJ)λ = 0.

Let z = Jλ = λ1s1 + · · · + λmsm ∈ S: the linear independence of the twists ensures
that z 6= 0. Then (17) can be written as:

(18) JTQhz = 0.
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The components of this vector equation give:

(19) sTi Qhz = 〈si, z〉h = 0, i = 1, . . . ,m,

so, by definition of the reciprocal system, z ∈ S⊥h.
(ii)⇒(iii). Since qh is the set of twists, s, satisfying the condition 〈s, s〉h = 0, its

tangent space at a point y ∈ qh is the hyperplane:

(20) Tyqh = {s ∈ se(3) : 〈s,y〉h = 0}.

Given 0 6= z ∈ S ∩ S⊥h, then 〈z, z〉h = 0 so that z ∈ qh. Then, for all s ∈ S, z ∈ S⊥h
implies 〈s, z〉h = 0 hence, by (20), s ∈ Tzqh.

(iii)⇒(i). Suppose that S ⊆ Tzqh, z 6= 0, so that for all i = 1, . . . ,m, 〈si, z〉h =
sTi Qhz = 0. Since z ∈ S, we have z = Jλ for some λ ∈ Rm, λ 6= 0. Hence
JTQhJλ = 0 and so rank (JTQhJ) < m.

An obvious consequence is that the existence of an h-pseudoinverse for J is de-
termined by the associated screw system. Condition (ii) immediately gives rise to the
following useful result:

Corollary 4. With J and S as in Theorem 3, J has an h-pseudoinverse if and
only if the matrix J⊥h, arising from a basis for S⊥h and representing a transformation
R6−m → se(3), has an h-pseudoinverse.

In the following section we look at an application involving the existence of h-
pseudoinverses for h = 0.

4. Lines in Involution. In a pair of papers published in 1861, Sylvester [24, 23]
addressed the question of the circumstances under which m ≤ 6 axes of rotation could
fail to provide a complete basis for describing an arbitrary rigid motion in space,
a condition he termed being in involution. Equivalently, a system of forces acting
on these lines would be in equilibrium, a problem initially considered by Möbius.
Sylvester showed that the requisite condition is equivalent to det(JTQ0J) = 0, where
the columns of the 6×m matrix J are the Plücker coordinates of the lines in space.
It follows straight away that m linearly independent lines are in involution if and only
if the pseudoinverse J+0 does not exist. Example 1 in section 5 illustrates this in the
case m = 3 since the columns, as zero-pitch screws, can also be thought of as lines in
space.

Sylvester established geometric and algebraic conditions for involution for vari-
ous m. Here we give an alternative characterisation using Theorem 3 and clarify its
connection with the classification of screw systems [10]. Assume that the m lines
are linearly independent. As noted following the proof of Theorem 3 the involution
condition depends only on the screw system spanned by the lines, not the particular
choice of lines in it. Indeed, the Sylvester determinant is invariant with respect to the
adjoint action on se(3) and covariant with respect to choice of basis for the screw sys-
tem. The existence of lines, that is zero-pitch screws, within the screw system places
constraints on the possible systems that can arise. Specifically, working projectively
in se(3), the intersection of the screw system as a projective subspace with the (open)
pitch quadric q̃0 − q̃∞ must contain at least m distinct points.

For m = 2, every twist in a 2–system of type IIC has infinite pitch and cannot
represent a line, so two lines can only be in involution if they span a 2–system of type
A or B. Suppose two lines (necessarily in a type A or B system) are s1 and s2, so
that sT1Q0s1 = sT2Q0s2 = 0 since they correspond to pitch zero twists. The Sylvester
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condition then reduces to det(JTQ0J) = −(sT1Q0s2)2 = 0. That is, for a pair of lines
to be in involution they must be reciprocal, see subsection 2.2. It is well known that
reciprocal lines must be coplanar [10]. There are two possibilities to consider. First,
if the two lines meet, that is to say if they are concurrent, then linear combinations
of the two lines generate all lines through the common point of s1 and s2 and lying
in the same plane as the original lines. Such an arrangement of lines is sometimes
referred to as a plane pencil of lines. The 2–system is precisely this plane pencil of
lines and projectively the screw system lies entirely in the open pitch quadric q̃0− q̃∞,
hence is a IIA system with modulus h = 0 (see Table 1).

In the second case, s1 and s2 are parallel. In this case the linear combination of
a pair of parallel lines gives all the lines coplanar and parallel to the original lines,
together with a line ‘at infinity’ in a direction normal to the plane of the finite lines.
That is, the screw system meets q̃∞ in a single point and hence is a IIB system with
modulus h = 0.

When m = 3, the types of screw systems that contain three independent lines
are restricted to the following (see [5]): IA (hmax > 0, hmin < 0), IB0, IB3 (principal
pitches must be of opposite sign), IIA, IIB, IIC (all with principal pitch zero). In
the case IA there are three principal pitches, the middle value corresponding to the
quadric intersection with the corresponding pitch hyperquadric being a degenerate line
pair (see Figure 1). With three lines, s1, s2 and s3 the Sylvester determinant reduces
to det(JTQ0J) = 2(sT1Q0s2)(sT2Q0s3)(sT3Q0s1). So the vanishing of this determinant
implies that for three lines to be in involution, at least one pair of lines must be
coplanar.

Starting with this pair of lines, there are various possibilities to consider. First, in
the case where the two coplanar lines are concurrent, the lines generate a plane pencil
of concurrent lines in the screw system. If the third line meets, but is not contained
in the plane of the other two lines then there will be a line in the pencil meeting it
that, together with the third line, will generate another plane pencil. The 3–system
will thus contain two plane pencils of lines in two different planes, thus a IA system
with one of the moduli equal to 0 (in this case the moduli are the principal pitches of
the screw system).

Now it may happen that all three lines are pairwise concurrent, that is, the third
line lies in the plane determined by the first two. In this case linear combinations of
the three lines will generate any line lying in the plane and hence this is a IIB system
with modulus h = 0, corresponding to a β-plane in the Klein quadric q̃0. On the
other hand, if the lines all meet at a single point but are not all coplanar, then linear
combinations of the lines will produce all lines through the common point. This is
sometimes called a bundle of lines and corresponds to an α-plane in the Klein quadric.
As a screw system it has type IIA with modulus h = 0.

Next, suppose that the third line is parallel to the plane determined by the first
two and so does not meet it at all. In the pencil determined by the first two lines
there will be a line which is parallel to the third line; this line and the third one will
generate a set of parallel lines in the plane determined by the two parallel lines. As
before the set of parallel lines will also contain a twist in q̃∞ and it can be shown that
these lines generate a IB0 3–system with one modulus ha = 0.

Secondly, we consider the cases where two of the original lines are parallel. All
the cases where the third line meets the plane determined by the parallel lines have
already been considered. So the only cases to consider are either where the third line
lies in a plane parallel to the plane determined by the other two—this gives a IB3

system—or, finally, where all three lines are parallel, giving a IIC (h = 0) system.
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In summary there are six types of 3–system which contain three lines in involution.
They are the IA with one principal pitch zero, the IB0 system with ha = 0, the IB3

system, the IIA, IIB and IIC systems all with modulus h = 0.
For m = 4, the reciprocity condition, Corollary 4, together with the result for

m = 2 ensure that only four lines spanning a 4–system reciprocal to a 2–system of
type IIA or IIB, with principal pitch zero, satisfy the Sylvester condition. Recall that
the lines in a IIA 2–system with h = 0 form a plane pencil. So the reciprocal system
will consist of all the lines in the plane of the pencil together with all the lines through
the central point of the pencil. The lines in a 2–system of type IIB (h = 0) are a set
of parallel lines in a plane. The reciprocal system will thus consist of all lines in the
plane together with all lines in space parallel to the lines in the 2–system.

Hence a set of four linearly independent lines in involution will comprise a set of
four lines from one of these two arrangements. It follows that the four lines are in
involution precisely when they satisfy the special condition that there is an infinity of
transversals—a transversal being a line reciprocal to, and therefore intersecting, all
four lines. This contrasts with four lines in a system reciprocal to a type IA 2–system
having two transversals and those in a system reciprocal to a IB system having a single
transversal. A different approach, using Grassmann–Cayley algebra, is presented in
Sturmfels, Section 3.4 [22].

For five lines (m = 5) to be in involution the lines must span a 5–system reciprocal
to a single line, as opposed to a twist of non-zero pitch, and therefore they possess a
common transversal. Another way to express this is to say that the 5 lines lie in a
special linear line complex. Clearly six lines can only be in involution if they are not
independent and so span a 5–system.

The significance of involution for a robot arm with revolute joints is this. Suppose
the arm is in a non-singular configuration, so that the corresponding locations of the
joint screws are given by m independent twists of pitch zero. If the twists correspond
to m lines in involution, then there exists a combination of wrenches generated by
joint torques with respect to which the end-effector of the arm is in equilibrium. In
fact, the wrench can be expressed as W = Q0z where z is the twist identified in the
proof of Theorem 3. Note that from the second part of the proof, z ∈ q0 so that it
corresponds to a line and must be a transversal to the joint axes.

5. Systems with No h-Pseudoinverse. The question also arises as to whether
there are screw systems for which, for an associated Jacobian matrix, no h-pseudo-
inverse exists for any h. We consider this dimension by dimension.

An easy consequence of Theorem 3 is that if rank (JTQhJ) < m for all h, so that
no h-pseudoinverse exists, then for each h there exists z ∈ S such that 〈z, z〉h = 0.
If z has finite pitch h for all h 6= ∞, then the screw system spanned by the columns
of J will contain a screw of every pitch and therefore must include a screw of infinite
pitch. Therefore, in any case, the screw system must contain a screw of infinite pitch.
It follows that all type A systems (which contain no screws of infinite pitch) have
an h-pseudoinverse for some h. To put it the other way, screw systems that have no
h-pseudoinverse can only be of types B, C or D.

5.1. 1–systems. Suppose 0 6= s ∈ se(3) and let S be the 1-system spanned by
s. The h-pseudoinverse of s exists if and only if sTQhs 6= 0. This fails if and only if
s ∈ qh so for screws of finite pitch almost all h-pseudoinverses exist. For s ∈ q∞, we
have sTQhs = 0 for all finite h so no h-pseudoinverse exists.



12 P. DONELAN AND J. M. SELIG

5.2. 2–systems. For a general 2-system S, spanned by s1, s2, columns of the
Jacobian matrix J , the condition for singularity of the Gram matrix:

(21) det(JTQhJ) = 0

is quadratic in h and there are typically two principal pitches, say hα, hβ , for which
the screw system is tangent to the pitch hyperquadric [10]. The coefficients i1, i2, i3
of this quadratic i1h

2 + i2h + i3 are invariants of the screw system [20] and no h-
pseudoinverse exists if and only if all these invariants vanish. This occurs only for
systems of types IIB and IIC, being planes in se(3) that are tangent to every qh at
an infinite pitch screw s∞ ∈ S.

Fig. 1. Intersection of type IA 3–system with pitch hyperquadrics

5.3. 3–systems. Analogously to 2-systems and equation (21), a typical (type
IA) 3-system has three principal pitches hα, hβ , hγ for which the corresponding h-
pseudoinverse fails. They are the singular quadrics in Figure 1. The determinant
vanishes identically in h if and only if the four invariant coefficients vanish. Selig [20]
shows that this occurs for the type II systems that contain a screw of infinite pitch
(IIB, IIC and IID) but also for two classes of type I system, namely IB3 and IC,
corresponding to singular pencils of quadrics [6]. Other types will have one or two
singular pitches with no corresponding pseudoinverse.

5.4. 4– and 5–systems. By Corollary 4, the existence or otherwise of h-pseudo-
inverses follows from that of the reciprocal 2– and 1–systems. For example, whereas a
generic 5–system intersects q∞ in a plane, a 5–system fails to have any h-pseudoinverse
if and only if it wholly contains q∞.

A summary of the 10 types of screw systems with no h-pseudoinverse is given in
Table 3. Note that the reciprocals of the four 3-systems have the same type.
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Table 3
Screw systems with no h-pseudoinverse.

Dimension GH type Basis Reciprocal Reciprocal
Dimension Basis

1 h =∞ (0, 0, 0; 1, 0, 0) 5 (0, 1, 0; 0, 0, 0)

(0, 0, 1; 0, 0, 0)

(0, 0, 0; 1, 0, 0)

(0, 0, 0; 0, 1, 0)

(0, 0, 0; 0, 0, 1)
2 IIB (1, 0, 0; p, 0, 0) 4 (1, 0, 0;−p, 0, 0)

(0, 0, 0; 0, 1, 0) (0, 1, 0; 0, 0, 0)

(0, 0, 1; 0, 0, 0)

(0, 0, 0; 0, 0, 1)
2 IIC (0, 0, 0; 1, 0, 0) 4 (0, 0, 1; 0, 0, 0)

(0, 0, 0; 0, 1, 0) (0, 0, 0; 1, 0, 0)

(0, 0, 0; 0, 1, 0)

(0, 0, 0; 0, 0, 1)
3 IB3 (1, 0, 0; p, 0, 0) 3 (1, 0, 0;−p, 0, 0)

(0, 1, 0; 0, q, 0) (0, 1, 0; 0,−q, 0)

(0, 0, 0; 0, 0, 1) (0, 0, 0; 0, 0, 1)
3 IC (1, 0, 0; 0, 0, 0) 3 (−p, 0, 1; 0, 0, 0)

(0, 0, 0; 0, 1, 0) (0, 0, 0; 0, 10)

(0, 0, 0; 1, 0, p) (0, 0, 0; 0, 0, 1)
3 IIB (1, 0, 0; p, 0, 0) 3 (1, 0, 0;−p, 0, 0)

(0, 1, 0; 0, p, 0) (0, 1, 0; 0,−p, 0)

(0, 0, 0; 0, 0, 1) (0, 0, 0; 0, 0, 1)
3 IIC (1, 0, 0; p, 0, 0) 3 (1, 0, 0;−p, 0, 0)

(0, 0, 0; 0, 1, 0) (0, 0, 0; 0, 1, 0)

(0, 0, 0; 0, 0, 1) (0, 0, 0; 0, 0, 1)

Example 1. Consider the matrix

J =


1 0 0
0 0 0
0 1 1
0 0 −2
−1 0 1
1
2 0 0


Its columns are the linearly independent pitch-zero screws s1, s2, s3. Since s2 − s3 ∈
q∞, this is a IB0 system. We have:

det(JTQhJ) = 8h

so that its principal pitch is h = 0. Moreover, it can be seen that the rank condition
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in Theorem 2 fails for h = 0 so this matrix does not have a 0-pseudoinverse. It is
straightforward to compute:

J+h =


1 −1

2
0 0 0 0

3

16h
−16h2 + 16h+ 3

32h
1

1

2
0 − 3

8h

1

16h

16h2 + 16h+ 3

32h
0 −1

2
0 − 1

8h


6. Projection Operators and Robotics.

6.1. Manipulator Kinematics. In this section we return to the problem men-
tioned in the introduction, of controlling a robot with less than 6 degrees-of-freedom.
This problem is important for robotics but is also of interest in computer animation,
see [4] for example. As an example, consider the following robot whose kinematic
structure is typical of many commercially available robots for hobbyists and for edu-
cational purposes.

z

x

s2

s3

s1

l

Fig. 2. A 3R Robot Arm

Example 2. Consider the 3-joint robot arm illustrated in Figure 2. This arm has 3
revolute (R) or hinge joints. The joints can be represented as pitch 0 twists or lines
as noted above. With coordinates as shown in the figure, the Jacobian matrix of the
robot will be:

J =


0 1 1
0 0 0
1 0 0
0 0 0
0 0 0
0 0 −l


Now suppose that, in its illustrated configuration, it is desired that the end-effector
of the robot move with a velocity given by the twist sd. If the joint velocities of the
three revolute joints are θ̇1, θ̇2 and θ̇3, then the velocity of the robot’s end-effector
will be J θ̇, where θ̇ = (θ̇1, θ̇2, θ̇3)T. Since the Jacobian has maximum rank 3, clearly
not every desired twist can be achieved by the robot, but we would like to find values
for the joint rates in such a way that the robot’s (twist) velocity approximates the
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desired twist and is exactly the desired twist, sd = J θ̇, when sd does lie in the screw
system spanned by the joints of the robot. In effect, we seek a projection operator
which projects the whole Lie algebra onto the column space of the Jacobian. In view
of the property (hP1) of h-pseudoinverses, it is clear that Ph = JJ+h satisfies this
requirement.

For this example, there is no 0-pseudoinverse, since two of the axes are coplanar;
in fact, joints 1 and 2 are concurrent and joints 2 and 3 are parallel, so these lines
generate a IB0 3–system (see Section 4 above). However, for any other finite h we
have,

Ph = JJ+h =


1 0 0 − 1

2h 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


Notice that the kernel of this operator depends on the value of h; in fact the

twists:

z1 =


0
1
0
0
0
0

 , z2 =


0
0
0
0
1
0

 and z3 =


1
0
0

2h
0
0

 ,

span the kernel of Ph.
More generally, suppose that S is the linear system of twists generated by the

columns of some Jacobian matrix J , then it is easy to see that the kernel of the
projection operator Ph = JJ+h is just the space of h-reciprocal twists, S⊥h. Since
Ph = J(JTQhJ)−1JTQh, it follows that Phz = 0 if and only if JTQhz = 0. No-
tice that, by Theorem 3, if the h-pseudoinverse exists then S and S⊥h have trivial
intersection.

Example 3. A second application to robot control problems is to find all possible
joint velocities for an under-actuated robot arm, in a given non-singular configuration,
so that a point on its end-effector moves in a given direction. Suppose the arm has
m < 6 actuated joints with joint variables θ = (θ1, . . . , θm) ∈ M where M is the
joint space of the arm. Let f : M → SE(3) denote its kinematic mapping. Given
a point x on its end-effector, the motion of x is described by fx : M → R3 where
fx(θ) = f(θ).x. In order for the point x to move parallel to the direction q at the
configuration θ, we require to find θ̇ ∈ TθM ∼= Rm and λ ∈ R so that Dfx(θ)θ̇ = λq.

To simplify things, one may recalibrate the joint variables so that f(θ) is the
identity in SE(3). Then the derivative is a map Df : Rm → se(3). We can then write
Df(θ) as a Jacobian J in which the columns are the m joint twists. Since the action
of SE(3) on R3 is affine, the derivative Dfx is just the composition evx◦J where evx :
se(3)→ R3 describes the action of the Lie algebra on space: evx(ω,v) = ω × x + v.
Denote by L ⊂ R3 the line {λq : λ ∈ R}. Thus, we require to solve the condition:

(22) evx(Jθ̇) ∈ L.

Now evx is surjective, so the inverse image evx
−1(L) must be a subspace of the same

codimension in se(3) and hence is a 4-system S. The problem therefore reduces to
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finding θ̇ ∈ Rm so that Jθ̇ ∈ S. Assuming the existence of a pseudoinverse J+h,
we determine the solution set to be θ̇ ∈ J+h(S). Further, the 4-system S can be
identified as the Lie algebra of the cylinder subgroup consisting of screw motions
(including rotation) about the line of motion x + tq together with translation in the
direction of the velocity vector v. This has Gibson–Hunt type IIA, the 4-system being
reciprocal to the corresponding 2-system in Table 1.

6.2. Optimality. Moore–Penrose pseudoinverses have the property that they
determine optimal solutions to equations, in the sense that attempting to solve the
linear system Ax = b, the vector v = A+b (where A is n ×m) minimises the least-
squares error [17]:

(23) ∀x ∈ Rm, ‖Av − b‖ ≤ ‖Ax− b‖,

where the Euclidean norm is used in Rn. In the same way, hyperbolic pseudoinverses
‘optimise’ an appropriate function, though the indefiniteness of the quadratic form
Qh means that the approximation to the solution is not necessarily minimised. More
precisely, the h-pseudoinverse gives a solution to a linear system of equations that is
a stationary point of an appropriate cost function Φh.

Theorem 5. Let J be a 6 × m Jacobian matrix, s ∈ se(3) a twist and suppose
that v = J+hs. Define

(24) Φh : Rm → R, Φh(x) = (s− Jx)TQh(s− Jx).

Then for each i = 1, . . . ,m,

(25)
∂

∂xi
Φh(x)

∣∣∣∣
x=v

= 0.

Proof. In general the partial derivatives can be written in the matrix form,

∂

∂x
Φh(x) =


∂
∂x1

Φh(x)
...

∂
∂x6

Φh(x)

 = −2JTQh(s− Jx).

Setting x = v = J+hs gives,

2
(
(JTQhJ)J+h − JTQh

)
s = 0

since J+h = (JTQhJ)−1JTQh.

Example 4. With J as in Example 1, and s =
(
0, 35 ,

4
5 , 1,−

4
5 ,

3
5

)T
, we obtain for

h 6= 0,

v = J+hs =
1

160h

 −48h
−48h2 + 160h− 45

48h2 − 32h− 15


and the error is given by

Φh = −9(80h2 + 64h− 25)

800h
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Note that there are two values of h where the error Φh vanishes. While one of these
may appear a sensible choice therefore, in a practical control problem the twist x will
vary so that solutions meeting this requirement are unlikely to exist for a given h and
all x of interest.

There are several other methods used in practice, see [4] again. In particular
the damped least squares method. A geometric version of this method can be derived
simply from the optimality conditions considered above. The cost function to consider
is now,

Ψ(x) = (s− Jx)TQh(s− Jx) + xTΛx

where Λ is a symmetric matrix; if Λ is the identity matrix then xTΛx is a sum of
squares. In this case the partial derivatives can be written as,

∂

∂x
Ψ(x) = −2JTQh(s− Jx) + 2Λx.

Setting this to zero and solving for x gives,

x = (JTQhJ + Λ)−1JTQhs.

This gives a modified projection operator, J(JTQhJ + Λ)−1JTQh, which might be
used in cases where the pseudo-inverse J+h doesn’t exist.

However, these are not the most general projection operators that could be used.
Suppose that S and Z are complementary subspaces of twists, so that S⊕Z = se(3).
Then it is always possible to find a projection operator onto S which has Z as its
null space. In order to construct this, consider the dual, se∗(3), of the Lie algebra of
twists. Elements of the dual space are linear functionals on twists, called co-twists or
wrenches. The dual space to Z is the space of wrenches that annul all the twists in
Z, that is:

Z∗ = {W ∈ se∗(3) : WTz = 0, ∀ z ∈ Z}.

Given a basis for Z∗, form the matrix K whose columns are the basis vectors (written
with respect to the dual Plücker coordinates). The required projection operator is
then given by:

(26) P = J(KTJ)−1KT.

Clearly this construction can always be used, in particular when no pseudo-inverse
exists. However, there remains the problem of which of the many possible projection
operators to choose in a given setting.

6.3. Shared and Hybrid Control. In shared control and hybrid control the
task of controlling the end-effector of a robot is split in two. In hybrid control there is
a force/moment control task and a simultaneous position control task. For example,
consider using a robot to write using a pen. The robot must maintain a constant
force normal to the paper but also control the position of the pen tip on the surface
of the paper. In shared control, the robot has two positional tasks to satisfy, one
task is exclusively controlled by the robot, say limiting the end-effector to move on a
particular surface. For the other task, the desired motion on the surface is generated
by a human operator. Both these types of control methods rely on projecting the
error signal given by the robot’s sensors into a particular twist or wrench subspace.
Note that wrenches, elements of se∗(3), can be used to represent force/torque vectors,
see [20, Chap. 12].
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For shared control, assume that the task is split into a pair of h-reciprocal spaces
of twists, S1 and S2, where S1 is the space of motions to be controlled by the robot
and S2 is the space of motions to be controlled by the human operator. If the sensors
reveal a positional error se, then this must be projected to S1 for the control system
to deal with. The part of the error in S2 is left for the operator to manage. As
the two subspaces are h-reciprocal, S2 = S⊥h1 , the projection operator Ph = JJ+h

introduced above can be used, where the columns of J are a basis for S1. Dually, the
same construction can be used to give a projection operator for S2 by using a matrix
of basis elements for this space. If the two subspaces are not h-reciprocal but only
complementary, then the projection operator defined in (26) can be used.

Hybrid control was introduced in the early 1980s, however the original formulation
was flawed because the projection operators used were not invariant under a change
of coordinates [14]. There are two spaces to consider, a space of twists S containing
the possible motion twist that must be controlled and a space of wrenches S∗ ⊂
se∗(3) which contains the force and torque of the robot’s end-effector which is to be
controlled.

These spaces must be dual to each other, i.e. WT s = 0 for all W ∈ S∗ and all
s ∈ S. This ensures that the two tasks do not interfere with each other: the motions to
be controlled do no work on the wrenches to be imposed by the robot. The projection
operator Ph = JJ+h can be used to project a positional error onto S. Force/torque
error can be projected to S∗ with a similarly defined projection operator. Let W be
the matrix whose columns are basis vectors for S∗. We can define a pseudoinverse for
this matrix as above,

W+h = (WTQ−1h W )−1WTQ−1h .

It can be verified that the invariant quadrics for the co-adjoint action of SE(3) on
se∗(3) are the inverses of those for the adjoint action:

Q−1h =

(
−2hI3 I3
I3 0

)−1
=

(
0 I3
I3 2hI3

)
.

The projection operator is then P ∗h = WW+h. Of course, other pairs of projection
operators exist, as in equation (26) above.

7. Conclusion. There are other applications of pseudoinverses in robotics, for
example to the computation of stiffness matrices for parallel manipulators. The closely
related concept of singular values and singular value and polar decomposition [3, 13] is
also much used in robotics and suffers from the same problems as the Moore–Penrose
pseudoinverse. That is, the standard singular value decomposition of a matrix of
twists, or wrenches, is not well-defined under rigid changes of coordinates. We suggest
that the approach used in this paper may offer advantages in all these problems.
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