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a b s t r a c t 

This paper examines large planar deflections of a slender elastic rod with uniform intrinsic curvature, 

which is clamped at one end and the other end is pinned to a slider allowing it to move freely in the 

vertical direction as the ends are displaced horizontally in a straight line. The analysis encompasses force- 

displacement loading paths and corresponding configurations, with a particular focus on the formation of 

loops. The analysis is accompanied with data obtained from experiments on nickel titanium alloy strips, 

demonstrating a good match with theoretical predictions. 
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. Introduction 

Whilst the planar equilibrium of intrinsically straight rods have

een subjected to considerable analysis there have been very few

tudies of intrinsically curved rods. Consequently, our understand-

ng of the effects of intrinsic curvature remains relatively poor. This

aper aims to contribute towards redressing that. 

We remark here that few rod-like structures, whether artificial

r naturally occurring, are actually straight, they nearly all con-

ain a certain amount of intrinsic curvature. Indeed, preliminary

tudies of animal vibrissae suggest that intrinsic curvature may

e advantageous to animals because it generates correspondingly

arge forces and bending moments at the vibrissal base ( Quist and

artmann, 2012 ). Deeper understanding of the effects of curvature

an assist engineers in devising new technologies that are inspired

y nature, for example robotics engineers developing robots that

se flexible rods to gather information and explore spaces where

ight is restricted or too bright ( H.Evans et al., 2014; Pearson et al.,

007 ). Problems involving intrinsically curved rods arise in a va-

iety of real world scenarios; for example when unwinding ca-

le or wire from a spool. It also arises when intrinsically curved

od-like structures, such as textile fibres are bent ( González and

orca, 2004 ). 

The problem of an intrinsically curved rod has been analysed by

ove (1892) , Frisch-Fay (1962) , Snowdon (1963) , Fichter and Pin-
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on (1989) , and González and Lorca (2004) . Love examines the

roblem of an intrinsically curved rod that is loaded by an end

oment. He concludes that the only way in which it affects the

roblem, compared to the intrinsically straight rod is that “the ter-

inal couple required to hold the wire in the form of a given elas-

ica is diminished by the terminal couple that would be required

o bend a naturally straight wire into the given originally circular

orm” ( Love, 1892 ). However, he does not discuss the problem of

n intrinsically curved rod loaded solely by an applied end force.

hat problem was examined by Frisch-Fay who writes the solu-

ions to the problem in terms of elliptic integrals ( Frisch-Fay, 1962 ).

e alludes to an issue that crops up with respect to the elliptic pa-

ameter. He noticed that small adjustments in the value of the end

orce can cause dramatic changes in the value of the elliptic pa-

ameter. The net effect is that the distinction between inflectional

nd noninflectional elastica, which is clear in the case of an intrin-

ically straight rod, become muddled. Snowdon also analyses the

roblem in terms of elliptic integrals ( Snowdon, 1963 ). He classi-

es the solutions into three ‘types’ according to the value of the

lliptic parameter. His paper contains some plots of the shapes

f the elastica for the three types. However, his classification has

ittle bearing on how the end load affects those shapes. Fichter

nd Pinson examine the problem of an eccentrically applied end

orce ( Fichter and Pinson, 1989 ). Rather than elliptic integrals, they

xpress the solutions in ‘raw’ integral form (not elliptic integrals)

nd use a numerical scheme to obtain a relation between the ap-

lied end force and the end displacement. González and Lorca also

xamine the problem ( González and Lorca, 2004 ). They solve the

roblem in terms of incomplete elliptic integrals numerically for

https://core.ac.uk/display/227106088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijsolstr.2017.09.006
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certain pairs of values of end force and end displacement and then

determine a polynomial fit for the force as a function of the end

displacement. However they only consider the configuration of the

rod under action of an axially applied end force acting in one di-

rection and they do not examine loop formation. 

Although our concern here is restricted to planar equilibrium

states, we mention studies involving elastic rods with intrinsic

curvature that deform spatially i.e., where twist plays a role. For

example, Champneys et al.describe a twisted equilibrium defor-

mation whereby a one twist-per-helical wave configuration arises

( Champneys et al., 1997 ). The authors additionally note that, in the

case of spatial deformations, initial curvature breaks complete in-

tegrability (though that does not carry across to the planar case).

Starotsin et al.consider the problem of successively removing the

loops in a helical spring under an end load ( Starostin and van der

Heijden, 2009 ). They find that the loops tend not to unwind when

pulled, but deform into localised ‘hockles’ that pop-out one after

the other as the end load is increased. Their analysis encompasses

planar configurations as well as three-dimensional ones. The pla-

nar solutions are given in terms of elliptic integrals and elliptic

functions, and arise from zero-moment boundary conditions. 

Just as the simplicity of an intrinsically straight rod establishes

a basis for practically all analytical studies of rod-like structures,

this paper examines the particular case of an intrinsically uni-

formly curved rod. The rod is clamped at one end and the other

end is pinned to a slider allowing it to move freely in the vertical

direction as the ends are displaced horizontally in a straight line

i.e., rigid loading along the horizontal axis only. That procedure

may be referred to as semi-rigid loading. We use a combination

of analysis and numerical methods to compute force-displacement

diagrams and equilibrium shapes of the rod. The results are com-

pared to experimental data obtained from a series of experiments

on nickel titanium strips with appropriate intrinsic curvature. Our

analysis encompasses the phenomenon of loop formation, which

arises in a range of engineering applications; in his classic book on

cable-buoy systems, Berteaux remarked that kinks are the ‘mor-

tal enemy of wire ropes’ and noted that they are initiated by loop

formation ( Berteaux, 1976 ). They also arise in the textile indus-

try ( Ramgulam, 2011 ) and in cable laying activities ( Coyne, 1990 ).

However, all the aforementioned studies are restricted to intrinsi-

cally straight rods. 

2. Formulation of the boundary value problem 

2.1. Geometry of the unstressed rod 

Consider a rod that has uniform intrinsic curvature 1 
R i.e., it is

an arc of a circle with radius R , see the left hand illustration in

Fig. 1 . The rod has length L = Rγi , where γ i is the centre angle of

the arc. The arc length is parameterised by the variable S , with end

points S = 0 and S = L, i.e., 0 ≤ S ≤ L , where S = 0 is the origin of a

Cartesian coordinate system ( X, Y ). 

In the case of the unstressed rod, the angle measured anticlock-

wise from the X axis is denoted � i ( S ), as shown in the right hand

figure in Fig. 1 , where the suffix ‘i’ denotes the initial unstressed

state. In this paper, the intrinsic curvature is positive. Inspection

of Fig. 1 indicates that the coordinates ( X i ( S ), Y i ( S )) are given as

X i (S) = R sin �i (S) , Y i (S) = R ( 1 − cos �i (S) ) and that 

dY i (S) 

dX i (S) 
= 

X i (S) 

R − Y i (S) 
= tan �i (S) (1)

and 

γi = arctan 

(
X i (L ) 

)
= arcsin 

(
X i (L ) 

)
. (2)
R − Y i (L ) R 

 

.2. Geometry of the bent rod and experimental set-up 

The configuration of the unstressed rod is its reference config-

ration. The end S = 0 is clamped and the end S = L is pinned in

 vertical slider, see the experimental set-up shown in Fig. 2 . We

onsider the configuration of the rod when the end S = L is dis-

laced in a straight horizontal line along the X axis by amount D .

or each rigid displacement D , the end S = L is free to move ver-

ically along the Y axis. Displacement by amount D can either be

n the positive X direction whereby the force in the rod is positive,

r in the negative X direction whereby the force is negative, see

ig. 3 . In the experiment the end force T is recorded at intervals

f D . All measurements of forces reported in this paper are in the

ange from −0 . 5 to 1 N. The transducer used to measure the forces

as a sensitivity of 0.0 0 01 N. This semi-rigid loading arrangement

s specified by the following boundary conditions 

 (0) = 0 , (3)

 (0) = 0 , (4)

(0) = 0 , (5)

 (L ) = R sin γi + D, (6)

d�(L ) 

dS 
= 

1 

R 

, (7)

here −L − R sin γi ≤ D ≤ L − R sin γi . Note that Eqs. (3) –(5) state

hat the rod is anchored at the origin by clamps. Eq. (6) spec-

fies the rigid loading with respect to the horizontal axis and

q. (7) states that the curvature at the end S = L is the intrin-

ic curvature 1 
R . For the purpose of experiments we use uniformly

ntrinsically curved nickel titanium rods of length L ranging be-

ween 300 − 400 mm and flexural rigidity EI = 0 . 0034 Nm 

2 , where

he constants E and I are the modulus of elasticity and the second

oment of area respectively. Each rod has a rectangular cross sec-

ion with a width of 3mm, a thickness of 0.5mm. We assume that

hose rods (strips) are homogeneous, incompressible, inextensible

nd that the following linear constitutive relation between bending

oment M ( S ) and curvature d�
dS 

applies: 

 = EI 

(
d�

dS 
− 1 

R 

)
. (8)

uring the aforementioned semi-rigid loading sequence the force

 acts in the line of action parallel with the X axis. Note that the

orce is conserved throughout the rod. i.e., 

dT 

dS 
= 0 . (9)

he application of this force sets up a bending moment M , such

hat 

dM 

dS 
= T 

dY 

dS 
. (10)

he geometry of deformation of the bent rod is given by the fol-

owing first order ordinary differential equations 

dX 

dS 
= cos �, (11)

dY = sin �. (12)

dS 
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Fig. 1. The rod in its natural unstressed state has uniform intrinsic curvature, i.e., it is an arc of a circle. 

Fig. 2. Photograph of the experimental rig used for the experiments, with coordi- 

nates superimposed. Note the rod is clamped at S = 0 in a chuck and fixed in a 

bespoke slider pin-joint at S = L which allows the end to slide freely up and down 

parallel with the Y axis for each rigid displacement D along the X axis. 

Fig. 3. Three configurations, in dimensional coordinates, of an elastic rod of length 

L with initial curvature γi = π/ 4 . The dashed curve denotes its unstressed state, 

which is the reference configuration. The two solid curves show its subsequent con- 

figurations when it is deflected as the end S = L is displaced in a straight line either 

towards or away from the end S = 0 by amount D , involving a corresponding force 

T . 
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Finally, using Eqs. (10) , (12) and (8) we obtain the following sec-

nd order ordinary differential equation (ODE), 

I 
d 2 �

dS 2 
− T sin � = 0 . (13)

q. (13) is the equation for the elastica. 
.3. The non-dimensional form of the problem 

For the purposes of analysis it is convenient to non-

imensionalise the variables, as follows; 

 = 

S 

L 
, x = 

X 

L 
, y = 

Y 

L 
, r = 

R 

L 
, d = 

D 

L 
, t = 

T L 2 

EI 
, m = 

ML 

EI 
, 

(14) 

here 0 ≤ s ≤ 1. Accordingly, in non-dimensional form, the system

f Eqs. (13) , (9), (11) and (12) are respectively as follows: 

d 2 ψ 

ds 2 
= t sin ψ, (15) 

dt 

ds 
= 0 , (16) 

dx 

ds 
= cos ψ, (17) 

dy 

ds 
= sin ψ. (18) 

.4. Boundary conditions 

In non-dimensional form, the boundary conditions Eqs. (3) –(7)

re as follows: 

 (0) = 0 , (19) 

 (0) = 0 , (20) 

(0) = 0 , (21) 

 (1) = 

sin γi 

γi 

+ d, (22) 

dψ(1) 

ds 
= γi , (23) 

here −1 − sin γi 
γi 

≤ d ≤ 1 − sin γi 
γi 

and 

i = 

1 

. (24) 

r 
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The second order ODE Eq. (15) and the three first order odes

Eqs. (16) –(18) , together with the boundary conditions Eqs. (19) –

(23) constitute a well posed system of equations. 

3. Solution of the boundary value problem 

3.1. First integral 

Integrating Eq. (15) we obtain: 

1 

2 

(
dψ 

ds 

)2 

+ t cos ψ = constant . (25)

To evaluate the constant in Eq. (25) , we apply the boundary condi-

tion given by Eq. (23) , and we find 

constant = 

1 

2 

γ 2 
i + t cos γ (26)

where the angle γ is defined as 

γ := ψ(1) . (27)

It follows from Eqs. (25) and (26) that (
dψ 

ds 

)2 

= γ 2 
i − 2 t ( cos ψ − cos γ ) . (28)

Note that, with respect to Eq. (28) , we only consider the + v e
square root because a rod which has positive initial curvature γ i 

(intrinsically curved upwards � ‘sagging’), cannot be bent into a

configuration with negative curvature (downwards � , ‘hogging’)

under the semi-rigid loading sequence specified for this problem;

i.e., under the action of a rigid displacement of the end s = 1 by

amount d applied horizontally from the reference configuration

and in accordance with the boundary conditions Eqs. (19) –(23) . 

Following rearrangement of Eq. (28) we obtain 

dψ 

ds 
= 

(
γ 2 

i − 4 tk 2 + 4 t sin 

2 ψ 

2 

) 1 
2 

, (29)

where we have used cos ψ ≡ 1 − 2 sin 

2 ψ 

2 and where 

k := sin 

γ

2 

. (30)

3.2. Expressions for s, x and y 

From Eq. (29) we obtain the following integral 

s = 

∫ ψ 

0 

dθ(
γ 2 

i − 4 tk 2 + 4 t sin 

2 θ

2 

) 1 
2 

. (31)

Rewriting Eq. (17) as d x/d s = cos ψ ≡ 2 cos 2 ψ 

2 − 1 , we obtain 

x = 2 

∫ ψ 

0 

cos 2 θ
2 

dθ(
γ 2 

i − 4 tk 2 + 4 t sin 

2 θ

2 

) 1 
2 

− s. (32)

Similarly, expressing Eq. (18) as d y/d s = sin ψ ≡ 2 sin 

ψ 

2 cos ψ 

2 , we

obtain 

y = 

1 

t 

( (
γ 2 

i − 4 tk 2 + 4 t sin 

2 ψ 

2 

) 1 
2 

−
(
γ 2 

i − 4 tk 2 
) 1 

2 

) 

. (33)
.3. The elliptic parameter 

When formulating Eqs. (31) –(33) in terms of elliptic integrals,

s listed in the Appendix, the elliptic parameter p 2 needs to be

ntroduced. This is defined as: 

p 2 := k 2 − γ 2 
i 

4 t 
. (34)

At an inflection point dψ 

ds 
= 0 must hold. This condition together

ith equation Eq. (29) implies that 

in 

2 ψ 

2 

= p 2 . (35)

learly Eq. (35) is only true for 0 ≤ p 2 ≤ 1. When p 2 < 0 or p 2 > 1

e have a contradiction in Eq. (35) and therefore conclude that
dψ 

ds 
� = 0 i.e., an inflection point does not exist. Thus, the existence

f inflection points can be determined from the value of the ellip-

ic parameter p 2 . For the case t < 0, both p 2 ≤ 1 and p 2 > 1 are al-

owed in Eq. (34) . Therefore, for t < 0 we can have both inflectional

 p 2 ≤ 1) and noninflectional ( p 2 > 1) solutions. These correspond to

nowdon’s solutions of the “First Type” and “Second Type”, respec-

ively. In the case of t > 0 we have p 2 < 0. Thus Eq. (35) breaks

own and therefore the condition it is derived from ( dψ 

ds 
= 0 ) can-

ot be true. In which case dψ 

ds 
� = 0 must hold and solutions are

oninflectional. These correspond to Snowdon’s solutions of the

Third Type” ( Snowdon, 1963 ). We remark here that Snowdon de-

cribes his Types of solutions in terms of compression (First and

econd Types) and tension (Third Type). However, whether or not

 rod is under compression or tension depends on the values of γ i 

nd d as well as t . 

We make some remarks on the elliptic parameter p 2 given by

q. (34) and elliptic integrals. 

• For a given γ i � = 0, p 2 depends explicitly on the force t . This is

not the case for the straight rod. 

• The force t does not factor out neatly from the elliptic integrals

as is the case for the straight rod. This means that the solu-

tions, whether in our raw integral form ( Eqs. (31) –(33) ) or el-

liptic integral form (see Appendix), must be solved numerically

to determine t and γ . 

• In the case t < 0, for a given γ i � = 0, we don’t know if p 2 ≤ 1 or

p 2 > 1, since we need to know t and γ to determine p 2 , and

these are not known yet. This makes it difficult to decide which

form of the solutions in terms of elliptic integrals (given in the

Appendix) to work with to determine t and γ . 

• Finally, for t < 0, since both p 2 ≤ 1 and p 2 > 1 are allowed, there

is no reason why not that for a given γ i � = 0 both p 2 ≤ 1 and

p 2 > 1 can occur. In fact, for γi = 

π
4 , Fig. 4 shows this to be the

case. 

These observations indicate that it is problematic to work with

he solutions in elliptic integral form to plot td diagrams and equi-

ibrium shapes. We therefore proceed to work with the solutions to

his problem given by Eqs. (31) –(33) . Nevertheless, for complete-

ess, the elliptic integral form for the solutions is given in the Ap-

endix. 

.4. Solution for t and γ

Eqs. (31) –(33) can be solved numerically once t and γ are

nown. Setting s = 1 , whereby ψ(1) = γ , Eqs. (31) –(33) become 

 = 

∫ γ

0 

dθ(
γ 2 

i − 4 tk 2 + 4 t sin 

2 θ

2 

) 1 
2 

, (36)



V.G.A. Goss et al. / International Journal of Solids and Structures 129 (2017) 135–145 139 

Fig. 4. Plots of p 2 versus the magnitude of the force t , for the cases t < 0 (top) and t > 0 (bottom) using Eq. (34) with γi = 

π
4 

. In the case of t < 0 it can be seen that p 2 is 

initially greater than unity corresponding to noninflectional configurations, then drops below unity for a certain domain of t where there are inflectional solutions and then 

rises above it rendering noninflectional solutions again, but is asymptotic to unity as | t | increases i.e., p 2 → 1 as | t | → ∞ . In the case of t > 0 the rod is always noninflectional 

because p 2 < 0, but is asymptotic to zero as t increases i.e., p 2 → 0 as t → ∞ . 

Fig. 5. Configurations of two rods with γi = 2 . 4 π (dashed curves top) and γi = 2 . 5 π (solid curves bottom), deformed with t < 0 from the natural state (bold curve). Since 

2 . 4 π < γ c 
1 no loops form and note that γ decreases as the end force is applied. However, since 2 . 5 π > γ c 

1 loop formation arises and note that γ increases as the end force 

is applied. 

x

y

T  

g

 

 (1) = 2 

∫ γ

0 

cos 2 θ
2 

dθ(
γ 2 

i − 4 tk 2 + sin 

2 θ

2 

) 1 
2 

− 1 , (37) 

 (1) = 

1 

t 

(
γi −

(
γ 2 

i − 4 tk 2 
) 1 

2 

)
. (38) 
o find t and γ we need to simultaneously solve Eqs. (36) , (37) to-

ether with Eq. (22) i.e., 

f (γi , γ , t) := 

∫ γ

0 

dθ(
γ 2 

i − 4 tk 2 + 4 t sin 

2 θ

2 

) 1 
2 

− 1 = 0 , (39)
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Fig. 6. Configurations of two rods with γi = 1 . 4 π (dashed curves top) and γi = 1 . 5 π (solid curves bottom), deformed with t > 0 from the natural state (bold curve). Since 

1 . 4 π < γ c 
1 no loops form and note that γ decreases as the end force is applied. However, since 1 . 5 π > γ c 

1 loop formation arises and note that γ increases as the end force 

is applied. 

 , 

 

 

 

 

 

 

w  

g  

i  

t

t  

N
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4

 

s  

E  

i  

γ  
and 

g(γi , γ , t) := 2 

∫ γ

0 

cos 2 θ
2 

dθ(
γ 2 

i − 4 tk 2 + 4 t sin 

2 θ

2 

) 1 
2 

−1 − sin γi 

γi 

− d = 0

(40)

where we input d and solve for ( γ , t ) pairs. 

We remark here that for the case γi = 0 , a straight (inextensi-

ble) rod, solving Eqs. (39) and (40) is straightforward because t fac-

torises neatly out of the integrals such that Eqs. (39) and (40) be-

come respectively: 

f (0 , γ , t) = 

1 √ −t 
K(p) − 1 = 0 , (41)

and 

g(0 , γ , t) = 

2 √ −t 
E(p) − 2 − d = 0 , (42)
here p = sin 

γ
2 and K ( p ) and E ( p ) are the complete elliptic inte-

rals of the first and second kind respectively. For the case p = 0

n Eq. (41) we obtain the magnitude of applied end force, denoted

 E , required to buckle a straight rod: 

 E := 

π2 

4 

. (43)

ote t E is also known as the Euler buckling load. 

. Loop formation 

.1. Conditions for loop formation 

Careful observations of experiments indicate that, under the

emi-rigid loading sequence described by the boundary conditions

qs. (19) –(23) , whereby the end s = 1 is displaced by amount d

n a continuous line, a loop forms when the angle at the end

tends to increase, see Figs. 5 and 6 . We note here that from
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Fig. 7. Plots of ˙ γ and γ̈ , i.e., Eq. (51) and Eq. (52) respectively. These plots can be used with Eqs. (46) and (47) to determine the critical angles γ c 
n . 

Fig. 8. A rod with γi = 12 1 
2 
π deformed into a configuration containing six small knots with t = −50 , 0 0 0 . 

Fig. 9. A rod with γi = 11 1 
2 
π deformed into a configuration containing six small knots with t = 35 , 0 0 0 . 

Fig. 10. Plots of td loading paths for a range of γ i . Note that the straight rod, which buckles at t/t E = −1 , has no solutions for d > 0 because the rod is inextensible. 
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Fig. 11. td loading path for a rod with γi = 180 ◦, together with experimental data. Note that no loops arise for either t < 0 or t > 0, see Table 1 . 

Fig. 12. td loading path for a rod with γi = 240 ◦, together with experimental data. Note that no loops arise for either t < 0 or t > 0, see Table 1 . 
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Eq. (36) changes in t correspond with changes in γ . Consequently,

we are justified in stating that γ = γ (t) . For infinitesimally small

t , applying a Taylor Series expansion and noting that γ (0) = γi , we

obtain 

γ (t) = γ (0) + 

dγ (t) 

dt 

∣∣∣
t=0 

t + 

1 

2 

d 2 γ (t) 

dt 2 

∣∣∣
t=0 

t 2 + O (t 3 ) . (44)

For convenience we can write 

˙ γ := 

dγ (t) 

dt 

∣∣∣
t=0 

and γ̈ := 

d 2 γ (t) 

dt 2 

∣∣∣
t=0 

. (45)

We consider Eq. (44) under rigid loading of d from the unstressed

state. For t < 0 Eq. (44) indicates that if ˙ γ > 0 with t decreasing,

γ ( t ) decreases and the rod is pulled straight. For t > 0 Eq. (44) in-

dicates that if ˙ γ < 0 with t increasing, γ ( t ) decreases and the rod

is also pulled straight. For t < 0 and ˙ γ < 0 with t decreasing, γ ( t )

increases and loops form. Similarly, for t > 0 and ˙ γ > 0 with t in-

creasing, γ ( t ) increases and loops form. 
For the case that ˙ γ = 0 , we need to examine the term γ̈ in

q. (44) . If γ̈ < 0 with t 2 increasing, then γ ( t ) decreases for all t ,

n which case the rod is pulled straight. When γ̈ > 0 with t 2 in-

reasing, then γ ( t ) increases, in which case loops form. 

It follows, the conditions for loop formation are: 

˙ < 0 (t < 0) , ˙ γ > 0 (t > 0) (46)

nd for all t we have 

¨ > 0 . (47)

.2. Critical angles for loop formation 

Physical reasoning leads us to expect that a loop will only form

f the rod is sufficiently ‘long’ (has large enough γ i ) such that as

 d | increases, the end of the rod will self-intersect another point

n the rod and form a loop i.e., loop formation can only arise once

i exceeds a critical value. More generally, n loops form at critical

alues denoted by γ c 
n . We now proceed to determine γ c 

n . 
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Fig. 13. td loading path for a rod with γi = 275 ◦, together with experimental data. Note for t > 0 that one loop forms but no loops for t < 0, see Table 1 . 
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Table 1 

Table of critical angles for loop formation. 

Number of loops n γ c 
n (t < 0) γ c 

n (t > 0) 

1 2 . 4 895 π = 44 8 . 12 ◦ 1 . 4815 π = 266 . 67 ◦

2 4 . 4943 π = 808 . 98 ◦ 3 . 4 927 π = 628 . 6 8 ◦

3 6 . 4961 π = 1169 . 30 ◦ 5 . 4954 π = 989 . 17 ◦

� � �
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t
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γ

γ
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γ

γ

 

F
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−  

s  

g  
If there is a function f ( θ , t ) that is a continuous and differen-

iable in both t and θ , then according to Leibniz’s Integral Rule 

d 

dt 

∫ γ (t) 

0 

f (θ, t) dθ = 

∫ γ (t) 

0 

∂ f (θ, t) 

∂t 
dθ + f (γ (t ) , t ) 

dγ (t ) 

dt 
. 

(48) 

pplying Eqs. (48) –(36) (and using cos θ ≡ 1 − 2 sin 

2 θ
2 ) we obtain

1 

γi 

dγ

dt 
= −

∫ γ

0 

(
cos θ − cos γ + t sin γ dγ

dt 

)
dθ[

γ 2 
i 

− 2 t ( cos θ − cos γ ) 
] 3 

2 

. (49) 

dditionally, applying Eqs. (4 8) and (4 9) , we obtain: 

d 2 γ

dt 2 
= −γi 

∫ γ

0 

dθ

⎡ 

⎣ 

(
2 sin γ dγ

dt 
+ t cos γ

(
dγ
dt 

)2 + t sin γ d 2 γ
dt 2 

)
(
γ 2 

i 
− 2 t ( cos θ−cos γ ) 

) 3 
2 

+ 

3 

(
cos θ−cos γ +t sin γ dγ

dt 

)2 

(
γ 2 

i 
−2 t ( cos θ−cos γ ) 

) 5 
2 

] 

− t 

γ 2 
i 

sin γ

(
dγ

dt 

)2 

. (50) 

etting t = 0 in Eq. (49) and integrating, we obtain 

˙ = − 1 

γi 

(
1 

γi 

sin γi − cos γi 

)
. (51) 

imilarly, setting t = 0 in Eq. (50) and integrating, we obtain the

ollowing 

¨ = 

1 

γ 2 
i 

(
9 

4 γ 2 
i 

− 1 

)
sin 2 γi −

5 

2 γ 3 
i 

cos 2 γi −
2 

γ 3 
i 

. (52) 

lots of Eqs. (51) and (52) are shown in Fig. 7 . 

For t < 0, applying the condition in Eqs. (46) –(51) , we find from

ig. 7 that γi > 2 . 4590 π = 442 . 63 ◦. Then applying the condition

qs. (47) –(52) , we find from Fig. 7 that γi > 2 . 4895 π = 448 . 12 ◦.

o satisfy both conditions, take γ c 
1 

= 2 . 4895 π = 448 . 12 ◦. We re-

ark here that this result is in accordance with what one might

xpect from physical reasoning i.e, under the action of a negative

orce one would expect loops to form somewhere in the region

 π < γ c 
1 

< 5 π/ 2 i.e., when the rod is sufficiently ‘long’, as shown

n Fig. 5 . 
For t > 0, applying the condition in Eqs. (46) –(51) , we find from

ig. 7 that γi > 1 . 4303 π = 257 . 45 ◦.Then applying the condition

qs. (47) –(52) , we find from Fig. 7 that γi > 1 . 4815 π = 266 . 67 ◦. In

his case, to satisfy both conditions, take γ c 
1 

= 1 . 4815 π = 266 . 67 ◦. 

.3. Multi-loop formation 

Analysis similar to that of Section 4.2 gives the critical angles

or higher numbers of loops, shown in Table 1 . 

It may be observed that the difference between consecutive

ritical angles for loop formation is very close to 2 π . For t < 0: 

c 
2 − γ c 

1 = 360 . 86 

◦

c 
3 − γ c 

2 = 360 . 32 

◦

. . . 

nd for t > 0: 

c 
2 − γ c 

1 = 362 . 01 

◦

c 
3 − γ c 

2 = 360 . 49 

◦

. . . 

For large t the loops take the form of localised knots, see

igs. 8 and 9 . 

. Loading paths: theory and experiments 

A set of loading paths for a range of values of d , (where

1 − sin γi 
γi 

≤ d ≤ 1 − sin γi 
γi 

) , is plotted in Fig. 10 where it can be

een that the end force t has been normalised by dividing by t E ,

iven by Eq. (43) . Note that large forces arise when d approaches
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Fig. 14. td loading path for a rod with γi = 490 ◦, together with experimental data. Note that one loop forms for both t < 0 and t > 0, see Table 1 . 
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its lower and upper limits. We additionally provide plots of data

obtained from experiments for comparison, see Figs. 11–14 . Those

plots show the loading paths and accompanying photographs of

the configurations of nitinol strips. 

6. Conclusions 

As pointed out in this paper, the solutions to this boundary

value problem, as expressed in terms of elliptic integrals, which

are set out in the Appendix, are unwieldy. Nevertheless using

Eqs. (31) –(33) we have managed to carry out useful analysis of

loop formation. It remains to be seen what can be done with re-

spect to other boundary conditions, different loading sequences

and cases where the intrinsic curvature is a function of arc length

s . Indeed, this paper throws up new questions regarding the load-

ing sequences required to attain inflectional and noninflectional

equilibrium configurations; for it is evident that small changes in

the boundary conditions and loading sequences can have signif-

icant effects on the configuration of the rod, encompassing both

inflectional and noninflectional forms. 

The experimental data presented here correlates well with that

predicted by the theory. That is not a trivial point, for although

there is a substantial body of literature and research on rod the-

ory that has contributed to our understanding of the mechanics,

perhaps rather too much of that remains of restricted interest due

to its failure to demonstrate (rather than simply mention) connec-

tions with real world problems. Carefully conducted experiments

serve to bridge that gap. We add here that our experiments in-

volve nitinol strips i.e., long slender rods of rectangular cross sec-

tion with a thickness considerably smaller than the width. These

do not deform out of the plane under the experimental proce-

dure followed here. However, for experiments on rods with cir-

cular cross sections, out of plane configurations can be observed.

The analysis of those requires a three-dimensional spatial elastica

model, as opposed to the two-dimensional planar elastica model

used here. 
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ppendix A. Solutions in terms of Elliptic Integrals 

This appendix sets out the solutions for this boundary value

roblem expressed as Elliptic Integrals. There are three cases for

 < 0 and one case of t > 0. 

lliptic Integral Solutions for t < 0 

ase 1: 0 < p 

2 < 1 

In this case the elliptic argument φ is given as: 

= arcsin 

(
sin 

ψ 

2 

p 

)
(53)

nd 

 = 

1 √ −t 
F ( φ, p ) , (54)

 = 

1 √ −t 
( 2 E(φ, p) − F (φ, p) ) , (55)

 = 

2 p √ −t 
( 1 − cos φ) . (56)

At s = 1 , ψ(1) = γ and we find the following 

γ = arcsin 

(
sin 

γ
2 

p 

)
, (57)

 = 

1 √ −t 
F 
(
φγ , p 

)
, (58)

 (1) = 

1 √ −t 

(
2 E(φγ , p) − F (φγ , p) 

)
, (59)

 (1) = 

2 p √ −t 

(
1 − cos φγ

)
. (60)

ase 2: p 

2 > 1 

In this case the elliptic argument φ is given as: 

= 

ψ 

(61)

2 

http://dx.doi.org/10.13039/501100001261
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S  

S  
nd 

 = 

1 √ −t p 
F 

(
φ, 

1 

p 

)
, (62) 

 = 

1 √ −t 

(
2 pE 

(
φ, 

1 

p 

)
− 2 p 2 − 1 

p 
F 

(
φ, 

1 

p 

))
, (63) 

 = 

2 p √ −t 

(
1 −

(
1 − 1 

p 2 
sin 

2 φ
) 1 

2 

)
. (64) 

At s = 1 , ψ(1) = γ and we find the following 

γ = 

γ

2 

, (65) 

 = 

1 √ −t p 
F 

(
φγ , 

1 

p 

)
, (66) 

 (1) = 

1 √ −t 

(
2 pE 

(
φγ , 

1 

p 

)
− 2 p 2 − 1 

p 
F 

(
φγ , 

1 

p 

))
, (67) 

 (1) = 

2 p √ −t 

(
1 −

(
1 − 1 

p 2 
sin 

2 φγ

) 1 
2 

)
. (68) 

ase 3: p 2 = 1 

In this case the elliptic argument φ is given as: 

= 

ψ 

2 

(69) 

nd 

 = 

1 √ −t 
tanh 

−1 
sin φ, (70) 

 = 

2 √ −t 

(
sin φ − 1 

2 

tanh 

−1 
sin φ

)
, (71) 

 = 

2 √ −t 
( 1 − sin φ) . (72) 

At s = 1 , ψ(1) = γ and we find the following 

γ = 

γ

2 

, (73) 

 = 

1 √ −t 
tanh 

−1 
sin φγ , (74) 

 (1) = 

2 √ −t 

(
sin φγ − 1 

2 

tanh 

−1 
sin φγ

)
, (75) 

 (1) = 

2 √ −t 

(
1 − cos φγ

)
. (76) 

lliptic Integral Solutions for t > 0 

In this case the elliptic parameter is given as: 

p 2 = k 2 − γ 2 
i 

4 t 
< 0 (77)
nd for all p 2 , the elliptic argument is given as 

= 

ψ 

2 

, (78) 

uch that 

 = 

1 √ 

t 
(
−p 2 

)F 

(
φ, 

1 

p 

)
, (79) 

 = 

2 

√ (
−p 2 

)
√ 

t 

[
2 p 2 − 1 

2 p 2 
F 

(
φ, 

1 

p 

)
− E 

(
φ, 

1 

p 

)]
, (80) 

 = 

2 

√ (
−p 2 

)
√ 

t 

[ (
1 − sin 

2 φ

p 2 

) 1 
2 

− 1 

] 

. (81) 

t s = 1 , ψ(1) = γ and we find the following 

γ = 

γ

2 

, (82) 

 = 

1 √ 

t 
(
−p 2 

)F 

(
φγ , 

1 

p 

)
, (83) 

 (1) = 

2 

√ (
−p 2 

)
√ 

t 

[
2 p 2 − 1 

2 p 2 
F 

(
φγ , 

1 

p 

)
− E 

(
φγ , 

1 

p 

)]
, (84) 

 (1) = 

2 

√ (
−p 2 

)
√ 

t 

[ (
1 − sin 

2 φγ

p 2 

) 1 
2 

− 1 

] 

. (85) 

We note that solutions are inflectional for t < 0 with p 2 ≤ 1 and

oninflectional for p 2 > 1. For t > 0 all solutions are noninflectional.
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