
Combining Canonical Variate Analysis, Probability Approach and Support Vector 
Regression for Failure Time Prediction 

 

Xiaochuan Li, Fang Duan 
School of Engineering 

London South Bank University 
London, UK 

David Mba 
Faculty of Technology 

 De Montfort University 
Leicester, UK 

Ian Bennett 
Rotating Equipment Department 

Royal Dutch Shell 
Hague, Netherlands 

 
 
 
 
 
 
 

 
Abstract—Reciprocating compressors are widely used in oil and 
gas industry for gas transport, lift and injection. Critical 
reciprocating compressors that operate under high-speed 
conditions and compress hazardous gases are target equipment 
on maintenance improvement lists due to downtime risks and 
safety hazards. Estimating performance deterioration and 
failure time for reciprocating compressors could potentially 
reduce downtime and maintenance costs, and improve safety 
and availability. This study presents an application of Canonical 
Variate Analysis (CVA), Cox Proportional Hazard (CPHM) and 
Support Vector Regression (SVR) models to estimate failure 
degradation and remaining useful life based on sensory data 
acquired from an operational industrial reciprocating 
compressor. CVA was used to extract a one-dimensional health 
indicator from the multivariate data sets, thereby reducing the 
dimensionality of the original data matrix. The failure rate was 
obtained by using the CPHM based on historical failure times. 
Furthermore, a SVR model was used as a prognostic tool 
following training with failure rate vectors obtained from the 
CPHM and the one-dimensional performance measures 
obtained from the CVA model. The trained SVR model was then 
utilized to estimate the failure degradation rate and remaining 
useful life. The results indicate that the proposed method can be 
effectively used in real industrial processes to predict 
performance degradation and failure time. 
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I.  INTRODUCTION 
Modern industrial facilities such as natural-gas processing 

plants are becoming increasingly complex and large-scale due 
to the use of machines of different nature. The complexity of 
large-scale industrial facilities makes it difficult to build first-
principle dynamic models for health monitoring and 
prognostics [1]. Thus, existing condition monitoring 
approaches for industrial processes are typically derived from 
routinely collected system operating data. Due to the rapid 
growth and advancement in data acquisition technology, long-
term continuous measurements can be taken with the different 

sensors mounted on the machinery systems. The monitored 
data are easily stored and explored to extract important 
process condition information.  

A number of methods have been developed to combine the 
multi-dimensional process variables for health monitoring and 
prognostics, such as state-space and filtering based models 
[2], time series analysis methods [3] and neural networks [4]. 
Some of the major challenges associated with the 
implementation of the above mentioned multivariate 
techniques are high-dimensional data, non-Gaussian 
distributions and dynamically varying operational conditions 
[5]. Recent developments of dimensionality reduction 
techniques have shown improvement for high-dimensional 
data analysis. Two examples of such techniques are principal 
component analysis (PCA) [6] and partial least-squares 
analysis (PLSA) [7]. Both PCA and PLSA assume that the 
monitored variables are time-independent. This assumption 
might not hold true for real industrial processes (especially 
chemical and petrochemical processes) because sensory 
signals affected by noises and disturbances often show strong 
correlation between the past and future sampling points [8]. 
Therefore, dynamic extensions of PCA and PLSA, so called 
dynamic PCA and dynamic PLSA, were developed later to 
solve the time-independency problem, making them more 
suitable for dynamic processes monitoring [9]. Aside from 
approaches derived from PCA and PLSA, the canonical 
variable analysis (CVA) is also a multivariate analysis tool. 
CVA is a state-space-based method which takes both time 
correlations and relationship between different variables into 
account, hence is particularly suitable for dynamic process 
modelling [8]. The performance of CVA has been tested by 
several researchers using simulated data [10] [11] and data 
obtained from small-scale experimental test rigs [12]. 
However, the effectiveness of CVA in real complex industrial 
processes has not been fully studied. In this investigation, 
CVA is adopted to transform the high-dimensional data from 
the sensors distributed over the machine to a one-dimensional 
matrix called the health indicator that can be used to indicate 
the health condition of a system.  
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In medical research field, the Cox Proportional Hazard 
Model (CPHM) has been widely used for analysing death rate 
or the probability of recurrence of a disease with censored 
survival data [13]. But its effectiveness in mechanical 
prognostic area has not been fully studied and only a limited 
number of publications have addressed its applicability for 
failure prediction of rotating machines [14] [15]. In this study, 
the CPHM model is utilized to address the failure probability 
of reciprocating compressor samples. To be specific, the 
failure rate as a degradation measure is calculated using the 
CPHM. Censored run-to-failure data is used to estimate the 
baseline survival function and the temperature measurements 
obtained at the fault location is assumed as a time-dependent 
covariate to investigate the failure time distribution.  

Both the failure rate vectors calculated by the CPHM and 
the one-dimensional health indicators obtained from the CVA 
model are regarded as target vectors indicating the health 
condition of the compressor under study. Furthermore, a SVR 
model is employed as a degradation assessment method and 
then trained by the health indicators and failure rate vectors. 
After training, the SVR model is utilized to predict the failure 
degradation and failure time of individual failure sample given 
unseen values of input. 

II. METHODOLOGY 
The flowchart of the combined prognostic method is 

shown in Fig. 1. The following sub-sections give detailed 
theoretical explanations of CVA, CPHM and SVR model. 
 

 
Figure 1.  Schematic diagram of the proposed prognostic method 

A. Canonical Variate Analysis 
CVA is a dimension reduction technique to monitor the 

process by converting the multidimensional observed data 
into a one-dimensional health indicator. The objective of CVA 
is to maximize the correlation between two sets of variables 
[1]. For this purpose, the measurement vector 𝑦𝑦𝑘𝑘 ∈ ℜ𝑚𝑚  (m 

indicates that measurement at each time instance containing m 
variables) is expanded at each time instance k by considering 
p number of past measurements and f number of future 
measurements to give the past and future sample vectors 
𝑦𝑦𝑝𝑝,𝑘𝑘 ∈ ℜ𝑚𝑚𝑝𝑝 and 𝑦𝑦𝑓𝑓,𝑘𝑘 ∈ ℜ𝑚𝑚𝑓𝑓.  
             𝑦𝑦𝑝𝑝,𝑘𝑘 = [𝑦𝑦𝑘𝑘−1𝑇𝑇  𝑦𝑦𝑘𝑘−2𝑇𝑇 … 𝑦𝑦𝑘𝑘−𝑝𝑝𝑇𝑇]𝑇𝑇 ∈ ℜ𝑚𝑚𝑝𝑝                (1) 
             𝑦𝑦𝑓𝑓,𝑘𝑘 = [𝑦𝑦𝑘𝑘𝑇𝑇  𝑦𝑦𝑘𝑘+1𝑇𝑇 … 𝑦𝑦𝑘𝑘+𝑓𝑓−1𝑇𝑇]𝑇𝑇 ∈ ℜ𝑚𝑚𝑓𝑓                (2) 

To avoid the domination of variables with larger absolute 
values, it is important to normalize the past vector 𝑦𝑦𝑝𝑝,𝑘𝑘 ∈ ℜ𝑚𝑚𝑝𝑝 
future vector 𝑦𝑦𝑓𝑓,𝑘𝑘 ∈ ℜ𝑚𝑚𝑓𝑓 to zero mean vector of 𝑦𝑦𝑝𝑝,𝑘𝑘�  and 𝑦𝑦𝑓𝑓,𝑘𝑘� , 
respectively. Then the vectors calculated at different time 
points are arranged in columns to produce past and future 
matrices 𝑌𝑌𝑝𝑝 and 𝑌𝑌𝑓𝑓: 
             𝑌𝑌𝑝𝑝 = [𝑦𝑦𝑝𝑝,𝑝𝑝+1� ,𝑦𝑦𝑝𝑝,𝑝𝑝+2� , … ,𝑦𝑦𝑝𝑝,𝑝𝑝+𝑀𝑀� ]  ∈ ℜ𝑚𝑚𝑝𝑝×𝑀𝑀           (3) 
             𝑌𝑌𝑓𝑓 = [𝑦𝑦𝑓𝑓,𝑝𝑝+1� ,𝑦𝑦𝑓𝑓,𝑝𝑝+2� , … ,𝑦𝑦𝑓𝑓,𝑝𝑝+𝑀𝑀� ]  ∈ ℜ𝑚𝑚𝑓𝑓×𝑀𝑀            (4) 
where 𝑀𝑀 = 𝑛𝑛 − 𝑓𝑓 − 𝑝𝑝 + 1, and n represents the total number 
of samples for 𝑦𝑦𝑘𝑘. 𝑌𝑌𝑝𝑝 and 𝑌𝑌𝑓𝑓 are then processed by using the 
Cholesky decomposition to form a Hankel matrix [16]. The 
purpose of using Cholesky is to form a new correlation matrix 
with reduced dimensionality, thereby facilitating subsequent 
calculations. To find the linear combination that maximizes 
the correlation between the two sets of variables, the truncated 
Hankel matrix 𝐻𝐻 is then decomposed by using Singular Value 
Decomposition (SVD): 
                     𝐻𝐻 = ∑ ∑ ∑ = −1/2

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓
−1/2
𝑓𝑓𝑓𝑓 ⋃∑𝑉𝑉𝑇𝑇                     (5) 

where Σ𝑝𝑝𝑝𝑝 ,  Σ𝑓𝑓𝑓𝑓  and  Σ𝑝𝑝𝑓𝑓  represent the sample-based 
covariance and cross-covariance matrix of matrices 𝑌𝑌𝑝𝑝 and 𝑌𝑌𝑓𝑓, 
respectively. The 𝑚𝑚𝑝𝑝 -dimensional past vector 𝑌𝑌𝑝𝑝  can be 
converted into the r-dimensional canonical variates 𝑧𝑧 by: 
                                  𝑧𝑧 = 𝐽𝐽 ∙ 𝑌𝑌𝑝𝑝                                            (6) 
where 𝐽𝐽  represents the transformation matrix, and 𝐽𝐽 =
𝑉𝑉𝑟𝑟𝑇𝑇∑𝑝𝑝𝑝𝑝

−1/2. The truncated matrix 𝑉𝑉𝑟𝑟 ∈ ℜ𝑟𝑟×𝑀𝑀 can be obtained by 
selecting the first r columns of 𝑉𝑉 having the highest pairwise 
correlation with those of ⋃  [17]. The canonical variates 
matrix 𝑧𝑧  consists of valuable information that is needed to 
construct health indicators. The health indicator adopted in 
this study is the Hotelling statistics 𝑇𝑇2  (introduced by 
Hotelling in 1936 [18]), which is the locus on the ellipse-like 
confidence region in the canonical variate space [19]. The 
Hotelling health indicator can be calculated as: 
                                 𝑇𝑇𝑘𝑘2 = ∑ 𝑧𝑧𝑘𝑘,𝑖𝑖

2𝑟𝑟
𝑖𝑖=1                                      (7) 

Process data acquired during normal operating conditions 
are used to identify optimal threshold values of the health 
indicator for fault detection. Since the Gaussian distribution 
doesn’t hold true for non-linear processes, the actual 
probability density function of the health indicator is 
calculated by using a method named Kernel Density 
Estimation (KDE) [8]. Then machine faults will be considered 
every time when the health indicator exceeds the threshold. In 
this study, the initial and final failure point of individual data 
set are determined by the experience of site engineers. 

B. Cox Proportional Hazard Model 
Machinery fault degradation can be predicted by analyzing 

either condition monitoring measurements or historical 
lifetime data [20]. The CPHM, proposed by Cox [21], 



attempts to use both types of information for prognostic 
analysis of machinery fault degradation and failure times. A 
lifetime data set consists of failure times T of the machine 
under study, recorded either at failure time or before the final 
failure. In some cases, maintenance actions may be taken prior 
to failure to prevent a device or component from failing. Then 
these cases are considered as censored since the actual failure 
time is unknown. In these cases, the recorded lifetime data is 
called censored data. The condition monitoring measurements 
used in CPHM can be any sensory signal that has a significant 
effect on the machine health condition. 

CPHM assumes that the hazard rate or failure rate of a 
machine depends on two factors: the baseline hazard rate and 
the effects of covariates (condition measurements). Hence, the 
hazard rate of a machine at service time t can be written as: 
                       ℎ(𝑡𝑡) = ℎ0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑝𝑝�∑ 𝛽𝛽𝑘𝑘𝑍𝑍𝑘𝑘

𝑝𝑝
𝑘𝑘=1 �                     (8) 

where ℎ0(𝑡𝑡) is called the baseline hazard function (It reflects 
the failure rate due to age meaning that it is determined by the 
lifetime data); 𝑒𝑒𝑒𝑒𝑝𝑝�∑ 𝛽𝛽𝑘𝑘𝑍𝑍𝑘𝑘

𝑝𝑝
𝑘𝑘=1 � is the covariate function that 

describes how the covariates 𝑍𝑍𝑘𝑘 influence health degradation. 
The covariates are weighted through the regression 
parameters 𝛽𝛽𝑘𝑘. The estimation of the regression parameters is 
achieved by using a method called partial likelihood approach, 
which was proposed by Cox in 1972 [21]. According to Cox’s 
theory, the partial likelihood of 𝛽𝛽𝑘𝑘 can be written as: 

                 𝐿𝐿(𝛽𝛽) = ∏ 𝑒𝑒𝑒𝑒𝑝𝑝 (∑ 𝛽𝛽𝑘𝑘
𝑝𝑝
𝑘𝑘=1 𝑍𝑍𝑖𝑖𝑘𝑘(𝑡𝑡𝑖𝑖))

∑ 𝑒𝑒𝑒𝑒𝑝𝑝 (∑ 𝛽𝛽𝑘𝑘
𝑝𝑝
𝑘𝑘=1 𝑍𝑍𝑗𝑗𝑘𝑘(𝑡𝑡𝑗𝑗))𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖)

𝑛𝑛
𝑖𝑖=1                (9) 

Then the optimal regression parameters can be estimated by 
maximising the log likelihood of 𝛽𝛽𝑘𝑘: 

LL(β)

= ��𝛽𝛽𝑘𝑘𝑍𝑍𝑖𝑖𝑘𝑘(𝑡𝑡𝑖𝑖)
𝑝𝑝

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

−�𝑙𝑙𝑛𝑛 �� 𝑒𝑒𝑒𝑒𝑝𝑝 �� 𝛽𝛽𝑘𝑘
𝑝𝑝

𝑘𝑘=1
𝑍𝑍𝑗𝑗𝑘𝑘(𝑡𝑡𝑗𝑗)�

𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖)
�

𝑛𝑛

𝑖𝑖=1

 

                                                                                            (10) 
After model parameters are estimated, the hazard function can 
be calculated as: 
             ℎ�0�𝑡𝑡𝑖𝑖; �̂�𝛽� = 1

∑ 𝑒𝑒𝑒𝑒𝑝𝑝�∑ 𝛽𝛽�ℎ𝑍𝑍𝑗𝑗ℎ
𝑝𝑝
ℎ=1 (𝑡𝑡𝑗𝑗)�𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖)

                   (11)  

Then the cumulative hazard function and machine degradation 
rate can be approximated by formula (12) and (13), 
respectively: 
                            𝐻𝐻�(𝑡𝑡) = ∑ ℎ�(𝑡𝑡𝑖𝑖; 𝛽𝛽�)𝑡𝑡𝑖𝑖≤𝑡𝑡                            (12) 
                             𝑆𝑆�(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝[−H�(𝑡𝑡)]                             (13) 
C. Support Vector Regression  

SVR is a supervised nonlinear regression approach. 
Application of the SVR model in the field of rotating 
machinery health monitoring and prognostics has been 
reported in [22] [23]. The target of SVR is to learn the 
dependency of an input vector  {𝑒𝑒𝑖𝑖}𝑖𝑖=1𝑁𝑁  on a target vector 
{𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁  to make accurate forecast of y based on unseen values 
of x. When performing nonlinear regression, a kernel function 
is often chosen to map nonlinear inputs into a higher 
dimensional feature space, after which a minimum linear 

margin fit can be found in that space to perform linear 
regression. The form of the model is given as: 
               𝑦𝑦 = 𝑓𝑓(𝑒𝑒,𝑤𝑤) = ∑ 𝑤𝑤𝑖𝑖𝐾𝐾(𝑒𝑒, 𝑒𝑒𝑖𝑖) + 𝑏𝑏𝑁𝑁

𝑖𝑖=1                  (14) 
where 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑁𝑁)𝑇𝑇  is a weight vector, which 
elucidates the links between the high dimensional space and 
the target output; and 𝐾𝐾(𝑒𝑒, 𝑒𝑒𝑖𝑖) denotes the kernel function, 
and b denotes the bias.  

III. APPLICATION ON RECIPROCATING COMPRESSOR 
CONDITION MONITORING DATA 

A. Data Acquisition 
Reciprocating compressors are widely used in oil and gas 

industry for gas transport, lift and injection. They are typically 
operating under high rotating speed, high pressure and high 
load conditions, and are therefore subject to performance 
degradations. These machines are highly automated with 
various sensors being mounted all over the system, and signals 
from different sensors can be stored and accessed through an 
e-maintenance system. The data used in this study were 
gathered from a two-stage, four-cylinder, double-acting 
reciprocating compressor used in a refinery in Europe. The 
compressor experienced twelve valve failures from July 2013 
to December 2014, with all failures took place at cylinder 4. 
Machine inspections revealed that the failure mode under 
study was valve leakage caused by broken valve plate, as 
shown in Fig. 2. The failed valves were either the head end or 
the crank end discharge valve. A total of 12 failure samples 
were obtained from the site engineer and each sample was a 
multivariate time series consisting of 40 variables. The 
sampling rate was 1Hz and the failure degradation duration 
for each sample was different. 

 

       
Figure 2.  Compressor valve plate damage caused by corrosion (left) and 
fatigue (right) [24] 

B. Determination of Incipient and Final Failure Time 
Since the failure mode under study is head end/crank end 

valve damage took place in cylinder 4, the method employed 
to determine the incipient and final failure time, as suggested 
by the site engineers, is to look at the difference between crank 
end (CE) discharge temperature and head end (HE) discharge 
temperature in cylinder 4. To be specific, during healthy 
operating conditions and after failure propagation, as shown 
in Fig. 3, the temperature difference between CE and HE is 
relatively constant. However, the temperature difference 
grows continuously when the valve is failing. 

 



 
Figure 3.  Difference between CE and HE discharge temperature in cylinder 
4 – failure sample No. 2 

TABLE I.  DEGRADATION DURATION FOR ALL FAILURE SAMPLES 

Sample No. Degradation Length (s) 
6 171 
11 191 
3 231 
1 371 
13 381 
10 391 
5 401 
8 441 
2 451 
4 501 
12 601 
9 641 

As such, the incipient failure is identified when the value 
of temperature difference starts to increase, as shown in Fig.3, 
the incipient failure happens at 171190s. Meanwhile, the final 
failure time is identified when the temperature difference goes 
back to stable. In Fig.3 for example, the final failure happens 
at 171640s. Therefore, the degradation duration for failure 
case 2 is 451s. The degradation duration for all failure samples 
can be found in Table 1. 

C. CVA Model Building 
The CVA model was firstly built and trained in order to 

transform the multivariate condition monitoring data into a 
one-dimensional health indicator. This process can be 
considered as a data fusion and dimensionality reduction 
procedure as it incorporates the information from all the 
measured 40 variables to generate a health indicator that 
reflects the health condition of the system. In each sample data 
set, data from health status were used to train the CVA 
algorithm to obtain the normal operating limits of 𝑇𝑇𝑘𝑘2, and data 
from the incipient failure and onwards were used to construct 
a health indicator. Besides, to build a CVA model as described 
in (1) to (6), three tuning parameters need to be determined, 
namely, the number of time lags 𝑝𝑝 and 𝑓𝑓, and the number of 
dimensions retained r. According to [8], p and f are determined 
by computing the autocorrelation function of the summed 
squares of all measurements. The autocorrelation function 
indicates how long the signal is correlated with itself, and thus 
can be used to determine the maximum number of significant 
lags. By looking at the autocorrelation function of the training 
data set, the number of p and f was set to 25. For example, Fig. 
4 shows the autocorrelation function of sample No. 1, and it is 
obvious that after 25 lags, the self-correlation of training data 
become negligible. The optimal number of dimensions 

retained r is determined by considering the dominant singular 
values in the matrix D [25]. After several tests, r = 3 was 
finally adopted to represent the order of the system, leading to 
the minimum false alarm rate. Then the values of the health 
indicators were calculated according to (7).  

 

 
Figure 4.  Autocorrelation of the summed squares of all variables in training 
data 

 
Figure 5.  Untruncated health indicator of failure sample No. 5 

 
Figure 6.  Truncated health indicators of all faialure cases 

Fig. 5 shows the constructed health indicator for failure 
sample no. 5. It can be observed that the value of 𝑇𝑇𝑘𝑘2 exceeds 
the fault threshold at around 22000s, meaning that the failure 
was detected by the CVA model at 22000s. However, the 
incipient and final failure time in this study were determined 
by expert knowledge as explained in section B, and using 
CVA for failure detection is out of the scope of this study. 
Therefore, health indicator of each failure sample was then 
truncated to its corresponding degradation interval (i.e. 
truncated from the incipient failure time to final failure time). 
Only the truncated health indicators will be adopted for 
subsequent analysis. Fig.6 depicts the truncated health 
indicators for all 12 failure cases. They will be used hereafter 
as target vectors for SVR training. 



D. CPHM Model Building 
In order to build a CPHM model (as in (8)), lifetime data 

of 12 samples were used to estimate the baseline hazard 
function. In addition, the difference between CE discharge 
temperature and HE discharge temperature in cylinder 4 was 
assumed as a covariate and the regression parameter 𝛽𝛽𝑘𝑘 was 
calculated as per (9) and (10) for each failure case. For 
example, Fig.7 shows the calculated degradation rate of 
failure case 9. 

 
Figure 7.  Hazard rate of failure sample No. 9 

E. SVR Model Building and Testing 
Furthermore, health indicators and failure rate vectors 

obtained previously will be used to train a SVR model. Then 
the trained SVR will be employed as a prognostic method to 
predict the failure degradation of individual failure case. To 
build a SVR model, we utilized a Radial Basis Function (RBF) 
kernel function to map input vectors into the high-dimensional 
feature space. The RBF kernel parameter 𝛾𝛾  and the soft 
margin parameter 𝐶𝐶 were determined using grid search [26] 
together with 5-fold cross validation. For grid search, 
parameter 𝛾𝛾 and 𝐶𝐶 take the following values:  

𝛾𝛾 = 2{−10,−9,−8,…,10} 
𝐶𝐶 = 2{−10,−9,−8,…,10} 

The health indicator and degradation curve of sample no. 
10 was firstly utilized to train a SVR model and the optimal 
parameters resulting from grid search were 1024 and 64 for  𝛾𝛾 
and 𝐶𝐶, respectively. The optimal parameters were determined 
by searching for the minimum Root-Mean-Squared Error 
(RMSE) between the actual degradation rate and the estimated 
degradation for each combination of 𝛾𝛾 and 𝐶𝐶 candidates (as 
shown in Fig.8). Moreover, the health indicator of failure 
sample no. 13 was used as a testing vector to test the 
performance of the trained model. The predicted survival 
probability of sample no. 13 is depicted in Fig.9. It can be 
observed that the predicted failure time is 381s. 
 

       
Figure 8.  RMSE for various values of 𝛾𝛾 and 𝐶𝐶 model parameters  

 
Figure 9.  The result of SVR prediction for sample no. 13 

Besides, in order to fully capture the dynamics of the 
compressor, a SVR model was then trained by 8 failure 
samples (f1, f13, f10, f5, f8, f4, and f12). The input vectors in 
this training process were obtained using the CVA method. In 
addition, the target vectors were acquired by an estimation of 
the degradation rate by means of CPHM. The optimal RBF 
parameters 𝛾𝛾 and 𝐶𝐶 resulting from grid search were 128 and 
256 respectively. Fig. 10 depicts the RMSE between the actual 
and the estimated target vectors for each combination of 𝛾𝛾 and 
𝐶𝐶 candidates. Moreover, the trained SVR model was utilized 
to predict the hazard rate of sample No. 2, and the predicted 
result is shown in Fig. 11. As shown in the picture, the 
predicted failure time is 449s while the actual failure happens 
at 452s. 
 

            
Figure 10.  RMSE for various values of 𝛾𝛾 and 𝐶𝐶 model parameters (using f1, 
f13, f10, f5, f8, f4, and f12 for training) 

 

Figure 11.  Predicted failure rate of sample No. 2 

The performance of the prognostic model can be assessed 
using the following metrics, namely Accuracy introduced in 



[19], root mean squared error (RMSE), mean absolute error 
(MAE) and Pearson's correlation coefficient (R). Formulae of 
the above metrics are listed as follows:  
         𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = �1 −
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𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎
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      (18) 

The higher the value of Accuracy, the better the prediction is. 
Meanwhile, the higher the value of RMSE/MAE, the lower 
the prediction accuracy is. A high Pearson's correlation 
coefficient means a high accordance between the actual and 
predicted degradation rate. The performance of the predictive 
model, based on four metrics, is summarized in table 2. 

TABLE II.  MODEL PERFORMANCE BASED ON FOUR STATISTICAL 
INDEXES  

Sample No. Accuracy RMSE MAE R 
13 99.74% 0.02 0.0082 0.9485 
2 99.33% 0.0076 0.0482 0.933 

 
The predicted degradation rate of failure case No. 2 seems 

overestimated between 370s and 430s and underestimated 
between 431s to 449s, yielding a relatively high MAE value. 
But the accuracy is 99.33%, which is admissible for 
constructing the prognostic model. 

F. Comparison with previous studies 
The results presented in [27] indicated that CVA can be 

effectively used to identify machine abnormalities and predict 
future values of process measurements based on real-life data 
acquired from industrial compressors. The combined method 
proposed in this study further illustrates that CVA-based 
methodology can also be used for estimating performance 
deterioration and failure time of a real-world operating 
reciprocating compressor. However, efforts need to be made 
to allow plant operators to predict machine remaining useful 
life based on real-time online measurements. Moreover, the 
results of [22] have demonstrated that the combination of 
probability approach and regression method can successfully 
predict fault degradation of bearing based on univariate 
bearing vibration signals. The method presented in this 
investigation allows the prediction of the failure of complex 
real facilities by considering the possible synergy among 
different sensor signals. One drawback of the combined 
method is that the scarcity of lifetime data of real machines 
may limit its applications. 

IV. CONCLUSION 
In this study, CVA combined with CPHM and SVR were 

applied for the first time on data collected from an operational 
industrial reciprocating compressor to perform prognostics. 
Firstly, CVA was used to build a health indicator of each 
failure sample. Moreover, CPHM was utilized to calculate 
failure rate of individual failure data set, and then the 
calculated failure curves were regarded as the target vectors 
for training the SVR model. Grid search and 5-fold cross 

validation were used to determine the optimal SVR model 
parameters during the training process. Furthermore, the 
trained SVR was employed to predict degradation rate and 
failure time of the compressor given unseen input health 
indicators. Four metrics were utilized to evaluate the accuracy 
of the proposed schemes. The results illustrate that the 
prognostic performances were satisfied. Compared with 
previous studies, the proposed method outperforms the 
traditional CVA-based fault detection approaches by 
providing estimations of machine degradation rate and failure 
time. Additionally, the combined method advances the 
traditional probability and regression approaches by including 
multivariate condition monitoring data into prognostic 
analysis.  

Although, the results of this study clearly show the 
superior performance of the proposed method for failure 
prediction, some aspects require further investigation are 
listed as follows. Firstly, only the system dynamics captured 
in the retained space, namely the truncated r-dimensional 
canonical variates matrix in (7), were used to build a health 
indicator. As a result of doing this, the constructed health 
indicator might not fully represent the system variations as 
some useful information in the residual space is eliminated. 
Therefore, future work should be focused on incorporating the 
complete system dynamics in the health indicator. Secondly, 
due to the approximative nature of hazard function (shown in 
(11)), the degradation curves used in this investigation are 
stair functions with jumps at failure times. Thus, a degradation 
curve might not truly reflect the deterioration process when 
the number of historical failures is small, leading to inaccurate 
degradation prediction. Hence, techniques should be 
developed to calculate machine degradation rates accurately 
regardless of the scarcity of lifetime data. 
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