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Abstract – This paper proposes an approach to enhance users’ expe-

rience of video streaming in the context of smart cities. The proposed 

approach relies on the concept of mobile edge computing (MEC) as a 

key factor in enhancing the Quality of Service (QoS). It sustains QoS 

by ensuring that applications/services follow the mobility of users, 

realizing the “Follow-me-Edge” concept. The proposed scheme en-

forces an autonomic creation of MEC services to allow any-

where-anytime data access with optimum Quality of Experience (QoE) 

and reduced latency. Considering its application in smart city scenar-

ios, the proposed scheme represents an important solution for reduc-

ing core network traffic and ensuring ultra-short latency, and that is 

through a smart MEC architecture capable of achieving 1 ms latency 

dream for the upcoming 5G mobile systems.     

I. INTRODUCTION 

Over the years, technology has served the humanity by providing 

sustainable technical solutions to the social problems faced by 

society. In recent years, the research communities have been 

working on optimizing the technological infrastructure and max-

imizing the efficiency of services for the citizens to meet their 

changing needs for smarter living. The society has evolved, and in 

the present era of smartphones, we are yet coming across a new 

buzzword ‘Smart City’, which is increasingly gaining high im-

portance. Smart Cities are expected to improve the quality of life for 

their citizens, leveraging advanced information and communica-

tions technologies (ICT). Smart Cities are also expected to provide 

their citizens with a variety of innovative services, ranging from 

educational, healthcare-relevant, to augmented and immersive 

reality; e.g., for the support of tourism. Indeed, deployed services in 

Smart Cities will involve not only smartphones and tablets, but also 

utility meters, washing machines, thermostats, refrigerators, sensors 

for environmental monitoring etc.; in short the different components 

of the Internet of Things (IoT) ecosystem.    

The next generation mobile systems, commercially known as 5G, 

aims at accelerating the development of Smart Cities, not only by 

increasing the data delivery rates but also accommodating the 

expected high numbers of IoT devices to be used by Smart City 

services and applications [11][12]. Besides, thanks to its elasticity 

and agility features, 5G will be able to support numerous smart 

services, which cannot be supported by nowadays’ network archi-

tectures [13][4]. This includes immersive reality and tactical ap-

plications, services with highly strict requirements in terms of 

ultra-short latency and high responsiveness.  

5G systems will rely on technologies such as Network Function 

Virtualization (NFV), Software Defined Networking (SDN), and 

cloud computing to attain system’s flexibility and true elasticity 

[11][4]. Among these technologies, cloud computing has tremen-

dously advanced enabling diverse services. However, it remains 

limited against emerging applications (e.g., tactile Internet and 

augmented reality) that require ultra-short latency. Cloud is also 

limited against computation-intensive applications running on 

power/CPU-constrained user equipment (e.g., mobile gaming) that 

need to partially run their computation in the cloud while ensuring 

response times (i.e., for other parts of the code running on the user 

equipment) in the range of milliseconds. These limitations are 

principally due to the centralized cloud computing architecture. 

Mobile Edge Computing (MEC), interchangeably known as Fog 

Computing (originated from the concept of cloudlet [5]), represents 

a vital solution to these limitations. Indeed, it reforms the cloud 

hierarchy, by pushing computing resources in the proximity of 

mobile users (i.e. at the mobile network edge). There are high 

expectations at MEC and 5G, when efficiently integrated, to im-

prove the quality of life of residents in smart cities. This underpins 

the focus of this paper, wherein, we will show how MEC will enable 

emerging services for Smart Cities, focusing on an augmented 

reality use case involving the stream of High Definition (HD) video 

and that is for the support of tourism in Smart Cities. The overall 

objective is to demonstrate how high QoS can be maintained re-

gardless the mobility of users and that is through the usage of MEC, 

more particularly through the concept of Follow Me Edge (FME – 

similar in spirit to the Follow me Cloud concept [1][14]). FME 

ensures that the service constantly follows the user and that the user 

is always serviced from the closest edge. As will be discussed later, 

the fundamental observations made about the envisioned use case 

are highly applicable to other services requiring ultra-short latency, 

such as immersive reality and tactical applications.  

The remainder of this paper is organized as follows. Section II 

presents the state of the art. Section III describes our proposed FME 

framework along with the supporting mechanisms. For the sake of 

performance evaluation, Section IV portrays the experimental setup 

and discusses the obtained results. The paper concludes in Section V 

with a summary recapping the main findings. 

II. STATE OF THE ART 

The key idea beneath MEC is to place storage and computation 

resources at the network edge, in the proximity of users. Accord-

ingly, data processing can be pushed from far remote cloud to the 

edge. By processing data locally and accelerating data streams 

through various techniques (i.e., caching and compression), MEC 

reduces traffic bottleneck towards the core network. Besides, it 

helps shortening end-to-end latency, enabling the offload of im-

portant computation load from power-constrained user equipment 

to the edge. As discussed in the executive briefing of the ETSI MEC 

initiativei, edge computing shall enable new computation-intensive 

services and shall yield promising business models. It also repre-

sents a fault resilient solution for its decentralized architecture [3].   

Given its potential, MEC has been gaining lots of momentum 

among industries and within the researcher community [2]. Im-

portant standardization activities have been initiated. Indeed, to 

standardize the specifications of MEC across mobile operators and 
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vendors in the value chain, ETSI formed a new ISG group in 2014 

and came up with different industry specificationsii. The specifica-

tions highlight the different service scenarios whereby MEC can be 

beneficial. For video streaming services, it was recommended to 

apply intelligent video acceleration schemes using video analytics 

and video management applications within MEC. The research 

work in [6] proposes a two-hop network whereby edge architecture 

enhances data transfer rate and throughput for video streaming 

compared to remote cloud. The work in [7] exploits network as-

sisted adaptive streaming applications for multimedia content de-

livery inside MEC to enhance Quality of Experience (QoE). The 

research study in [8] proposes an architecture with distributed 

parallel edges to increase QoE for content delivery. The research 

work in [9] makes use of edges as caches along with proxies to store 

media content. It also enforces computation offloading to increase 

the lifetime of mobile devices. In [3], edges function independently 

as small-scale datacenters on their own and are used for video 

caching and streaming. 

In all the above research work, MEC is deemed to be a promising 

solution for handling video services. Its limitations in terms of 

resource control and orchestration have been also highlighted as 

important challenges. In smart city scenarios, users’ mobility and 

the need for dynamic service migration add to these challenges. 

Most research works on the latter consider traditional cloud envi-

ronments [1][14]. In [10], migration of edges has been proposed 

using Markov Decision Process approach to determine optimal 

solutions for service placement. 

 To the best knowledge of the authors, mobility support and mi-

gration of service in-terms of video content delivery has not been 

considered yet. In the remainder of this paper, we describe and 

showcase an innovative deployment scenario on how a user’s ex-

perience on video streaming can be enriched using MEC in spite of 

the user’s mobility. 

III. FOLLOW ME EDGE 

A. Use Cases 

To support tourism in smart cities, many use cases, involving 

video streaming from the edge, could be considered. In the fol-

lowing, we consider two representative use cases; one implying 

edge migration: 

 Use case 1: Robert from England visits Helsinki for the first 

time. He visits the white Church, likes it, takes a video of it, 

comments on it in his native language (i.e., English), and 

streams it to an edge placed nearby the white church. Sometime 

later, Eric, also from England and a member of Robert’s social 

network (e.g., Facebook), visits the same church and receives 

an invitation to view Robert’s generated video and hear what 

Robert said about the location. Eric may further comment on 

the video, indicates whether he liked it, or may post a new video 

about the location. In this use case, videos about a certain at-

tractive location are cached at edges in the vicinity of that lo-

cation, and streamed to people visiting that location when there 

is interest or when there is linkage with the video publisher. 

Mapping the top popular videos with Google Streetview may 

be also considered. The video streaming as well as the relevant 
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operations (e.g., comment, like/dislike, etc.) take place at the 

corresponding edges nearby the visited sites. 

 Use case 2: Robert visits the city of Hamburg. To explore the 

city, he takes a sightseeing bus. He uses interactive glasses that 

recognize historical monuments (e.g., tourist attractions) and 

accordingly receives introductory video about these monu-

ments in the format of high definition (HD) video. The video 

can be streamed either from a remote cloud or the edge. As the 

path to the remote cloud involves multiple hops, some being 

nearly congested, high resolutions of the video cannot be 

guaranteed unless it is streamed from the edge. Furthermore, to 

prevent jitter and the associated degradation in QoE, the video 

must be always streamed from the nearest edge to Robert. In 

this use case, Robert’s user equipment receives a portion of the 

video from the nearest edge A. As the bus gets far away from 

Edge A and closer to Edge B, the video along with the 

streaming virtual network function are migrated to Edge B, and 

the remaining portion of the video is streaming to Robert from 

Edge B. This edge migration occurs in a transparent manner to 

Robert who continues enjoying the video without any disrup-

tion in the video stream and with no degradation in the per-

ceived QoE.  

Whilst the above use cases focus on video streaming services, 

similar use cases with the same requirements can be derived for 

augmented reality services. In this work, we consider using light-

weight virtualization technologies (i.e. container), and introduce 

container migration to meet the above-mentioned use cases, with 

more focus on the edge mobility aspect of use case 2.  

B. FME Architecture 

The proposed architecture is based on the two-tier principle, 

wherein the cloud service provider (CSP) gives access, through 

appropriate API [15], to a content provider or a third party 

over-the-top (OTT) service to use the cloud resource to deploy its 

application. The cloud has its own orchestrator to manage the cloud 

infrastructure and its resources. An additional component is con-

sidered as Cloud Controller (CC). Considering the business func-

tionality, CC is involved in maintaining the service level agreement 

(SLA) with the OTT providers and the mobile network operators 

(MNO). The agreement deals with access rights and policies on the 

entity’s authority. The edge server (ES) belongs to the MNO’s 

network, where it is managed and controlled by the Edge Orches-

trator (EO). Every MNO has its own EO, managing its own set of 

ES clusters. Fig. 1 depicts inter/intra-MNO edge network. The 

dotted lines represent the agreement level connection among CSP, 

MNO, EO and ES.  

The ES is hosted on virtual machines on top of the existing server 

hardware residing in the MNO’s edge network node. The ES has its 

own compute and storage. The compute node is responsible for 

hosting container-based applications on the edge. The storage is 

used to keep images of the application containers. For intra-edge 

network, additional shared storage is needed to ensure 

live-migration of containers between edge compute nodes. 

Linux-based containers (LC) can be employed to make the system 

lightweight and help in easily deploying service packages. LCs run 

applications/services provided from the edge, while EO is in charge 

of deploying, controlling and migrating containers.  

Referring to Use Case 2, when Robert connects to Edge Server A 

to watch a HD video introducing Hamburg, he may be initially 



 

served from the backend cloud. As stated earlier, this may incur 

jitter and may limit the video resolution. To cope with this issue, the 

EO may instantiate a container on the connected ES compute node 

with built-in streaming and transcoding virtualized functionality 

[15][16]. Subsequently, it may store the relative content form the 

backend cloud into the ES’s local storage. Robert will be then 

served the HD version of the video stream from ES. Considering the 

case of HTTP-based video streaming, the EO can fetch the entire 

media content at one-go or may fetch only a certain number of video 

chunks at a time. Consequently, as the content will be served from 

one hop away, the user’s perceived quality is expected to largely 

improve. For applications involving OTT services, the established 

SLA may help in performing this task with a pre-agreed negotiation 

between the OTT provider and the MNO. In this case, the EO inside 

the MNO will get access rights from the OTT service in the begin-

ning of the process. The EO will then create the replica and bring the 

service to the edge. 

 

 

 
Fig. 1. The envisioned Mobile Edge Computing architecture. 

Although the content is now served from the nearest edge, after 

some time the connection with the mobile user may begin experi-

encing degradation as the length of the path to the served MEC 

increases. To maintain the same quality, it is vital that the content 

moves along the physical mobility of users in a Follow Me Edge 

fashion [14]. To realize the FME vision, EO needs to keep updated 

information about its resources and the user locations. The latter 

may be obtained using the MEC’s active device location tracking 

functionality, based on which user’s velocity and direction may be 

derived. Taking this in consideration, EO may estimate the latency 

between the user and the current edge, and compare it with the 

latency between the same user and the target edge. Once deemed 

appropriate, EO may trigger live migration of the container in a 

pro-active manner. This will consist in migrating the video 

streaming service along with its contents. Upon successful container 

migration, the user may then be served from the new ES, which will 

ensure low latency access to the content. The above-described 

migration process will be repeated along the track whenever re-

quired.  

Migration can happen using various techniques. In case of live 

video streaming, service continuity and bare minimum disruption 

are of prime concern. To perform seamless live-migration, the 

service state has to be maintained in order to ensure that no data is 

lost. This is achieved by transferring the entire memory content of 

the running instance (i.e., container) from the source ES to the target 

ES.  The source ES keeps track of which memory blocks are modi-

fied while the transfer is in progress. Once this initial transfer is 

complete, the changes occurred in the meantime are transferred 

again. This continues until the newly built instance becomes exactly 

identical as the old one. This ensures that after the migration process 

is complete, the video starts from the exact point rather than over-

lapping. Indeed, in case of mishandled memory, data loss happens. 

This incurs overlap in video playtime, where the user may have to 

watch the same content again (from the span when the migration 

started). Moreover, the migration duration should not be too long. If 

the duration is too long, it might happen that by the end of the 

migration either the user has moved away from the ES location or 

the played video is almost over. To overcome these constraint, 

separate shared storage has to be considered. Normally migration 

takes place by copying the memory blocks. Thus, if the blocks are 

dumped on a shared location attached with the new ES, then service 

transfer becomes faster than in the case of considering a local 

storage. Though async mode configuration of shared storage is even 

faster than sync mode, we propose the use of sync mode to maintain 

data integrity. In sync mode the data saved in the storage location is 

confirmed before processing the next request from the ES. In async 

mode, the requests are processed without proper confirmation. It 

yields better response time but at the cost of possible data corruption 

which may introduce glitch in the played video.   

So far, the proposed scheme deals with latency reduction and 

mobility within the network of the same MNO/edge. In case the user 

moves out of the network of an edge provider to the edge of another 

provider, the SLA agreement shall be used. SLA agreement should 

enforce an integrated architecture where the EO handover, shared 

storage concept and service migration are considered. In this case, 

the source EO may handover the control to the target EO (in a 

separate MNO’s network), and permit service migration. If it is not 

possible, then during the MNO crossover phase, the content will be 

served from the backend cloud temporarily until the new EO, again, 

caches the service in its own compute node. 

It is worth noting that smart caching and migration can consid-

erable enhance the system overall performance and reduce the 

migration cost [1]. The caching concept can be further enhanced by 

considering the remaining duration of the video. If there is no 

possibility to store the whole content (due to storage space), only the 

next few chunks of the remaining video may be cached. Moreover, 

if the video is almost towards the end (i.e., remaining play time less 

than the migration time), the container/service migration may be 

simply omitted. 

IV. PERFORMANCE EVALUATION  

Fig. 2 portrays the test-bed environment which we have built to 

simulate the edge-based video streaming and its mobility; consid-

ering use case 2. The testbed is built using one Ubuntu 14.04.3 LTS 

desktop and two laptops with the same host operating system. 

Virtualbox is used to implement the testbed on a desktop work 

station machine. The desktop machine hosts three Virtual Machines 

(VMs) inside the virtual box environment. VM1 is used as a gate-

way for the entire network to access the Internet. VM2 is used to 

simulate the cloud environment deploying a Devstack-based cloud, 

which provides all-in-one (i.e., controller, compute, network and 

storage on the same node), with Ubuntu instance running inside it. 



 

The Ubuntu cloud instance hosts a HTTP Live Streaming (HLS) 

server. The ffmpegiii open source server, for both streaming and 

transcoding, are built in separate VMs. The media contents (HLS 

fragments) are generated using ffmpeg transcoding servers, and are 

then streamed using ffmpeg streaming server (hosted in a separate 

VM). The floating IP address of the instance was chosen from the 

same IP subnet range of the edge cluster, so that ES can access the 

data from the cloud VM. The CC function was omitted, as the SLA 

level implementation was not considered in the testbed. VM3 was 

configured using Proxmox VE and acts as edge cluster controller – 

EO. VM3 also includes a DHCP server with authentication. To 

automate the orchestration process, a script is used to: i) monitor the 

session changeover of the clients from one edge to the other using 

the authentication server logs; ii) handle the container migration. 

The entire cluster of edges is formed by integrating additional two 

VMs (i.e., VM4 and VM5) with the EO. VM4 and VM5 are hosted 

inside laptops to emulate ES. The connectivity between the VMs is 

extended using an Ethernet switch. VM4 and VM5 use the same 

virtual environment as EO. To ensure that the laptops (namely VM4 

and VM5) act as edge access point, the wireless LAN interface was 

configured using Host-apd in IEEE.802.11 master mode. The con-

tainer is created inside VM4. We use Openvz containers for the 

testbed. The containers are built with Ubuntu cloud minimal image 

using Nginx as webserver. The Nginx is configured to serve as 

reverse proxy to the backend cloud HLS server with caching and 

streaming functionality. It is worth recalling that the objective of 

these tests is to validate the use of MEC to ensure high quality HD 

video streaming service to mobile users. Therefore, the focus of 

these tests is on caching content and live delivery of the multimedia 

content closer to the user at the edge. 

 
Fig. 2. Envisioned testbed-setup. 

 

To perform the test, one container is instantiated in “Edge1” with 

all the features explained above. When a user (using smartphone or 

laptop) connects to the network through SSID, the user is assigned 

an IP from the same IP subnet pool of the ES. The user connectivity 

log along with the MACID of the user are saved in a database of the 

EO. The user launches a browser and starts browsing the video, 

using the URL of the streaming sever hosted at the container. To 
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implement minimum security, the user is given authorization to only 

browse data from the container. Upon connecting for the first time, 

the container forwards the request to the cloud VM and the multi-

media content is served from the backend cloud. Simultaneously, it 

caches the relevant media contents and stores for further use to the 

container. For the next requests to the same video, the container 

makes use of its own streaming functionality to serve the user by 

using cached contents regardless of the fact that the cloud is acces-

sible or not. Accordingly, this implements the concept of bringing 

the content closer to the user and making the backend core free from 

the traffic. 

 To simulate mobility, laptops are placed at a distance from a 

multi-hop network. During the video payback, the user device is 

deliberately moved from the first edge towards the second edge 

connected to the next hop in the network. The user automatically 

connects to “Edge2”. As soon as the wireless connectivity handover 

takes place, the logs are generated inside EO. Upon detecting the 

client’s connectivity, the script in charge of automating the service 

migration gathers the client info (i.e., MACID), compares it with the 

database, identifies the same client’s movement to a new edge, and 

subsequently triggers the live-migration of the container from the 

old ES to the next one to which the client is directly connected. For 

Openvz, the live-content delivery is done using Checkpoint/Restore 

in Userspace (CRIU). It performs vz-dump (memory block dump) 

to save the state and uses rsync (i.e., incremental file transfer utility) 

to transfer the file to the target location. It performs a dual level 

operation to prevent data loss. First, pre-copy starts from the point 

the migration is initiated. Once completed, the container initializa-

tion is started in the new edge along-with post copy. Hereby, 

post-copy represents transfer of the residual amount of changes that 

occurred in the memory block during this small interval. As service 

auto-start is already enabled, so once this data transfer operation is 

done, the container is automatically started in the target edge and the 

old one is released. The user remains unaware of this fact and enjoys 

normal streaming. Throughout the migration time, the container IP 

address remains the same, ensuring no service downtime (i.e. the 

session remains active) during this span. 

For service migration, the test is performed with two types of 

storage. In the first type, the whole operation is performed using 

local storage (i.e., service migration within a federated edge net-

work). The vz-dump files are first copied to the local storage, then 

synched with the target ES node, container is initialized in that 

target node and after post-copy the migration is completed. How-

ever, this method causes high delays. To achieve better performance 

with minimum response, the second type is implemented. Network 

File System (NFS) server is used as shared storage for the operation. 

The NFS server is installed inside the EO and the shared space is 

defined for the cluster nodes. The shared storage is used only for 

vz-dump files. During migration, the copied memory files are stored 

in the shared location. As the target node can access the shared 

location directly, it reduces the content delivery to the edge resulting 

in faster response. 

In Fig.3, we plot the migration duration of one container for three 

different conditions: (i) with streaming online mode – streaming 

being in use and client is watching the video; (ii) without streaming 

offline mode – streaming being in use whilst client is not watching 

the video and no changes in the memory blocks; (iii) blank container;  

and with two different types of ES. The migration latency is plotted 

considering local storage. The migration latency of a blank con-



 

tainer is plotted to showcase how much added-services impact the 

migration time. From the results, we can observe that when video 

streaming is not active, the content migration takes less time com-

pared to the case when the video is being streamed. Moreover, for 

an ES with higher RAM capacity, the migration duration is shorter. 

This is attributable to the fact that copying memory pages takes less 

time when having higher RAM, leading to a slight decrease in the 

overall duration.  

 

 
Fig. 3. Live migration time using local storage (a: with streaming 

online mode; b: without streaming offline mode; c: blank container). 

 

 

 

Fig. 4. Live-migration latency (a: local storage; b: shared sync 

storage; c: shared async storage). 

Fig. 4 plots the migration duration when considering various 

ways to share the storage among edges. The test is performed with 

two different sizes of containers; one small and another big to 

investigate if container size affects the migration duration. We 

clearly remark that the container size merely affects the migration 

latency. Besides, we observe ‘shared-sync’ mode achieves shorter 

latency in comparison to ‘local’ mode. Furthermore, the shared 

storage, if configured in ‘shared-async’ mode, reduces the duration 

of the migration closer to 10 secs. In this last mode, the video ex-

perienced a single glitch of 1~2 sec. We explain this by the fact that 

data corruption took place during async mode hence resulting in 

reduced QoE [17]. The results obtained through this evaluation 

reveals that the storage type and memory capacity have a high 

impact on the migration latency.  

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS  

In this paper, we proposed a framework which leverages MEC to 

support diverse applications in smart city scenarios. To always 

ensure high QoE, the “follow me edge” concept is introduced. 

According to this concept, services move across edge servers as per 

the movement of its respective users. The proposed framework is 

validated using a real-life testbed. Edge mobility was tested using 

different storage types, different container sizes and different edge 

resources.  

Interesting results were obtained suggesting the migration latency 

depends on different used techniques. The obtained results also 

demonstrate that short migration latency does not necessarily 

guarantee high QoE. It becomes apparent that the complexity of the 

system arises as a tradeoff between short migration latency at the 

cost of possible data loss. Based on the obtained results, it can be 

concluded that a mechanism to select the right combination of 

techniques to be used for efficiently migrating a service is of vital 

importance. This defines one of the authors’ future research 

directions in this area. 
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