

Mobile Edge Computing Potential in Making Cities Smarter

Tarik Taleb1, Sunny Dutta1, Adlen Ksentini2, Muddesar Iqbal3, and Hannu Flinck4
1 Aalto University, Espoo, Finland
2 Eurecom Institute, Nice, France

3 London South Bank University, London, United kingdom
4 Nokia Bell Labs, Espoo, Finland

Emails: {firstname.lastname@aalto.fi; adlen.ksentini@eurecom.fr; m.iqbal@lsbu.ac.uk;

hannu.flinck@nokia-bell-labs.com }

Abstract – This paper proposes an approach to enhance users’ expe-

rience of video streaming in the context of smart cities. The proposed

approach relies on the concept of mobile edge computing (MEC) as a

key factor in enhancing the Quality of Service (QoS). It sustains QoS

by ensuring that applications/services follow the mobility of users,

realizing the “Follow-me-Edge” concept. The proposed scheme en-

forces an autonomic creation of MEC services to allow any-

where-anytime data access with optimum Quality of Experience (QoE)

and reduced latency. Considering its application in smart city scenar-

ios, the proposed scheme represents an important solution for reduc-

ing core network traffic and ensuring ultra-short latency, and that is

through a smart MEC architecture capable of achieving 1 ms latency

dream for the upcoming 5G mobile systems.

I. INTRODUCTION

Over the years, technology has served the humanity by providing

sustainable technical solutions to the social problems faced by

society. In recent years, the research communities have been

working on optimizing the technological infrastructure and max-

imizing the efficiency of services for the citizens to meet their

changing needs for smarter living. The society has evolved, and in

the present era of smartphones, we are yet coming across a new

buzzword ‘Smart City’, which is increasingly gaining high im-

portance. Smart Cities are expected to improve the quality of life for

their citizens, leveraging advanced information and communica-

tions technologies (ICT). Smart Cities are also expected to provide

their citizens with a variety of innovative services, ranging from

educational, healthcare-relevant, to augmented and immersive

reality; e.g., for the support of tourism. Indeed, deployed services in

Smart Cities will involve not only smartphones and tablets, but also

utility meters, washing machines, thermostats, refrigerators, sensors

for environmental monitoring etc.; in short the different components

of the Internet of Things (IoT) ecosystem.

The next generation mobile systems, commercially known as 5G,

aims at accelerating the development of Smart Cities, not only by

increasing the data delivery rates but also accommodating the

expected high numbers of IoT devices to be used by Smart City

services and applications [11][12]. Besides, thanks to its elasticity

and agility features, 5G will be able to support numerous smart

services, which cannot be supported by nowadays’ network archi-

tectures [13][4]. This includes immersive reality and tactical ap-

plications, services with highly strict requirements in terms of

ultra-short latency and high responsiveness.

5G systems will rely on technologies such as Network Function

Virtualization (NFV), Software Defined Networking (SDN), and

cloud computing to attain system’s flexibility and true elasticity

[11][4]. Among these technologies, cloud computing has tremen-

dously advanced enabling diverse services. However, it remains

limited against emerging applications (e.g., tactile Internet and

augmented reality) that require ultra-short latency. Cloud is also

limited against computation-intensive applications running on

power/CPU-constrained user equipment (e.g., mobile gaming) that

need to partially run their computation in the cloud while ensuring

response times (i.e., for other parts of the code running on the user

equipment) in the range of milliseconds. These limitations are

principally due to the centralized cloud computing architecture.

Mobile Edge Computing (MEC), interchangeably known as Fog

Computing (originated from the concept of cloudlet [5]), represents

a vital solution to these limitations. Indeed, it reforms the cloud

hierarchy, by pushing computing resources in the proximity of

mobile users (i.e. at the mobile network edge). There are high

expectations at MEC and 5G, when efficiently integrated, to im-

prove the quality of life of residents in smart cities. This underpins

the focus of this paper, wherein, we will show how MEC will enable

emerging services for Smart Cities, focusing on an augmented

reality use case involving the stream of High Definition (HD) video

and that is for the support of tourism in Smart Cities. The overall

objective is to demonstrate how high QoS can be maintained re-

gardless the mobility of users and that is through the usage of MEC,

more particularly through the concept of Follow Me Edge (FME –

similar in spirit to the Follow me Cloud concept [1][14]). FME

ensures that the service constantly follows the user and that the user

is always serviced from the closest edge. As will be discussed later,

the fundamental observations made about the envisioned use case

are highly applicable to other services requiring ultra-short latency,

such as immersive reality and tactical applications.

The remainder of this paper is organized as follows. Section II

presents the state of the art. Section III describes our proposed FME

framework along with the supporting mechanisms. For the sake of

performance evaluation, Section IV portrays the experimental setup

and discusses the obtained results. The paper concludes in Section V

with a summary recapping the main findings.

II. STATE OF THE ART

The key idea beneath MEC is to place storage and computation

resources at the network edge, in the proximity of users. Accord-

ingly, data processing can be pushed from far remote cloud to the

edge. By processing data locally and accelerating data streams

through various techniques (i.e., caching and compression), MEC

reduces traffic bottleneck towards the core network. Besides, it

helps shortening end-to-end latency, enabling the offload of im-

portant computation load from power-constrained user equipment

to the edge. As discussed in the executive briefing of the ETSI MEC

initiativei, edge computing shall enable new computation-intensive

services and shall yield promising business models. It also repre-

sents a fault resilient solution for its decentralized architecture [3].

Given its potential, MEC has been gaining lots of momentum

among industries and within the researcher community [2]. Im-

portant standardization activities have been initiated. Indeed, to

standardize the specifications of MEC across mobile operators and

i https://portal.etsi.org/portals/0/tbpages/mec/docs/mec%20executive%20brief%20v

1%2028-09-14.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/227105752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vendors in the value chain, ETSI formed a new ISG group in 2014

and came up with different industry specificationsii. The specifica-

tions highlight the different service scenarios whereby MEC can be

beneficial. For video streaming services, it was recommended to

apply intelligent video acceleration schemes using video analytics

and video management applications within MEC. The research

work in [6] proposes a two-hop network whereby edge architecture

enhances data transfer rate and throughput for video streaming

compared to remote cloud. The work in [7] exploits network as-

sisted adaptive streaming applications for multimedia content de-

livery inside MEC to enhance Quality of Experience (QoE). The

research study in [8] proposes an architecture with distributed

parallel edges to increase QoE for content delivery. The research

work in [9] makes use of edges as caches along with proxies to store

media content. It also enforces computation offloading to increase

the lifetime of mobile devices. In [3], edges function independently

as small-scale datacenters on their own and are used for video

caching and streaming.

In all the above research work, MEC is deemed to be a promising

solution for handling video services. Its limitations in terms of

resource control and orchestration have been also highlighted as

important challenges. In smart city scenarios, users’ mobility and

the need for dynamic service migration add to these challenges.

Most research works on the latter consider traditional cloud envi-

ronments [1][14]. In [10], migration of edges has been proposed

using Markov Decision Process approach to determine optimal

solutions for service placement.

 To the best knowledge of the authors, mobility support and mi-

gration of service in-terms of video content delivery has not been

considered yet. In the remainder of this paper, we describe and

showcase an innovative deployment scenario on how a user’s ex-

perience on video streaming can be enriched using MEC in spite of

the user’s mobility.

III. FOLLOW ME EDGE

A. Use Cases

To support tourism in smart cities, many use cases, involving

video streaming from the edge, could be considered. In the fol-

lowing, we consider two representative use cases; one implying

edge migration:

 Use case 1: Robert from England visits Helsinki for the first

time. He visits the white Church, likes it, takes a video of it,

comments on it in his native language (i.e., English), and

streams it to an edge placed nearby the white church. Sometime

later, Eric, also from England and a member of Robert’s social

network (e.g., Facebook), visits the same church and receives

an invitation to view Robert’s generated video and hear what

Robert said about the location. Eric may further comment on

the video, indicates whether he liked it, or may post a new video

about the location. In this use case, videos about a certain at-

tractive location are cached at edges in the vicinity of that lo-

cation, and streamed to people visiting that location when there

is interest or when there is linkage with the video publisher.

Mapping the top popular videos with Google Streetview may

be also considered. The video streaming as well as the relevant

ii https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introd

uctory_technical_white_paper_v1%2018-09-14.pdf

operations (e.g., comment, like/dislike, etc.) take place at the

corresponding edges nearby the visited sites.

 Use case 2: Robert visits the city of Hamburg. To explore the

city, he takes a sightseeing bus. He uses interactive glasses that

recognize historical monuments (e.g., tourist attractions) and

accordingly receives introductory video about these monu-

ments in the format of high definition (HD) video. The video

can be streamed either from a remote cloud or the edge. As the

path to the remote cloud involves multiple hops, some being

nearly congested, high resolutions of the video cannot be

guaranteed unless it is streamed from the edge. Furthermore, to

prevent jitter and the associated degradation in QoE, the video

must be always streamed from the nearest edge to Robert. In

this use case, Robert’s user equipment receives a portion of the

video from the nearest edge A. As the bus gets far away from

Edge A and closer to Edge B, the video along with the

streaming virtual network function are migrated to Edge B, and

the remaining portion of the video is streaming to Robert from

Edge B. This edge migration occurs in a transparent manner to

Robert who continues enjoying the video without any disrup-

tion in the video stream and with no degradation in the per-

ceived QoE.

Whilst the above use cases focus on video streaming services,

similar use cases with the same requirements can be derived for

augmented reality services. In this work, we consider using light-

weight virtualization technologies (i.e. container), and introduce

container migration to meet the above-mentioned use cases, with

more focus on the edge mobility aspect of use case 2.

B. FME Architecture

The proposed architecture is based on the two-tier principle,

wherein the cloud service provider (CSP) gives access, through

appropriate API [15], to a content provider or a third party

over-the-top (OTT) service to use the cloud resource to deploy its

application. The cloud has its own orchestrator to manage the cloud

infrastructure and its resources. An additional component is con-

sidered as Cloud Controller (CC). Considering the business func-

tionality, CC is involved in maintaining the service level agreement

(SLA) with the OTT providers and the mobile network operators

(MNO). The agreement deals with access rights and policies on the

entity’s authority. The edge server (ES) belongs to the MNO’s

network, where it is managed and controlled by the Edge Orches-

trator (EO). Every MNO has its own EO, managing its own set of

ES clusters. Fig. 1 depicts inter/intra-MNO edge network. The

dotted lines represent the agreement level connection among CSP,

MNO, EO and ES.

The ES is hosted on virtual machines on top of the existing server

hardware residing in the MNO’s edge network node. The ES has its

own compute and storage. The compute node is responsible for

hosting container-based applications on the edge. The storage is

used to keep images of the application containers. For intra-edge

network, additional shared storage is needed to ensure

live-migration of containers between edge compute nodes.

Linux-based containers (LC) can be employed to make the system

lightweight and help in easily deploying service packages. LCs run

applications/services provided from the edge, while EO is in charge

of deploying, controlling and migrating containers.

Referring to Use Case 2, when Robert connects to Edge Server A

to watch a HD video introducing Hamburg, he may be initially

served from the backend cloud. As stated earlier, this may incur

jitter and may limit the video resolution. To cope with this issue, the

EO may instantiate a container on the connected ES compute node

with built-in streaming and transcoding virtualized functionality

[15][16]. Subsequently, it may store the relative content form the

backend cloud into the ES’s local storage. Robert will be then

served the HD version of the video stream from ES. Considering the

case of HTTP-based video streaming, the EO can fetch the entire

media content at one-go or may fetch only a certain number of video

chunks at a time. Consequently, as the content will be served from

one hop away, the user’s perceived quality is expected to largely

improve. For applications involving OTT services, the established

SLA may help in performing this task with a pre-agreed negotiation

between the OTT provider and the MNO. In this case, the EO inside

the MNO will get access rights from the OTT service in the begin-

ning of the process. The EO will then create the replica and bring the

service to the edge.

Fig. 1. The envisioned Mobile Edge Computing architecture.

Although the content is now served from the nearest edge, after

some time the connection with the mobile user may begin experi-

encing degradation as the length of the path to the served MEC

increases. To maintain the same quality, it is vital that the content

moves along the physical mobility of users in a Follow Me Edge

fashion [14]. To realize the FME vision, EO needs to keep updated

information about its resources and the user locations. The latter

may be obtained using the MEC’s active device location tracking

functionality, based on which user’s velocity and direction may be

derived. Taking this in consideration, EO may estimate the latency

between the user and the current edge, and compare it with the

latency between the same user and the target edge. Once deemed

appropriate, EO may trigger live migration of the container in a

pro-active manner. This will consist in migrating the video

streaming service along with its contents. Upon successful container

migration, the user may then be served from the new ES, which will

ensure low latency access to the content. The above-described

migration process will be repeated along the track whenever re-

quired.

Migration can happen using various techniques. In case of live

video streaming, service continuity and bare minimum disruption

are of prime concern. To perform seamless live-migration, the

service state has to be maintained in order to ensure that no data is

lost. This is achieved by transferring the entire memory content of

the running instance (i.e., container) from the source ES to the target

ES. The source ES keeps track of which memory blocks are modi-

fied while the transfer is in progress. Once this initial transfer is

complete, the changes occurred in the meantime are transferred

again. This continues until the newly built instance becomes exactly

identical as the old one. This ensures that after the migration process

is complete, the video starts from the exact point rather than over-

lapping. Indeed, in case of mishandled memory, data loss happens.

This incurs overlap in video playtime, where the user may have to

watch the same content again (from the span when the migration

started). Moreover, the migration duration should not be too long. If

the duration is too long, it might happen that by the end of the

migration either the user has moved away from the ES location or

the played video is almost over. To overcome these constraint,

separate shared storage has to be considered. Normally migration

takes place by copying the memory blocks. Thus, if the blocks are

dumped on a shared location attached with the new ES, then service

transfer becomes faster than in the case of considering a local

storage. Though async mode configuration of shared storage is even

faster than sync mode, we propose the use of sync mode to maintain

data integrity. In sync mode the data saved in the storage location is

confirmed before processing the next request from the ES. In async

mode, the requests are processed without proper confirmation. It

yields better response time but at the cost of possible data corruption

which may introduce glitch in the played video.

So far, the proposed scheme deals with latency reduction and

mobility within the network of the same MNO/edge. In case the user

moves out of the network of an edge provider to the edge of another

provider, the SLA agreement shall be used. SLA agreement should

enforce an integrated architecture where the EO handover, shared

storage concept and service migration are considered. In this case,

the source EO may handover the control to the target EO (in a

separate MNO’s network), and permit service migration. If it is not

possible, then during the MNO crossover phase, the content will be

served from the backend cloud temporarily until the new EO, again,

caches the service in its own compute node.

It is worth noting that smart caching and migration can consid-

erable enhance the system overall performance and reduce the

migration cost [1]. The caching concept can be further enhanced by

considering the remaining duration of the video. If there is no

possibility to store the whole content (due to storage space), only the

next few chunks of the remaining video may be cached. Moreover,

if the video is almost towards the end (i.e., remaining play time less

than the migration time), the container/service migration may be

simply omitted.

IV. PERFORMANCE EVALUATION

Fig. 2 portrays the test-bed environment which we have built to

simulate the edge-based video streaming and its mobility; consid-

ering use case 2. The testbed is built using one Ubuntu 14.04.3 LTS

desktop and two laptops with the same host operating system.

Virtualbox is used to implement the testbed on a desktop work

station machine. The desktop machine hosts three Virtual Machines

(VMs) inside the virtual box environment. VM1 is used as a gate-

way for the entire network to access the Internet. VM2 is used to

simulate the cloud environment deploying a Devstack-based cloud,

which provides all-in-one (i.e., controller, compute, network and

storage on the same node), with Ubuntu instance running inside it.

The Ubuntu cloud instance hosts a HTTP Live Streaming (HLS)

server. The ffmpegiii open source server, for both streaming and

transcoding, are built in separate VMs. The media contents (HLS

fragments) are generated using ffmpeg transcoding servers, and are

then streamed using ffmpeg streaming server (hosted in a separate

VM). The floating IP address of the instance was chosen from the

same IP subnet range of the edge cluster, so that ES can access the

data from the cloud VM. The CC function was omitted, as the SLA

level implementation was not considered in the testbed. VM3 was

configured using Proxmox VE and acts as edge cluster controller –

EO. VM3 also includes a DHCP server with authentication. To

automate the orchestration process, a script is used to: i) monitor the

session changeover of the clients from one edge to the other using

the authentication server logs; ii) handle the container migration.

The entire cluster of edges is formed by integrating additional two

VMs (i.e., VM4 and VM5) with the EO. VM4 and VM5 are hosted

inside laptops to emulate ES. The connectivity between the VMs is

extended using an Ethernet switch. VM4 and VM5 use the same

virtual environment as EO. To ensure that the laptops (namely VM4

and VM5) act as edge access point, the wireless LAN interface was

configured using Host-apd in IEEE.802.11 master mode. The con-

tainer is created inside VM4. We use Openvz containers for the

testbed. The containers are built with Ubuntu cloud minimal image

using Nginx as webserver. The Nginx is configured to serve as

reverse proxy to the backend cloud HLS server with caching and

streaming functionality. It is worth recalling that the objective of

these tests is to validate the use of MEC to ensure high quality HD

video streaming service to mobile users. Therefore, the focus of

these tests is on caching content and live delivery of the multimedia

content closer to the user at the edge.

Fig. 2. Envisioned testbed-setup.

To perform the test, one container is instantiated in “Edge1” with

all the features explained above. When a user (using smartphone or

laptop) connects to the network through SSID, the user is assigned

an IP from the same IP subnet pool of the ES. The user connectivity

log along with the MACID of the user are saved in a database of the

EO. The user launches a browser and starts browsing the video,

using the URL of the streaming sever hosted at the container. To

iii https://ffmpeg.org/

implement minimum security, the user is given authorization to only

browse data from the container. Upon connecting for the first time,

the container forwards the request to the cloud VM and the multi-

media content is served from the backend cloud. Simultaneously, it

caches the relevant media contents and stores for further use to the

container. For the next requests to the same video, the container

makes use of its own streaming functionality to serve the user by

using cached contents regardless of the fact that the cloud is acces-

sible or not. Accordingly, this implements the concept of bringing

the content closer to the user and making the backend core free from

the traffic.

 To simulate mobility, laptops are placed at a distance from a

multi-hop network. During the video payback, the user device is

deliberately moved from the first edge towards the second edge

connected to the next hop in the network. The user automatically

connects to “Edge2”. As soon as the wireless connectivity handover

takes place, the logs are generated inside EO. Upon detecting the

client’s connectivity, the script in charge of automating the service

migration gathers the client info (i.e., MACID), compares it with the

database, identifies the same client’s movement to a new edge, and

subsequently triggers the live-migration of the container from the

old ES to the next one to which the client is directly connected. For

Openvz, the live-content delivery is done using Checkpoint/Restore

in Userspace (CRIU). It performs vz-dump (memory block dump)

to save the state and uses rsync (i.e., incremental file transfer utility)

to transfer the file to the target location. It performs a dual level

operation to prevent data loss. First, pre-copy starts from the point

the migration is initiated. Once completed, the container initializa-

tion is started in the new edge along-with post copy. Hereby,

post-copy represents transfer of the residual amount of changes that

occurred in the memory block during this small interval. As service

auto-start is already enabled, so once this data transfer operation is

done, the container is automatically started in the target edge and the

old one is released. The user remains unaware of this fact and enjoys

normal streaming. Throughout the migration time, the container IP

address remains the same, ensuring no service downtime (i.e. the

session remains active) during this span.

For service migration, the test is performed with two types of

storage. In the first type, the whole operation is performed using

local storage (i.e., service migration within a federated edge net-

work). The vz-dump files are first copied to the local storage, then

synched with the target ES node, container is initialized in that

target node and after post-copy the migration is completed. How-

ever, this method causes high delays. To achieve better performance

with minimum response, the second type is implemented. Network

File System (NFS) server is used as shared storage for the operation.

The NFS server is installed inside the EO and the shared space is

defined for the cluster nodes. The shared storage is used only for

vz-dump files. During migration, the copied memory files are stored

in the shared location. As the target node can access the shared

location directly, it reduces the content delivery to the edge resulting

in faster response.

In Fig.3, we plot the migration duration of one container for three

different conditions: (i) with streaming online mode – streaming

being in use and client is watching the video; (ii) without streaming

offline mode – streaming being in use whilst client is not watching

the video and no changes in the memory blocks; (iii) blank container;

and with two different types of ES. The migration latency is plotted

considering local storage. The migration latency of a blank con-

tainer is plotted to showcase how much added-services impact the

migration time. From the results, we can observe that when video

streaming is not active, the content migration takes less time com-

pared to the case when the video is being streamed. Moreover, for

an ES with higher RAM capacity, the migration duration is shorter.

This is attributable to the fact that copying memory pages takes less

time when having higher RAM, leading to a slight decrease in the

overall duration.

Fig. 3. Live migration time using local storage (a: with streaming

online mode; b: without streaming offline mode; c: blank container).

Fig. 4. Live-migration latency (a: local storage; b: shared sync

storage; c: shared async storage).

Fig. 4 plots the migration duration when considering various

ways to share the storage among edges. The test is performed with

two different sizes of containers; one small and another big to

investigate if container size affects the migration duration. We

clearly remark that the container size merely affects the migration

latency. Besides, we observe ‘shared-sync’ mode achieves shorter

latency in comparison to ‘local’ mode. Furthermore, the shared

storage, if configured in ‘shared-async’ mode, reduces the duration

of the migration closer to 10 secs. In this last mode, the video ex-

perienced a single glitch of 1~2 sec. We explain this by the fact that

data corruption took place during async mode hence resulting in

reduced QoE [17]. The results obtained through this evaluation

reveals that the storage type and memory capacity have a high

impact on the migration latency.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we proposed a framework which leverages MEC to

support diverse applications in smart city scenarios. To always

ensure high QoE, the “follow me edge” concept is introduced.

According to this concept, services move across edge servers as per

the movement of its respective users. The proposed framework is

validated using a real-life testbed. Edge mobility was tested using

different storage types, different container sizes and different edge

resources.

Interesting results were obtained suggesting the migration latency

depends on different used techniques. The obtained results also

demonstrate that short migration latency does not necessarily

guarantee high QoE. It becomes apparent that the complexity of the

system arises as a tradeoff between short migration latency at the

cost of possible data loss. Based on the obtained results, it can be

concluded that a mechanism to select the right combination of

techniques to be used for efficiently migrating a service is of vital

importance. This defines one of the authors’ future research

directions in this area.

ACKNOWLEDGEMENTS

This work was partially supported by the TAKE 5 project funded by

the Finnish Funding Agency for Technology and Innovation

(TEKES) and in part by the Finnish Ministry of Employment and

the Economy. It is also partially supported by the European Union’s

Horizon 2020 research and innovation programme under the

5G!Pagoda project with grant agreement No. 723172.

REFERENCES
[1] T. Taleb and A. Ksentini, “An analytical model for Follow Me Cloud,”

in Proc. IEEE Global Communications Conference (GLOBECOM),

Atlanta, GA, USA, Dec. 2013.

[2] A. Ahmed and E. Ahmed, “A Survey on Mobile Edge Computing,” in

Proc. IEEE 10th Intl. Conf. on Intelligent Systems and Control (ISCO

2016), Salerno, Italy, May 2016.

[3] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman,"Bringing the

cloud to the edge," in Proc. IEEE Conf. on Computer Communications

Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, May

2014.

[4] T. Taleb, “Towards Carrier Cloud: Potential, Challenges, & Solutions,”

in IEEE Wireless Communications Mag., Vol. 21, No. 3, Jun. 2014. pp.

80-91.

[5] U. Shaukat, E. Ahmed, Z. Anwar, F. Xia, “Cloud Deployment in Local

Wireless Area Networks, Motivation, Taxonomies, and Open Re-

search Challenges”, on Journal of Network and Computer Applica-

tions, Volume 62, February 2016, Pages 18–40.

[6] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of Cloud-

lets on Interactive Mobile Cloud Applications,” in Proc. IEEE 16th

Int’l Conf. on Enterprise Distributed Object Computing Conference

(EDOC), Beijing, China, Sep. 2012.

[7] J. Fajardo, I. Taboada, and F. Liberal, “Improving content delivery

efficiency through multi-layer mobile edge adaptation”, in IEEE

Network Mag., Vol. 29, No. 6, Dec. 2015, pp. 40-46.

[8] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia Cloud Compu-

ting ,“ in IEEE Signal Processing Mag., Vol. 28 , No. 3, May 2011, pp.

59-69.

[9] Y. Jararweh, L.Tawalbeh, F. Ababneh, and F.Dosari, “Resource

Efficient Mobile Computing Using Cloudlet Infrastructure,” in Proc.

0

20

40

60

80

100

120

a b c

T
im

e
(S

ec
)

edge 1GB RAM

edge 4GB RAM

0

20

40

60

80

100

120

a b c

T
im

e
(S

ec
)

big small

IEEE 9th Int’l. Conf. on Mobile Ad-hoc and Sensor Networks (MSN),

Dalian, China, Dec. 2013.

[10] S. Wang, R. Urgaonkar, M. Zafer, and T. He, “Dynamic service

migration in mobile edge-clouds,” in Proc. IFIP Networking Conf.,

Toulouse, France, May 2015.

[11] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight Mobile Core

Networks for Machine Type Communications,” in IEEE Access Mag.,

Vol 2, Oct. 2014. pp.1128-1137.

[12] T. Taleb and A. Kunz, “Machine Type Communications in 3GPP

Networks: Potential, Challenges, and Solutions,” in IEEE Communi-

cations Mag., Vol. 50, No. 3, Mar. 2012.

[13] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagi-

annis, and T. Magedanz, "EASE: EPC as a Service to Ease Mobile

Core Network," in IEEE Network Mag., Vol. 29, No. 2, Mar. 2015.

pp.78 - 88.

[14] A. Ksentini, T. Taleb, and F. Messaoudi, “A LISP-based Implemen-

tation of Follow Me Cloud,” in IEEE Access Mag., Vol 2, Oct. 2014.

pp. 1340-1347.

[15] P. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture for

on-demand service deployment over a telco CDN,” in IEEE ICC’16,

Kuala Lumpur, Malaysia, May 2016.

[16] T. Taleb, A. Ksentini, and R. Jantti, “Anything as a Service for 5G

Mobile Systems,” to appear in IEEE Network Magazine.

[17] S. Dutta, T. Taleb, and A. Ksentini, “QoE-aware Elasticity Support in

Cloud-Native 5G Systems,” in IEEE ICC’16, Kuala Lumpur, Malay-

sia, May 2016.

