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ABSTRACT

Basic studies in denotational mathematics and mathematical engineering have led to the theory 
of abstract intelligence (aI), which is a set of mathematical models of natural and computational 
intelligence in cognitive informatics (CI) and cognitive computing (CC). Abstract intelligence triggers 
the recent breakthroughs in cognitive systems such as cognitive computers, cognitive robots, cognitive 
neural networks, and cognitive learning. This paper reports a set of position statements presented in 
the plenary panel (Part II) of IEEE ICCI*CC’16 on Cognitive Informatics and Cognitive Computing 
at Stanford University. The summary is contributed by invited panelists who are part of the world’s 
renowned scholars in the transdisciplinary field of CI and CC.
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1. INTRodUCTIoN

Cognitive Informatics (CI) is a transdisciplinary enquiry of the internal information processing 
mechanisms and processes of the brain and abstract intelligence, as well as their applications in 
cognitive computing and cognitive engineering (Wang, 2002, 2003, 2006, 2007a; Wang et al., 2002, 
2009b, 2010). CI is a contemporary field spanning across computer science, information science, 
cognitive science, brain science, neuroscience, intelligence science, knowledge science, robotics, 
cognitive linguistics, cognitive philosophy, and cognitive engineering. Cognitive Computing (CC) 
is a novel paradigm of intelligent computing platforms of cognitive methodologies and systems 
based on CI, which embodying computational intelligence by cognitive and autonomous systems 
mimicking the mechanisms of the brain (Wang, 2011b, 2012e, 2015b, 2016a; Wang et al., 2006). 
IEEE ICCI*CC’16 on Cognitive Informatics and Cognitive Computing has been held at Stanford 
University during Aug. 22-23, 2016. The theme of ICCI*CC’16 was on cognitive computing, big 
data cognition, and machine learning (Widrow, 2016; Zadeh, 2016; Wang et al., 2016b).

CI and CC emerged from transdisciplinary studies in both natural intelligence in cognitive/
brain sciences (Anderson, 1983; Sternberg, 1998; Reisberg, 2001; Wilson & Keil, 2001; Wang, 
2002, 2007a; Wang et al., 2002, 2008, 2009, 2016) and artificial intelligence in computer science 
(Bender, 1996; Poole et al., 1997; Zadeh, 1999; Widrow et al., 2015; Wang, 2010a, 2016c). Towards 
formal explanation of the structures and functions of the brain, as well as their intricate relations and 
interactions, formal models are sought for revealing the principles and mechanisms of the brain. This 
leads to the theory of abstract intelligence (αI) that investigates into the brain via not only inductive 
syntheses of theories and principles of intelligence science through mathematical engineering, but 
also deductive analyses of architectural and behavioral instances of natural and artificial intelligent 
systems through cognitive engineering. The key methodology suitable for dealing with the nature of 
αI is mathematical engineering (ME), which is an emerging discipline of contemporary engineering 
that studies the formal structural models and functions of complex abstract and mental objects and 
their systematic and rigorous manipulations (Wang, 2015a).

This paper is a summary of the position statements of invited panellists presented in the Plenary 
Panel on Perspectives on Cognitive Computing, Big Data Cognition, and Machine Learning (Part 
II), which was held in IEEE ICCI*CC 2016 (Wang et al., 2016b/c) at Stanford University, USA, on 
Aug. 23, 2016. It is noteworthy that the individual statements and opinions included in this paper 
may not necessarily be shared by all panellists.

2. THE THEoRETICAL FRAMEwoRK oF BRAIN 
ANd INTELLIGENCE SCIENCES

The theoretical framework of brain science and intelligence science can be described as shown in 
Figure 1 according to CI studies (Wang, 2007a, 2008, 2009a, 2011b, 2012c/e, 2015b/d, 2016a). It 
it recognized that the brain may be explained by a hierarchically reductive structure at the logical, 
cognitive, physiological, and neurological levels from the bottom up, which form the studies known 
as abstract intelligence, cognitive informatics, brain informatics, and neuroinformatics. The synergy of 
multidisciplinary studies at all levels leads to the theory of CI for explaining the brain. The fundamental 
theories underpinning the framework of brain and intelligence sciences are abstract intelligence 
(Wang, 2009a, 2012c, 2015a) and denotational mathematics (Wang, 2008, 2009c, 2012a/b/d, 2015a).

• Neuroinformatics (NI): NI is the fundamental level of brain studies in the hierarchical framework 
of brain/intelligence science, which studies primitive forms and mechanisms of the natural 
intelligence at the neurological level towards those of brain informatics at the physiological level, 
cognitive informatics at the functional level, and abstract intelligence at the logical level (Wang, 
2007c, 2013a; Wang and Fariello, 2012).
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NI is a transdisciplinary field that studies the neurological models and neural representations of 
genetic information via DNA and acquired information via cognitive neurology and neurocomputation. 
NI encompasses theories and methodologies for neural information processing and neural knowledge 
representations. A set of fundamental issues such as neural models of genetic and acquired information, 
neural signaling theory, the neural circuit theory, and neural representation of memory and knowledge 
is studied in NI.

• Brain Informatics (BI): BI is the second level of brain studies in the hierarchical framework 
of brain/intelligence science, which is built on NI at the neurological level towards cognitive 
informatics at the functional level (Wang, 2011b, 2012c). BI is a joint field of brain and information 
sciences that studies information processing mechanisms of the brain at the physiological level 
by computing and brain imagination technologies. BI explains how the most complicated 
physiological organ, the human brain, is formed based on the space/time divided nervous systems 
according to observations in brain anatomy and neurophysiology (Woolsey et al., 2008; Carter 
et al., 2009; Marieb 1992; Sternberg, 1998; Dayan and Abbott, 2001; Wilson & Keil, 2001; 
Wang & Fariello, 2012).

It is recognized that the exploration for the brain is a complicated recursive problem where 
contemporary denotational mathematics is needed in order to efficiently deal with its extreme 
complexity. Cognitive psychology and brain science used to explain the brain based on empirical 
relations between stimuli/tasks and reactions in the cortices. However, the lack of a precise logical 
model about the brain at a higher level has prevented a rigorous explanation of the brain by losing 
the forest for the trees. This methodological weakness has led to the investigation into upper layers 
of the problem towards cognitive and abstract intelligence theories for the brain.

• Cognitive Informatics (CI): CI, in its narrow sense, is the third level of brain studies in the 
hierarchical framework of brain/intelligence science, which is built on both NI and BI at the 

Figure 1. The theoretical framework of brain and intelligence sciences
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neurological and physiological levels towards abstract intelligence at the logical level (Wang, 2002, 
2003, 2006, 2007a; Wang et al., 2006, 2009a, 2011b, 2016a). CI is a term coined by Wang in the 
first IEEE International Conference on Cognitive Informatics (ICCI 2002) (Wang, 2002a). Beyond 
the narrow sense, the broad sense of CI is a overarching theory and denotational mathematical 
means for brain/intelligence science referring to the definition in the beginning of the paper.

CI studies the natural intelligence and the brain from both a theoretical and a computational 
approach, which rigorously explains the mechanisms of the brain by a fundamental theory known as 
abstract intelligence. CI formally models the brain by contemporary denotational mathematics such as 
concept algebra (Wang, 2015e), semantic algebra (Wang, 2013b), behavioral process algebra (Wang, 
2007b, 2014b), inference algebra (Wang, 2011a), fuzzy probability algebra (Wang, 2015c), and big 
data algebra (Wang, 2016d). Inversely, CI theories have also paved a way to the development of the 
next generation brain-inspired computers known as cognitive computers (Wang, 2009b, 2012b/e).

• Abstract Intelligence (αI): αI is the most precise level of brain studies in the hierarchical 
framework of brain/intelligence science (Wang, 2009a, 2012c). Intelligence, in the narrow sense, 
is a human or a system ability that transforms information into behaviors. In a broad sense, it is 
any human or system ability that autonomously transfers among data, information, knowledge, 
and behaviors. Recent basic studies reveal that novel solutions to fundamental AI problems are 
deeply rooted in both the understanding of the natural intelligence (Wang, 2002, 2016a; Wang 
et al., 2006) and the maturity of suitable mathematical means for rigorously modeling the brain 
in machine understandable forms through αI and ME (Wang, 2015a/d, 2016b; Wang & Berwick, 
2012, 2013).

αI is the general mathematical theories of intelligence as a complex natural mechanism that 
transfers information into behaviors and knowledge at the embodied neurological, physiological, 
cognitive, and logical levels from bottom-up aggregations or top-down reductions. The αI theory serves 
as the foundation for a multidisciplinary and transdisciplinary enquiry of the brain and intelligence 
sciences. According to CI and αI, the exploration of the brain is a highly recursive problem that 
continuously remains as an ultimate challenge underpinning almost all scientific disciplines. In order 
to rigorously explain the architectures and functions of the brain, as well as their intricate relations 
and interactions, systematic logical models of the brain have been sought across each hierarchical 
levels. αI leads to a coherent theory based on both denotational mathematical models and cognitive 
psychology observations, which enables the brain to be rigorously and precisely explained through 
the hierarchical framework of brain/intelligence science as modeled in Figure 1.

On the basis of the αI theories and the logical models of the brain, a comprehensive set of cognitive 
behaviors has been formally identified in the Layered Reference Model of the Brain (LRMB) by 52 
cognitive processes at the layer of sensation, action, memory, perception, cognition, inference, and 
intelligence from the bottom up (Wang et al., 2006). The logical model of the brain and the αI theory 
of the natural intelligence will enable the development of cognitive computers (Wang, 2009b, 2012b/e) 
that perceive, think, inference, and learn. The theoretical and functional difference between cognitive 
computers and classic ones are that the latter are data processors based on Boolean algebra and its 
logical counterparts; while the former are knowledge processors based on contemporary denotational 
mathematics. A wide range of applications of the cognitive computers have been developing in ICIC 
(ICIC, 2012) such as cognitive robots (Wang 2010a, 2015a/b), cognitive machine learning systems 
(Wang, 2016c; Wang et al., 2011, 2016), cognitive search engines (Wang, 2007a), and cognitive 
translators (Wang & Berwick, 2012). (This section is contributed by Prof. Yingxu Wang.)



International Journal of Cognitive Informatics and Natural Intelligence
Volume 11 • Issue 1 • January-March 2017

5

3. CoMPUTING wITH woRdS (Cww) ANd INVALUENCE

There are many misconception about what Computer with Words (CWW) is and what it has to offer. 
A common misconception is that CWW and Natural Language Processing (NLP) are closely related. 
This is not the case. In fact, CWW and NLP have very different agendas. The objects of computation 
in CWW are propositions drawn from natural language. Such propositions are carriers of information, 
which are typically imprecise, uncertain and incomplete. There is a vast literature on propositions 
in natural languages, but the concepts and techniques which are described in this literature are not 
suited for use in CWW because there were formulated at the time when computers had not existed.

Underlying CWW are two postulates and two concomitant rationales.

A.  Words are less precise than numbers
B.  Precision carriers a cost
C.  When numerical information is not available or too costly, CWW becomes necessary
D.  CWW’s advantages can be exploited to reduce cost, simplify design, and enhance robustness 

when there is a tolerance for imprecision

These rationales are the basis for some important applications where mathematical modules and 
precise information are put aside and simple linguistic models and fuzzy if-then rule are employed. A 
very simple example is stabilization of inverted pendulum which was described by Professor Yamakawa 
in his 1999 paper. In this paper differential equations are employed to describe a mathematical model 
of the inverted pendulum with classical stability theory. The traditional approach requires a high-
level familiarity for control and stability theories. However, in the CWW-based approach a linguistic 
model is employed and linguistic fuzzy if-then rules are used to stabilize the pendulum. Low accuracy 
sensors are employed for measuring the state of the pendulum. The basic ideas which are employed 
in stabilization of the inverted pendulum can be used in many important practical applications such 
as ship stabilization and helicopter control.

A question which arises: What can be done when neither numerical information nor linguistic 
information is available? This situation will refer to as an Invaluence, meaning that no value can be 
assign to a variable. What can be employed in such situations is an approach based on the use of so 
called Z-numbers. Informally, a Z-number, Z, is an ordered pair (A, B) referring to the value and 
confidence of a variable X, respectively. A is an estimation of the value of X called a focal variable. 
B is an estimate of the goodness/correctness/reliability of A with respect to X. The same idea can 
apply to the definition of concept which do not lend themselves to traditional form of definition. 
Among such concepts are those of causality, fairness, relevance and beauty. Actually, there are many 
concepts which are of this type and which cannot serve as a basis for construction of theories which 
are rigorous and precise. It is my believe, that CWW and Invaluence will become a significant object 
of attention and development in coming years. (This section is contributed by Prof. Lotfi A. Zadeh.)

4. LEARNINGS ANd INNoVATIoNS IN SPEECH RECoGNITIoN IN GooGLE

In the last ten years, speech recognition has evolved from a science fiction dream to a widespread 
input method for mobile devices. In this section, I describe how speech recognition works, the 
problems we have solved and the challenges that remain. I will touch upon some of Google’s main 
efforts in language and pronunciation modeling, and describe how the adoption of neural networks 
for acoustic modeling marked the beginning of a technology revolution in the field, with approaches 
such as Long-Short Term Memory models and Connectionist Temporal Classification. I will also 
share my learnings on how Machine Learning and Human Knowledge can be harmoniously combined 
to build state-of-the-art technology that helps and delights users across the world. (This section is 
contributed by Dr. Françoise Beaufays.)
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5. CoGNITIVE CoNVERGENCE oF INTELLIGENT CLoUd CoMPUTING

The computing platforms for machine learning and cognitive computing are converging from two 
sides: (1) the nanoscale and (2) the exascale. At the nanoscale we observe the ascending power of 
GPU systems (e.g. Pascal GPU) and multi-core systems (e.g. Intel KNL Xeon Phi). At the exascale 
level we are experiencing new Exabyte data centers that are pushing and storing more video and 
imaging content than ever before e.g. Google DeepMind acquisition.

This is indeed the beginning of large scale AI applications that are now being approached from 
both sides, the deep learning architectures supported by new GPU hardware with larger multicore 
systems and exascale cloud system integration with access to Exabyte data streams. Hence, an obvious 
question that is getting more attention recently is: Is the network of large cloud platforms linked by 
gigabit interfaces beginning to exhibit more and more brain-like behavior? A prior question that 
attributed Internet to a brain-like system, appeared as early as 1995 when Peter Russell suggested 
that an increasingly active global network of densely interconnected humans would initialize the 
ecosystem for the next development stage in human history (Russell, 2000).

Recently, there seems to be even more evidence (Sporns, 2005) that the internet of things, 
supported by powerful clusters of cloud systems increasingly running machine learning applications, 
does indeed seem to converge to a world-wide brain-like system (Graham & Rockmore, 2011).

A crude comparison between the current state of the Internet and brain anatomy shows the 
following: both exhibit areas of specialization; both seem to have a modular architecture; both exhibit 
the same kind of plasticity, that is, large areas can be damaged without a significant effect on the 
overall operation; both seem to exhibit similar learning and focusing processes.

In effect, the aggregation of all the information available on the internet at any particular time may 
trigger diffusion (or divergence from any particular point of interest), or convergence to a particular 
point of interest (i.e. complete focus and attention, e.g. presidential elections). This wave like oscillation 
at a global scale is similar to the brain beta-band synchronization activity produced independently 
by the prefrontal cortex and the striatum. This causes the formation of new communication circuits 
which induces rapid learning. Similarly, enhanced activity in any part of the Internet or clustered 
cloud platforms results in new nodes and new pathway generation. This suggests the development 
for larger cloud platforms will be in the direction of automated self-configuration and learning. This 
brings us to the basic concept of Cloudets (Baciu et al., 2012). The ability to monitor and automatically 
redeploy resources (Baciu et al., 2015), within a cloud orchestration framework, aided by machine 
learning for predicting resource utilization and load rebalancing (Tudoran et al., 2016) makes the 
Cloudet architecture ideal for exploring the cloud vs brain metaphor in the context of the global 
Internet. (This section is contributed by Prof. George Baciu.)

6. dATA CoRRELATIoN VS. INFoRMATIoN dIVERSITy

In a variety of disciplines such as natural science, mathematics, engineering, and social science, 
statistical correlation has been used to measure similarity between two data distributions. These 
include Pearson’s correlation in the parametric case, and Kendall’s tau and Spearman’s rho for ranking 
correlation. More recently, in the new field of information and computer science such as machine 
learning (ML), data mining (DM), artificial intelligence, and information fusion, information diversity 
has to be defined in order to measure similarity (or dissimilarity) between two variables (attributes, 
features, parameters, indicators, and so on) or two systems (forecasting systems, ML systems, DM 
systems, models, and so on).

Cognitive diversity, as defined in (Hsu et al., 2006, 2010) using rank-score characteristics (RSC) 
function to measure the dissimilarity between two scoring systems. It has been used in several domain 
applications including visual cognitive systems (Batallones et al., 2015), information retrieval systems 
(Hsu & Taksa, 2005), target tracking (Lyons & Hsu, 2009), skeleton pruning, feature selection in 
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protein structure prediction, and virtual screening (Yang, 2005). (This section is contributed by Prof. 
D. Frank Hsu.)

7. PERSPECTIVES oN CoGNITIVE CoMPUTING, BIG 
dATA CoGNITIoN, ANd MACHINE LEARNING

The AlphaGo deep learning system represents a recent breakthrough in AI, which has defeated human 
experts in Go games based on deep learning and big data techniques. This event has demonstrated a 
bright perspective on cognitive computing based on big data. It also triggered strong interest among 
researchers on big data based learning. Although the term “big data” is relatively new, the act of 
gathering and storing large amounts of information for eventual analysis is age old. The concept 
gained momentum in early 2000s when industry analyst Doug Laney articulated the definition of 
big data as the three Vs, i.e., Volume, Velocity, and Variety. The 3-Vs perception on big data may be 
extended to 5-Vs known as Volume, Velocity, Variety, Veracity, and Value. Although the 5-Vs were 
well expressed, some of them are not innate, independent, and some were still missing. Therefore, 
I propose that the characterization for big data can be modeled to include the following: Volume, 
Velocity, Distribution, Randomness, and Regularity. This is inline with a formal definition of big data 
as provided in big data algebra (Wang, 2016d): “Big data are extremely large-scaled heterogeneous data 
in terms of quantity, complexity, storage, retrieval, semantics, cognition, distribution, maintenance, 
and processing costs across computer science, information science, cognitive informatics, web-based 
computing, cloud computing, social networks, and computational intelligence.” (This section is 
contributed by Prof. Guiming Luo.)

8. BASIC RESEARCH oN SELF-dRIVING

In this statements, we focus on driver’s behavior based on real-time data collected by driving 
recorders. We treat the cognitive inference function on driving behaviors as meta-cognition. Using 
the meta-cognition, we can find out the characters of drivers behaving on highways. By comparing 
the simulation results with driving recorder data, we have identified driver’s cognitive processes on 
highways such as driving in the same lane, curve negotiation, and lane changing. In order to carry 
out the driving experiments in real-world conditions, we adopted a simple driving recorder widely 
available. The driving data were collected in a Toyota on the highway from Meguro to Nagano in 
Japan. This study can successfully recognize driver behaviors and maneuvers in real-time on the 
highway, which will lead to the design of next generation of self-driving systems learnt from human 
drivers. (This section is contributed by Prof. Fumio Mizoguchi.)

9. CoGNITIVE CoMPUTING AS A PATH To REAL 
CoGNITIoN ANd ARTIFICIAL INTELLIGENCE

I strongly believe that cognitive computing with its attempts to add understanding in the computer to 
what it is doing is the only way to understand, formalize, represent and compute human intelligence. 
I have no particular interest in trying to emulate human intelligent processes unintelligently, and 
along with other older scholars, including several former leaders and founders of machine learning, 
I lament the massive turn away from the big issues in cognitive science and artificial intelligence.

I understand that it is easier to try and exploit a method further and further but I wonder whether 
there is any use in doing it without spending as much or more effort on understanding what this 
method can yield. The crucial question in my world of natural language understanding is what a 
text means. Can a statistical method even begin to answer this question? No, it can’t, so the answers 
that can be produced, namely, whether Text A and Text B belong to the same group are allowed to 
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replace, unchallenged, what needs to be asked, and text analytic and other intelligent applications 
remain woefully inadequate.

Meaning is unattainable without representing the human knowledge of the world, a task for 
which first-order logic is not sufficient. Real semantic interpretation of language entities is in the 
isomorphism between large property-rich ontology capturing the objects of the world and relations 
among them. We have developed the prototype of such an ontology and implemented several 
applications in it. Our rule- and meaning-based approach is where efforts in cognitive science and 
artificial intelligence should be redirected, and cognitive computing is the way! (This section is 
contributed by Prof. Victor Raskin.)

10. BIG dATA NEEdS CoGNITIVE CoMPUTING

Big data will be a hot topic in this decade. The development of sensors and computers enables us 
to acquire or store big data anywhere and anytime, which may be used for future problem solving 
and decision making. One of the major branches in big data analytics is how to deal with big data 
generated by service information system. With computerization of services, medical and healthcare 
services have been introduced in order to not only enhance the productivity of service entries, but 
also generate a large amount of services logs as “big data”. Reuse of such data becomes two-fold: 
one is to reuse the results of service to gain better quality of decision making; and the other is to use 
the historic data to optimize the efficiency of services. For example, a hospital information system 
(HIS) collects up to 6TP big data, which are very difficult to grasp the whole status of a certain 
patient in a comprehensive way.

Therefore, processing such big data needs human-like interpretation before the visualization 
and analysis results are shown. This is a typical context requires cognitive computing. One of the 
most important aspects of human-like interpretation is “granulation” proposed by Lotfi Zadeh, 
who pointed out that human can interpret data or humans with different granular scales. Intuitively, 
coarse scale gives a global view of data, while fine scale provides the precise view. Zadeh discussed 
that topology may play a central role in granulation. Thus, granular computing becomes a part of 
cognitive computing especially in the case of medical big data analytics. (This section is contributed 
by Prof. Shusaku Tsumoto.)

11. LEARNING THRoUGH oVERCoMING INCoNSISTENCIES

Perpetual learning, also known as life-long, continuous, or never-ending learning, is a research direction 
in the field of machine learning (Mitchell, 2006). It is concerned with how to develop computing 
systems that can automatically, consistently and continuously improve their performance at tasks 
over time. Perpetual learning is an essential capability for long-lived intelligent agents (natural or 
artificial) to adapt to complex, dynamic and changing environments for their survival. This capability 
is indispensable for the following reasons: (a) the initial knowledge in an agent’s knowledge base 
cannot anticipate all possible situations that the agent may find itself in; (b) the agent cannot foresee 
all changes in its environment over time; and (c) there are circumstances where it is difficult for the 
agent to follow a predefined algorithm for a given problem, so it has to rely on learning approaches.

A perpetual learning agent can be defined through its STEP dimensions as follows:

Given S as a set of learning stimuli, T as a set of tasks, E as type of experience, and P as performance 
metric, a computing system perpetually learns with regard to (S, T, E, P) if the system automatically, 
consistently and continuously improves its performance P at T, following S and E over time.
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The primary objective of such agent systems is to satisfactorily perform tasks in T. Perpetual 
learning is just the means for agents to get progressively better, as measured by P, through E at T 
over time.

There are many types of learning stimuli. For instance, inconsistent phenomena (or uncertainties, 
anomalies, surprises, conflicts, peculiarities or outliers) that manifest themselves at various granularities 
of knowledge content (from data, information, knowledge, meta-knowledge, to expertise) can serve 
as learning stimuli. Henri Poincaré once said that contradiction is the prime stimulus for scientific 
research (Gotesky, 1968). This statement succinctly captures the essence of what contradictions 
or inconsistencies can help reveal, and the role they play in helping advance scientific knowledge. 
Inconsistencies can serve as effective stimuli to learning because they often signify the inadequacies, 
gaps, deficiencies, or boundary conditions in an agent’s problem-solving knowledge (Wang et al., 
2011; Zhang, 2009, 2010, 2011; Zhang & Gregoire, 2011; Zhang & Orgun, 2012, 2013). What the 
agent possesses in its knowledge base cannot properly and adequately handle the task at hand; hence 
a subsequent learning episode is in order.

Once an inconsistency is identified, a learning episode ensues. Some inconsistency-specific 
heuristics can be used to overcome the contradiction. Through the process of overcoming an 
inconsistency, the agent is able to revise, refine, or augment its existing knowledge to adapt to the 
emergent patterns and behaviors as exhibited by the inconsistent circumstance. Learning is essentially 
embodied in the process of finding ways to overcome inconsistent phenomena (Zhang, 2012, 2013, 
2014, 2015; Zhang & Lu, 2012). The goal is to incrementally improve the agent’s problem-solving 
performance over many such learning episodes.

The STEP learning agents can be characterized as follows: (a) Learning is triggered by stimuli, 
events or circumstances in which an agent is unable to satisfactorily carry out tasks in T. Learning 
stimuli serve to signify the inadequacy, gaps, deficiencies, or boundary conditions in an agent’s 
problem-solving knowledge. The agent could not adequately handle T, and P is at stake. (b) Learning 
takes place in discrete episodes. When an agent system can satisfactorily handle its tasks in T, the 
need for learning is not necessarily imminent and can be deferred. The life span of an agent can 
be considered as an alternating sequence of task-performing episodes and learning episodes. (c) 
Stimulus-specific learning algorithm(s) must be deployed in each learning episode to address the 
task-performing deficiencies as exposed by the stimulus, e.g., to overcome the specific inconsistent 
phenomenon. Different learning episodes may require different stimulus-specific algorithms to 
handle different stimuli. (d) The outcome of a learning episode is that an agent’s knowledge at T 
is refined or augmented just enough so that the agent won’t be “startled” by the same/similar event 
or circumstance that triggered the learning episode. The incremental performance improvement as 
measured by P is accomplished by the agent’s refined knowledge: it knows how to handle the task 
under the same circumstance next time. (e) The perpetual learning capability is embodied in the 
open-ended nature of such alternating sequence of task-performing episodes and learning episodes. 
(This section is contributed by Prof. Du Zhang.)

12. CoNCLUSIoN

This paper has summarized a set of position statements presented in the plenary panel (Part II) 
of IEEE ICCI*CC’16 on Cognitive Informatics: Perspectives on Cognitive Computing, Big Data 
Cognition, and Machine Learning contributed by invited panelists who are part of the world’s renowned 
scholars in the field of cognitive informatics and cognitive computing. It has been elaborated that the 
theoretical foundations underpinning brain/intelligence science and cognitive computing are cognitive 
informatics, abstract intelligence, denotational mathematics, and mathematical engineering. A wide 
range of theoretical breakthroughs and engineering applications have been reported such as cognitive 
informatics theories, cognitive computing methodologies, cognitive robots, computing with words, 
deep learning machines, cognitive learning engines, cognitive systems, cognitive knowledge bases, 
cognitive engineering, and cognitive self-driving cars.
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