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ABSTRACT: Research into gas-liquid flow and bends can be motivated by the effect of the 

bend on the flow downstream of it which could alter the flow pattern occurring and the 

performance of downstream equipment.  Alternatively, the interest might come from what 

occurs in the bend itself, there could be dryout of the film on the walls and consequent 

damage to the heat transfer equipment.  Here we present measurements made with a number 

of accurate and fast responding sensors on three cases, two on the effect of the bend and one 

considering effects in the bend.  The results, point to how to achieve certain flow patterns. 

Also recommendations are provided regarding the position of any sensor installed to 

determine flow pattern.  
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1. Introduction 
 
Gas-liquid flow occurs in a variety of industries in many pieces of equipment and the linking 

pipework between them as well as in the environment.  Of the diverse geometries through 

which gas-liquid flows pass, bends are an almost overlooked component.  Yet they are central 
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to some equipment such as fired reboilers.  It is also noted that volcanic conduits can include 

changes of direction, i.e., bends [1].  

  

Now, bends, in many applications are just used to change the direction of a flow.  However, it 

is important to understand the parameters required to define a bend.  The first three 

parameters are the pipe diameter and the angle and radius of the bend.  The angle of the bend, 

the angle between the inlet and outlet pipes, is most usually 90⁰ or 180⁰.  Because it is gas-

liquid flow that is being considered where gravity can cause stratification, the orientation of 

the inlet and outlet pipes must also be considered.  It will be shown below that there are 

significant differences in going from horizontal to vertical and from vertical to horizontal.  

Finally there is the orientation of the bend.  In the case of a 180⁰ bend with both inlet and 

outlet pipes horizontal, whether the two pipes are in the same horizontal plane or whether the 

inlet or outlet pipe is on top can cause very noticeable difference to the flow as shown by 

Sakamoto et al. [2]. 

Control of the processes which affect the behaviour of gas-liquid flows in bends and its 

consequences can be passive or active.  The former can involve activities such as design prior 

to construction or via modifications.  Active controls demands continuous measurement of 

relevant variables and adjustments of flow rates or other parameters.  Obviously, there is 

strong need for detailed knowledge of the distribution of the phases about the bend.  This 

paper considers such information, that in the literature and particularly that generated by the 

authors of this paper.  The implications for control will be discussed using two examples: (i) 

a fired reboiler with serpentine tubing and (ii) a novel combined bend/T-junction phase 

separator. 

An extensive review of the available data on gas-liquid flow in bends is given by Azzopardi 

[3] which covers information available to that date. The effect of U and inverted U bends has 



been considered by Golan and Stenning [4] and Takemura et al. [5] who noted that they act as 

phase separators because of the combined effect of centrifugal forces and gravity. In a U bend 

the two forces act in the same direction, usually sending the liquid to the outside of the bend 

and gas to the inside. In the inverted U-bend case the forces can act in opposite directions at 

lower liquid flow rates. However, at higher liquid flow rates, the centrifugal forces dominate 

and the liquid goes to the outside of the bend. Takemura et al. [5] confirm these trends from 

wall temperature excursions in electrically heated experiments. Golan and Stenning [4] report 

that the effect of the bend on phase distribution disappeared by 10 pipe diameters 

downstream of the end of the bend for the inverted U-bend case and 4 pipe diameter for the 

U-bend.  

Fired reboilers are often used in refineries and other hydrocarbon processing plants to provide 

vapour where the boiling point of the hydrocarbon liquid is too high for steam to be used for 

heating.  The tubing, usually of 0.1 to 0.15 m internal diameter, is fitted around the sides of 

the cylindrical or rectangular fire box.  The flow is divided into several streams in parallel 

and each of these passes through an up and down serpentine arrangement.  A major problem 

that can affect these units is “coking”.  Dry-out of the wall film in annular or churn flow in 

the tubes can result in a local increase of wall temperature which can lead to a breakdown of 

the higher molecular weight hydrocarbon and deposition of carbon, in the form of coke, on 

the walls.  If not detected this can build up and block the pipes.  It tends to occur at lower 

mass flow rates.  Indeed, a rule of thumb in the design of these units is that the mass flux 

through each tube should be at least 1000 kg/m2s.  Chong et al. [6] developed a model for 

these units based on the annular flow model of Hewitt and Govan [7] which took into account 

entrainment of liquid from the wall film and its redeposition back on to the film.  For the 

serpentine geometry Chong et al. added the simplifying assumption that, at each U and 

inverted U bend, the drops entrained in the gas flow were deposited on to the film.  This gave 



conditions at which the film dried out, which was usually just before a bend, and showed that 

the flow rate at which dryout occurs increases with increasing heat flux.  For heat fluxes 

usually employed, the value 1000 kg/m2s was a conservative value.  However, the 

calculations pointed out that if there was maldistribution between the parallel flow paths, 

those with lower flow rates could suffer dryout and, hence, coking.  Industry sometimes uses 

a simple practical solution to prevent coking.  The length of pipe just before the bend where 

dryout is most likely is insulated thus lowering the possibility of dryout. 

Single or combinations of T-junctions, with one inlet and several outlets have been given 

serious consideration for use as gas-liquid phase separators.  Azzopardi et al. [8] give details 

of a partial phase separator based on a bend/T-junction combination which was installed in a 

hydrocarbon processing plant and operated successfully until the plant shut down.  It has 

been suggested that better positioning of the phases approaching the junction would improve 

separation efficiency.  Sanchez-Silva et al. [9] have endeavoured to do this by positioning a 

branch pipe on the outside of a 90° bend with inlet and outlet pipes placed horizontally.  They 

studied the effect of gas and liquid flow rate and the angle of inclination on the phase 

separation for slug flow approaching the bend.  Increasing both gas and liquid flow rates 

increased the fraction of liquid taken off through the side arm.  Baker et al. [10, 11] used 

control of a valve on one of the outlet lines of a multiple T-junction separator to optimise the 

efficiency of phase separation.  They determined that different valve settings were required 

for this optimum separation and used an ECT system to identify the flow pattern. 

Therefore, the knowledge of the flow phenomena in bends and their effect on downstream 

flow patterns is very important to many industrial applications involving multiphase flow. 

The flow distribution is affected by many factors such as the physical properties and 

velocities of fluids, the geometry (diameter, angle and curvature) and orientation of the 

bends. This paper is aimed to provide a more complete understanding on the effect on the 



flow after the bends (effect of bend) and on the flow behaviour occurring in bends (effect in 

bend) through comprehensive experimental investigation employed advanced 

instrumentations.  The experiments were conducted using air as gas phase and tap water or 

silicone oil (5 mPa s viscosity) as liquid phase. Bends with different geometries and 

orientations were examined. The work aims at providing useful data for the control and 

maintenance of desired flow patterns in and downstream of bends. 

2. Review of previous work 
 
Anderson and Hills [12], reported data on liquid film thickness, axial pressure profiles, gas 

velocity distribution, and droplet entrainment in the annular flow regimes in a vertical 

inverted 180o return bend. The diameter and radius of curvature of the bend are 25 and 305 

mm, respectively. They reported that an increase in film thickness on the inside of the bend 

can be attributed to the action of gravity and to the secondary flow existing in the gas phase. 

A change in flow pattern from annular to stratified flow in the bend at low liquid flow rates 

was observed. On the other hand, for the high liquid flow rates, a local maximum in the film 

thickness was seen on the inside and outside of the bend. 

 

The distributions of water films and entrained droplets in air–water annular flows in 180o 

horizontal bend were investigated by Balfour and Pearce [13] using sampling probes. The 

diameter and radius of curvature of the bend are 25 and 48.5 mm, respectively. They took a 

series of measurements with the probes positioned at 45o intervals around the tube exit and at 

varying radii. They concluded that in those annular flows where the air speed is high, many 

of the entrained droplets are thrown very rapidly to the wall and that the entrained fraction 

tends to be negligible for high quality annular flows where the films are thin. 

 



Using needle probes to measure the local void fraction around an inverted U-bend attached to 

a 50.8 mm internal diameter pipe in the case of froth flow enabled Hoang and Davis [14] to 

determine the slip ratio, which was found to be greatly increased at the bend exit, relative to 

the entry, for low velocity conditions.  These values diminished slightly in the downstream 

flow pipe. Later, Takemura et al. [5] presented experimental results on the flow behaviour, 

pressure drop characteristics and dryout characteristics from the Joule heating of gas-water 

two-phase flows through U-shaped and inverted U-shaped bends, each having an internal 

diameter of 18 mm. They compared the results obtained from both bends and concluded that 

for the U-shaped bends, the gas phase flows along the inside of the bend, regardless of the 

flow rates of gas and water. Whilst in an inverted U-shaped bends, at lower gas and liquid 

flow rates, the tube wall at the outside of the bend at the angles of 150° to 180°varound the 

bend is in contact with the gas phase. They also reported that the inverted U-shaped bends 

have a wider safety region against dryout than the U-shaped bends. 

Tingkuan et al. [15] studied the flow patterns in a vertical 180° bend using visual observation 

and physical measurements using electrical conductance probes. The diameter and radius of 

curvature of the bend are 21.5 and 305 mm, respectively. They compared their transition data 

to those reported by Mandhane et al. [16] and Weisman et al. [17]. They concluded that their 

data fitted the transition criteria from both sources well and that the major effect of the bend 

on the flow patterns is the considerable expansion of the stratified flow regime. This 

conclusion confirmed the earlier work of Anderson and Hills [12].  

James et al. [18] investigated the effect of a 90o horizontal bend on two-phase flow using 

computational and experimental studies. In their simulations using the Eulerian-Lagrangian 

method, they presented a suggestion as to whether droplets of a given size deposit in the 

bend. This they achieved by carrying out calculations using droplets in the size range of 10 to 

500 mm  diameters. 



Experimental work in a horizontal 180° bend using air and water as the working fluids was 

presented by Sakamoto et al. [2]. The diameter and radius of curvature of the bend are 24 and 

135 mm, respectively. They employed the conductance type void probe to measure the liquid 

film thickness and an L-shaped stainless steel sampling tube to measure the local droplet flow 

rate. They reported the distributions of annular liquid film thickness and the local drop flow 

rate in the gas core in a straight pipe and at the end of three U-bends at horizontal to 

horizontal (upward), vertical upward, 45o upward to the horizontal. They claimed that the 

local flow rate of droplets in the gas core in horizontal pipe flow reaches a minimum near the 

lower wall of the pipe and a maximum near the upper wall. 

The effect of 90o bends on two-phase air–silicone oil flows was investigated by Abdulkadir et 

al. [19] using advanced instrumentation, electrical capacitance tomography (ECT), wire mesh 

sensor (WMS) and high speed camera. They mounted the ECT probes upstream of the bend 

while WMS was positioned immediately upstream or immediately downstream of the bend. 

The downstream pipe was maintained horizontal whilst the upstream pipe was mounted either 

vertically or horizontally. The bend (R/D) was made of transparent acrylic resin. The 

superficial velocities of the air that they considered ranged from 0.05 to 4.73 m/s and for the 

silicone oil from 0.05 to 0.38 m/s. From an output from the tomographic equipment, they 

identified flow patterns using both the reconstructed images as well as the characteristic 

signatures of probability density function (PDF) plots of the time series of cross-sectional 

averaged void fraction.  

The behaviour of film fraction within a vertical 180o bend using air and water as the 

operating fluids has been investigsted experimentally by Abdulkadir et al. [20, 21]. The 

diameter and radius of curvature of the bend are 127 and 381 mm, respectively. In the first 

paper they reported on measurements of cross-sectional film fraction using conductance ring 

probes placed at 17 pipe diameters upstream of the bend, 45o, 90o and 135o into the bends and 



21 pipe diameters downstream of the bend. They reported that the average film fraction is 

higher in straight pipes than in bends and that the condition for which the liquid goes to the 

outside or inside of the bend can be identified based on a modified form of Froude number, a 

proposal first made by Oshinowo and Charles [22].  The second paper [21] described 

measurements of film thickness distributions of film thickness around the pipe circumference 

at different points around the bend.  They employed air superficial velocities of 3.5 to 16.1 

m/s and water superficial velocities from 0.02 to 0.2 m/s. The liquid film thickness 

distribution in the bend was measured with pin and wire probes. With the former for 

measuring thin films (up to 2.5 mm) outside the bend while the latter for thick liquid films 

inside the bend. These measurements have been supplemented by visual observation.  

Kerpel et al. [23] investigated the behavior of two-phase flow up- and downstream of a sharp 

return bend. They used a return bend with a radius of curvature of 1 mm and an inner 

diameter of 8 mm. The refrigerant used is R134a; the mass flux was varied between 200 to 

400 kg/m2 and the vapor quality varied between 0 and 1. The bend orientation is vertical. 

Upward flow as well as downward flow through the bend was studied. Eight capacitance 

sensors were placed at several locations upstream and downstream of the return bend. The 

series of void fraction from the sensors were compared in order to determine the presence and 

extent of the bend effect. They concluded that the disturbance due to the return bend stretches 

out, to at least 21.5 tube diameters downstream of the bend. Upstream of the bend, an effect 

was absent for downward flow, for upward flow a limited effect was observed.   

Experimental measurements of single-phase and two-phase frictional characteristics and 

associated observations of flow patterns associated with a 90o bends were discussed in the 

paper by Hsu et al. [24]. The two bends have inner diameters of 5.5 and 9.5 mm with tube 

curvature ratio (2R/D) of 5.4 and 4.2, respectively. The bends were installed upward, 

horizontal or downward arrangement. They found that for single-phase flow, the bend friction 



factor was always greater than that of the straight tubes at the same Reynolds number. On the 

other hand, the bend friction factor values for a pipe diameter of 9.5 mm with smaller 

curvature ratio are greater than those from a diameter of 5.5 mm. the resultant two-phase 

frictional pressure drops of 90o bend were well predicted by the correlation of Sanchez-Silva 

[9].  For the two-phase frictional pressure gradient, the upward arrangement is greater than 

that of the horizontal arrangement due to swirled motion and liquid flow reversal.  

Yadav et al. [25] reported experimental investigations concerning air–water two phase flow 

through a 2.25 mm circular mini-channel U-bend. They established the influence of radius of 

curvature by developing 2 mini-channel U-bends with radius of curvature as 6 mm and 12 

mm. A T-junction was used as mixing geometry for air and water. The superficial gas and 

liquid velocities were in the range 0.0419–0.4192 m/s. At these flow rates, five flow patterns 

were identified including plug, slug, bubbly, bubbly-plug and deformed plug. Flow pattern 

transition maps were developed as a function of radius of curvature. The influences of radius 

of curvature on hydrodynamics of Taylor bubble flow such as void fraction, liquid hold up, 

Taylor bubble velocity, Taylor bubble and liquid slug length was investigated. The radius of 

curvature with other flow parameters was found to have significant effect on two-phase flow 

patterns, its transition boundaries and hydrodynamics of Taylor bubble flow. 

At Cranfield University, experiments have examined flow in a serpentine geometry with 

vertical pipes [26, 27]. The arrangement consisted of four pipes joined by U and inverted U 

bends starting with an upwards flow.  Measurements were made on the first down and second 

up sections at 5, 30 and 46 pipe diameters from the preceding bend using Wire Mesh Sensor 

and local conductivity probes for film thickness which were mounted at very 90° around the 

circumference.  It was reported that though there was an obvious asymmetry in the 

circumferential film thickness profile at the 5D position, this was hardly noticeable by the 

30D station. 



3. Experimental instrumentation 
 
A number of different of instruments and measurement sensors were used in this work. They 

are described below. 

 
3.1 Electrical Capacitance Tomography (ECT)  
A detailed description of the theory behind the ECT technology is described by Huang [28], 

Zhu et al. [29] and Hunt et al. [30]. The method can image the dielectric components in the 

pipe flow phases by measuring rapidly and continually the capacitances of the passing flow 

across several pairs of electrodes mounted uniformly around an imaging section. Thus, the 

sequential variation of the spatial distribution of the dielectric constants that represent the 

different flow phases may be determined. In this study, the ECT system (Fig.1) supported by 

TomoFlow limited, had been previously used by several researchers. Details can be found in 

Azzopardi et al. [31], Abdulkareem  [32], Abdulkadir et al. [19].   

Fig. 1 ECT sensor 
 



A simplified version of the approach has been proposed [33] which can be used to idenify 

flow patterns for a given set of flow rates. 

 
 
3.2 Wire Mesh Sensor (WMS) 
The capacitance WMS sensor (Fig.2) described in detail by da Silva et al. [34] can image the 

dielectric components in the pipe flow phases by measuring rapidly and continually the 

capacitances of the passing flow across several crossing points in the mesh. It consists of two 

planes of 24 stainless steel wires with 0.12 mm diameter, with a 2.78 mm wire separation 

within each plane and 2 mm axial plane displacement. It was noted that since the square 

sensor is installed in a circular tube, only 440 of the total 576 wire crossing points are within 

the radius of the tube. During the experiments, the transmitter lines are pulsed one after 

another. By measuring the signal of all crossing orthogonal receiver wires, the local 

capacitance at the crossing points in the mesh is determined. This capacitance signal is a 

measure for the amount of silicone oil, and thus indicates the local phase composition in the 

grid cell. Systematic tests have been carried out to test the accurracy of the WMS/ECT.  Sharaf et al. 

[35] made simultaneous measurements with WMS and nuclear absorption (gamma).  The beam of the 

latter was positioned immediate below each of the wires in turn.  The chordal average was obtined 

from both instruments and good agreement was achieved.  Azzopardi et al. [36] made simultaneous 

measurements with WMS/ECT.  Excellent agreement was found in the comparison of the time and 

cross-sectionally averaged void fractions. 



 
Fig. 2 WMS sensor 
 
 
 
3.3 Ring probes  
Cross-sectionally averaged void fraction in two-phase gas-liquid mixtures can be measured 

by two flushed mounted parallel ring probes. They were first employed by Asali et al. [37], 

while Andreussi et al. [38] and Tsochatzidis et al. [39] developed the theoretical bases 

regarding the response of this electrode configuration. Fossa [40] compared the phase 

distribution results measured with two flushed mounted parallel ring probes for annular, 

stratified and bubble flow with the theoretical data available in the literature. The probes used 

in this work consist of two stainless steel ring electrodes mounted in acrylic resin housing 

(Fig.3). They were carefully manufactured so that the electrodes had the same diameter as the 

test section. Details of the geometry can be found in Saidj et al. [41]. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. 3 Ring probes 
 
3.4 Pin probes 
 
For gas–liquid annular flow in which the liquid is electrically conducting, liquid film 

thickness can be determined by the measurements   of   the   electrical   conductance between 

two electrodes in contact with the liquid film. The measured liquid film thickness is assumed 

to be the value at the mid-point between the centres of the electrodes. Different electrode 

geometries of such as needle probes, parallel wire probes and flush mounted pin probes have 

been reported by researchers over the last decades [42-45]. Flush mounted pin probes are 

suitable for measuring very thin liquid films, typically up to 2.5 mm. If care is taken in the 

mounting of probes, the method is virtually non-intrusive. The electric field is very weak 

away from the pipe surface and has a negligible contribution to the passage of current. The 

response of the pin probe is initially linear to the thickness of the liquid film (typically up to 2 

mm) and then asymptotically flattens to a uniform value to the thicker liquid film. This 

phenomenon is called probe “saturation”. When the probe is saturated, its output signal is not 

sensitive to the change of liquid film thickness. To enlarge the range of measurement, the 

diameter and separation of pins needs to be increased. However, the greater the spacing, the 

more averaged is the result over space. To obtain an optimum measurement of the liquid film 

thickness therefore, a balance must be struck between range of operability and local character 

of the measurement [29]. The pin probe used in this work is shown in Fig.4. The probe 

consists of 20 pairs of electrodes made of 1.5 mm diameter stainless steel welding rods. 

Every pair of pins is spaced 15o away from the neighbour pair while the space in the same 

pair is 5o. The flow of electrical current from a transmitter in one probe to the neighbour 

receivers and transmitters (cross–talk) will decrease the spatial resolution of the sensor (Belt 

2006), and thus increase the measurement errors of the liquid film thickness. To reduce the 



effect of cross–talking, the signals from the 20 pair of pins were taken as 4 groups: 1, 5, 9, 13 

and 17 in group A; 2, 6, 10, 14 and 18 in group B; 3, 7, 11, 15 and 19 in group C and 4, 8, 12, 

16, and 20 in group D. Details of probe calibration can be found in [29-31].    

 
Fig.4 Pin Probes 
 
3.5 Parallel wire probe  
When the liquid film thickness is beyond the measurement range of the pin probes, parallel 

wire probe can be used. Wire probes were originally used by [43-47]. According to Brown et 

al. [48] these probes give a linear response versus liquid film thickness and allow more 

localised measurements of thicker films to be carried out. The intrusive wires, however, may 

cause the perturbation to the flowing film. The disturbance can be minimised by the use of 

very thin wires [48]. A more significant disturbance may occur when the probe has to work in 

a wavy film. When the liquid  height decreases, a thin liquid layer sticks to the probe which 

might indicate a liquid level  higher than the actual level, thus introducing a certain amount of 

lag in the dynamic response of  the probe. This phenomenon was investigated experimentally 



[36] who reports these errors to be negligible and that the response of the probe is almost 

instantaneous. In this work, the parallel-wire probe (Fig.5) used to measure liquid film 

thickness at the bottom of the bend is the same type employed by [26, 28, 31, 37, 38]. It has 

five pairs of stainless steel wires with the diameter of 0.33 mm stretched along the chords of 

the cross-section of the pipe.  The spacing between the two wires of each pair is of 5 mm and 

the distance between the neighbour pairs is 20 mm, with the central pair placed 

symmetrically about a vertical diameter. Details of the electronic circuit and probe calibration 

can be found in [31, 37]. 

 
Fig.5 Parallel wire probe 

4. Results and discussion 
 
4.1 Horizontal to vertical upwards 90o bend with ID of 34 mm 
Tap water drawn by a pump from a storage tank is injected into a mixer where it is mixed 

with the air supplied from a compressor. The air-water mixture flows through a horizontal 

pipe, a horizontal to vertical 90o bend with a curvature of 5, a vertical pipe and finally to the 



storage tank, where the air and the water are separated. All the pipes have the same internal 

diameter of 34 mm and a length of 150 diameters of the pipe to ensure full development of 

flow. The water is recirculated and the air is released to the atmosphere. Nine ring probes 

shown in Fig.3 were placed along the test section. Three before the bend, at 1175, 660 and 

145 mm, and six after the bend, at 145, 660, 1175, 1690, 2205 and 2720 mm respectively 

from the bend. The position of the first probe was 3935 mm from the mixer. More details of 

rig setup and probe calibration can be found in [24]. 

 
Fig. 6 Time series of cross-sectionally average void fraction along the test section (liquid 
superficial velocity = 0.3 m/s, gas superficial velocity = 0.32 m/s) 
 
Figure 6 shows an example of the average void fraction time series obtained from the nine 

conductance probes (CP) in the flow line and in the riser (CP1 to CP9). The superficial 

velocities are 0.3 and 0.32 m/s for the liquid and the gas respectively. It is obvious that the 

bend affects the flow behaviour, which can be noticed in the time traces of the first 

conductance probe just downstream the bend. The flow then, tends to re-establish itself from 

practically the probe (CP7) where the time series remain the same.  

 



Based on the work of Jones and Zuber [39], the flow regime can be quantitatively identified 

by examining the signature of probability density functions (PDF) of the cross sectional 

averaged void fraction data. For example, slug flow is featured by twin peak PDF, one at low 

void fraction corresponding to the void fraction in liquid slug while the other at high void 

fraction representing Tylor bubble. The analysis of PDF characters provide clear evidence 

that stratified plug, wavy and slug flows were developed in the flow line while slug and churn 

flows occurred in the riser when the gas and liquid superficial velocities were operated from 

0.3 to 4 m/s and from 0.21 to 0.91 m/s respectively. This is also confirmed by direct 

visualisation. The flow pattern maps of up- and down-streams of the bend are shown in Fig.7 

and Fig.8 respectively. 

 

 
Fig.7 Flow pattern map in the flow line upstream the 90°bend [24] 

 
 
 



 
 
 
 

 
Fig.8 Flow pattern map in the riser downstream of the 90° bend [24] 

A flow is considered fully developed when its configuration does not change after it travels a 

certain distance. In order to follow and quantify the minimum distance necessary for the 

development of the flow after the 90° bend, the Probability Density Function (PDF) of the 

void times series obtained from the six conductance probes after the bend (CP4 to CP9) are 

plotted and analysed. The six probes are located 145, 660, 1175, 1690, 2205 and 2720 mm 

respectively 4, 19, 35, 50, 65 and 80 pipe diameters downstream the bend respectively. The 

plots corresponding to the minimal liquid and gas superficial velocities combinations are 

shown in Figs. 9 and 10. It appears from these figures that the shapes of the PDFs are 

changing along the downstream pipe of the bend and remain the same from the fourth 

conductance probe from the bend (CP7), situated 50 pipe diameters length from the bend. It 

is worth to note that this recovery length is in the order of that found by [40]. Indeed these 

latter, from the analysis of pressure drop of a combination of pipe components positioned 



horizontally, found that the two-phase flow is recovered at about 10 to 50 pipe diameters 

downstream the 90° bend depending on the flowrates. 

 

Fig.9 Probability Density Function of the void fraction time series downstream the bend (liquid 
superficial velocity = 0.3 m/s, gas superficial velocity = 0.32 m/s) 

If the characteristic frequency obtained from the Power Spectral Density of the time series of void 

fraction are considered for the horizontal as well as the vertical pipe, it is seen in Fig. 10 that for the 

lower gas superficial velocities the frequencies are substantially the same upstream and downstream 

of the bend.  The liquid superficial velocity was 0.49 m/s in this case.  Similar results at higher and 

lower liquid superficial velocities have been presented elsewhere [36].  This is the persistence of 

frequency concept introduced by Azzopardi et al. [xx] and considers that if the is slug flow in the 

horizontal pipe this will continue with the same frequency in the vertical pipe after the bend.  In 



contrast, when the flow in the horizontal pipe is stratified, there is of necessity a change in flow 

pattern in the vertical pipe and the frequency changes across the bend. 

 

Fig.10 Axial variation of characteristic frequency.  Liquid superficial velocity = 0.49 m/s 

 

4.2 90o bends in series (vertical to horizontal then horizontal to horizontal) 

Experiments were carried out on the effect of two orientations of bends.  Initially, a vertical 

to horizontal bend was investigated with measurements made just before and just after the 

bend.  Subsequently, a more extensive arrangement was employed with a 4.5 m long vertical 

pipe followed by a vertical to horizontal bend 9.2 m long horizontal pipe leading to a bend in 

the horizontal plane and a further 5.5 m of horizontal pipe.  In both cases the pipe diameter 

was 67 mm and the fluids utilised were air and a silicone oil with viscosity of 5 mPa s.  The 

ECT and WMS techniques were used.  Data collection from the ECT was synchronised with 

that of the WMS by sharing one trigger command.  A sampling time of 60 seconds was 



employed and sampling rates of 200 Hz (ECT) and 1000 Hz (WMS) utilised. The bends were 

manufactured from transparent acrylic resin and polished to enable high quality images to be 

obtained. Tests showed that the length of 4.5 m (66 pipe diameter) of vertical pipe was 

sufficient to provide a reasonably developed flow at the entrance to the bend [41-43].  In 

these experiments the ECT was always placed at 5D upstream of the bends, while the WMS 

was located at 1, 10 40, 69, 98 and 128 diameters from vertical to horizontal bend and 10, 40, 

69 and 75 diameters from the horizontal to horizontal bend. 

Time averaged void fraction (sometimes considered as its compliment, liquid hold up) is 

important in calculation of pressure drop in piping.  For a given liquid superficial velocity, it 

increases with gas superficial velocity.  If the values obtained from the data of ECT and wire 

mesh sensor for upstream and downstream of the bend, respectively, are considered it is seen 

that at intermediate liquid superficial velocities, 0.157 and 0.314 m/s, the mean void fractions 

follows the same trend and there is good agreement between the values upstream and 

downstream of the bend.  However, at higher and lower liquid superficial velocities, 0.052 

and 0.524 m/s, the void fractions decrease after the mixture passes the bend. This difference 

is probably due to the change of flow patterns caused by the change in direction of the effect 

of gravity.  In stratified flow the controlling force is gas shear whilst in slug flow part of the 

liquid is pushed along by the gas. 

As discussed in the previous section, the time series of cross-sectional average void fraction 

shows many essential features of the flow. Examples are given in Fig. 11 of such data taken 

with the WMS mounted just before and just after the vertical to horizontal bend.  These are 

from a liquid superficial velocity of 0.38 m/s and the gas superficial velocities of 0.05 and 

0.71 m/s.  The effect of the bend on the flow behaviour can be clearly seen from the figure. 

For the lower flow rate, the flow patterns upstream of the bend is bubbly flow and stratified 

wavy downstream of it.  In contrast at the higher gas flow, there is slug flow in the vertical 



pipe whilst downstream of the bend there is plug flow with its large gas bubbles separated by 

a liquid layer [24].  
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Fig.11 Time series for void fractions at upstream and downstream of the bend (liquid 
superficial velocity of 0.38 m/s and gas superficial velocities of (a) 0.05 and (b) 0.71 m/s)  

The main flow patterns observed for the vertical test section during this study are bubbly, 

spherical cap bubbles, slug, churn flows in the vertical pipe and stratified, wavy stratified, 



plug and slug flows in the horizontal lengths.  The superficial velocities for the gas were from 

0.045 to 3.21 m/s and whilst those for the liquid were from 0.15 to 0.53 m/s. At lowest gas 

superficial velocity studied, 0.05 m/s, the flow pattern in the vertical pipe was bubbly flow. 

At the phases passed around the bend to the horizontal section, the liquid phase drained to the 

bottom of the pipe due to the effect of gravity and stratified flow results as shown in Fig.15 

was dominant for the whole length of the horizontal section. When the gas superficial 

velocity increased to 0.18 m/s, the flow in the vertical section became of the cap bubble type 

while slow moving slugs were observed in the horizontal section. The liquid level was high 

enough to bridge the pipe to form plug flow. The body of those slugs contained a limited 

number of air bubbles. Slugs increased in length as they moved down the horizontal pipe. At 

higher gas superficial velocity, slug flow became dominant in the vertical pipe. As the slugs 

approach the bend, the liquid phase was moved to the outside of the bend at first due to the 

effect of the centrifugal force.  Further round the bend, the gravitational pull drained the 

liquid to the inside of the bend leaving dry patch on top, until a new slug unit covered the dry 

zone occupied by the gas phase. In this case the flow in the horizontal section near the bend 

was stratified with slightly disturbed interface; while hydrodynamic slugs formed at ~55D 

downstream the bend. The body of the slug at these conditions contained more dispersed 

bubbles. One important, but often overlooked, feature is that some slugs are more likely to 

break up before leaving the test section. At the maximum liquid and gas superficial velocities 

(liquid superficial velocity = 0.53 m /s ,gas superficial velocity = 3.21 m/s ) the flow in the 

riser was churn while stratified wavy was dominant up to ~55D downstream the bend in the 

horizontal section, then slug flow become dominant for the rest of the pipe length.  

These direct visual observations were confirmed by ECT/WMS images of cross-section 

distribution of the phases and data of the PDF of the void fraction time series obtained from 

ETC and WMS sensors. These displays of the evolution of the flow are shown in Figs. 11 and 



12 respectively for a lower flow condition, and in Figs 13 and 14 for the highest flow rates 

studied, liquid superficial velocity of 0.53 m /s and gas superficial velocity of 3.21 m/s.  

It is noteworthy that the PDF signatures of the void fraction time series in the vertical pipe 

from Fig.14 right bottom graph and that the PDFs signature of churn flow in the riser and the 

slug flow in the horizontal section are similar in shape. This due to that the hydrodynamic 

slugs formed at these conditions contain a very high dispersed bubble population where the 

gas hold up reaches a maximum value of  around 0.48.  

Both the ECT and WMS systems can produce phase distribution images of fluids inside the 

pipe. The images obtained from the WMS are shown relative to the position where they were 

taken in Fig.12 where blue represents the liquid phase and the red gas.  This is for a lower 

flow rates, gas superficial velocity of 0.05 m/s and liquid superficial velocity of 0.15 m/s.  As 

seen the flow is bubbly at the top of the vertical section but is stratified in the horizontal pipe.  

This is confirmed by the equivalent plots of the PDFs of the cross-sectionally averaged void 

fraction illustrated in Fig. 13.  Downstream of the horizontal to horizontal bend the PDFs 

show a two peak shape.  These normally would be associated with slug flow, however, direct 

observation indicate that at the lower void fraction conditions, the liquid level did not touch 

the top of the pipe and were more a manifestation of a wavy stratified flow.  Figs. 14 and 15 

are the corresponding plots for higher flow rates, gas superficial velocity of 0.55 m/s and 

liquid superficial velocity of 0.45 m/s.  Here the flow pattern is slug flow at the top of the 

vertical pipe and in the horizontal pipe. 

  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Tomographic images from positions along the pipe system.  Liquid superficial velocity = 
0.15 m/s and gas superficial velocity = 0.05 m/s. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.13 Probability Density Function of void fraction time series positions along the pipe system.  
Liquid superficial velocity = 0.15 m/s and gas superficial velocity = 0.05 m/s.  

 

 

 

 

 

 

 

 

 

 

Fig.14 Tomographic images from positions along the pipe system.  Liquid superficial velocity = 
0.45 m/s and gas superficial velocity = 0.55 m/s. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15 Probability Density Function of void fraction time series positions along the pipe system.  
Liquid superficial velocity = 0.45 m/s and gas superficial velocity = 0.55 m/s. 
 



 

 

The characteristic frequencies of the time series of void fraction obtained at all the position 

studied have been extracted the Power Spectral density approach.  These are shown in Figs. 

16 and 17 and illustrate the effect of gas and liquid flow rates.  Though in some cases there is 

a rise from just before to just after the vertical to horizontal bend, this is not always the case.  

The more dominant trend is the continuous decrease with downstream position.  Beyond the 

horizontal to horizontal bend the frequency can be independent of position.  These results are 

significantly different from those for the horizontal to vertical bend presented in Fig.10.  

They indicate that there is no persistence of frequency and reinforces the point that only 

occurs if a flow pattern, particularly slug flow is maintained across the bend.  The vertical to 

horizontal bend destroys slug flow, at least temporarily.  As noted above it can take ~55D for 

it to reoccur. 

 
 
 
 
 
 



Fig.16 Characteristic frequency along the pipe system.  Effect of gas flow rate.  Liquid 
superficial velocity = 0.53 m/s. 
 

Fig.17 Characteristic frequency along the pipe system.  Effect of liquid flow rate.  Gas 
superficial velocity – 0.55 m/s. 
 

 



4.4 180o vertical inverted U-bend with 127mm ID 

Liquid film thickness distribution of an air–water mixture flowing through a vertical inverted 

U-bend with 127mm ID was experimentally investigated. The water stored in the bottom of a 

separator was pumped to a gas–liquid mixer before it entered an 11 m vertical riser, flowed 

into the bend, went down a 9.6 m down-comer and returned to the separator. The riser has the 

same internal diameter as the bend and down-comer. The bend has a radius of curvature of 

381 mm (R/D = 3) and consist of four modular blocks and one instrumentation section 

containing all the measuring sensors (parallel-ring probe, flush-mounted pin probe shown in 

Fig.4 and parallel-wire probe shown in Fig.5). This modular construction enables the 

measuring section to be inserted every 45o along the bend. The superficial velocities of air 

ranged from 3.5 to 16.1 m/s and those for water from 0.02 to 0.2 m/s. At these superficial 

velocity ranges, churn and annular flows were dominated. More details about the rig and 

probe calibration can be found in [31, 35].  

The variations of the liquid film thickness at a liquid superficial velocity of 0.2 m/s are shown 

in Fig.18. Here the values on the inside and outside of the bend only are shown together with 

value from upstream of the bend.  In a previous publication [21], data were given in the form 

of polar coordinates but because the thin films involved, particularly on the outside of the 

bend, are so thin, these are not particularly informative.   

 

 

 

 

 

 

 



 

 

 

Fig.18 Variation of film thickness around the bend on the inside (closed symbols) and 
outside of the bend (open symbols).  Liquid superficial velocity 0.2 m/s. 

The plots show that the profile of the liquid film thickness changes significantly when the 

bend angle is increased from 45o to 135o. At the 90o and 135o bend positions, the liquid film 

is thick at the inside of the bend and of the same magnitude. The thick films become a source 

of new droplets and at the inside of the 90o bend location; the liquid film is thinner than at the 

45o and 135o bend designations. At the inside of the 45o bend position, the liquid film is 

thicker than that at both the 90o and 135o bend positions. This may be due to the deposited 

droplets falling down owing to gravity drainage as a liquid film at the inside of the 45o bend 

position. Though, a thickening of the liquid film outside the three bends is also visible, most 

especially at the 90o and 135o positions.  

Because the ratio of average liquid film thickness to pipe diameter is very small, the variation 

of liquid film thickness cannot be seen clearly in the polar coordinates [21] the results are 

instead in Cartesian coordinates. Fig.19 shows the variation of the time averaged liquid film 

thickness that occurs in the bend. Here, the abscissa is the circumferential angular position of 

the probes and the 90 and 270o are the top and bottom of the pipe. 0 and 180o represent the 

side of the bend. 

At a liquid superficial velocity of 0.1 m/s, the liquid film thickness inside the bend decreases 

with an increase in bend angle, 45o to 135o as shown in Fig.19a. In contrast, for the outside of 

the bend, the liquid film thickness increases and then slightly remains constant with an 

increase in bend angle. The increase in liquid film thickness on the inside of the 45o bend can 

be attributed to gravity drainage which causes more liquid film to accumulate here. The 

increase on the other hand for the outside of the 90° and 135o bends is a result of an increase 



in droplet deposition outside the bend. This is in agreement with the observations reported by 

Flores et al. [43] who confirmed that a secondary flow exists in horizontal annular flow using 

a twin axial vorticity meter. The CFD calculations were carried out by Tkaczyk [44] using air 

and water and the same geometry as the experiments reported above.  He employed Star-CD 

for the modelling and simulation of the air–water flow around a vertical 180o return bend. 

The Star-CD code employs the Finite Volume method to numerically discretize the 

computational flow domain. The air–water flow was modelled as a continuum gas field, 

continuum liquid film and as liquid droplets of varying diameters. He accounted for the 

dynamics of the droplet flow in the gas core and the interaction between them. The liquid 

film was solved explicitly using a modified Volume of Fluid (VOF) method. The droplets 

were tracked using a Lagrangian technique. The liquid film to droplet and droplets to liquid 

film interactions were taken into account using sub-models to complement the VOF model. 

Tkaczyk [44] took into consideration the fact that in free surface flows, a high velocity 

gradient at the gas/liquid interface results in high turbulence generation. In order to overcome 

this inadequacy, he implemented a correction to the VOF model based on the work of Egorov 

[45]. Full details can be found in Tkaczyk [44]. The model gives a reasonably good 

prediction of the liquid film thickness in the bend. Fig. 19 shows the comparison between the 

experimental results and those obtained numerically.  The film thickness is plotted on a 

logarithmic scale to show the variation of the lower film thicknesses more clearly.  Tkaczyk 

[44] correctly predicted the liquid film thickness inside the 90 and 135o bends at the liquid 

and gas superficial velocity of 0.1 and 14.8 m/s, respectively, but under-estimated  the 

maximum film thickness inside the 45o bend with an error of 65 %. It is interesting to note 

that the double peaks found on the liquid film thickness at the 45o bend were correctly 

predicted by the model.   

 



 

 

 

 

 

 

Fig.19 Spatial liquid film thickness distribution at liquid superficial velocity of 0.2 m/s 

and gas superficial velocity of 14.5 m/s. 

 
For a liquid superficial velocity of 0.2 m/s, the maximum liquid film thicknesses for the 

inside of the bend are found at the 45o position as shown in Fig.19. Now the impingement 

point for drops is beyond 45°.  But by 90° this liquid has drained under gravity to the inside 

of the bend.  In addition, some of the liquid meant to move up to the 90o bend returned back 

(back flow) to the 45o bend due to its lower momentum and curvature of the bend. According 



to Abdulkadir et al. [21], these two scenarios could explain why the observed liquid film at 

the bottom of the 45o bend was thicker than the other locations, at 90° and 135o. Some of the 

liquid at the bottom and top of the 90o bend due to the action of gravity and shape of the 

curvature of the bend, drain down to the bottom of the 135o bend and accumulate there. Also 

the droplets that impinged on the wall also deposit at the 135o bend. This could be the reason 

why there is a thick film at the 135o bend but less than those found at the 45o and 90o bends. 

This claim is also supported by the images taken by a high speed video camera. For the 

outside of the bend scenario, the liquid film is thickest at the 90o, followed by the 135o and 

thinnest at the 45o bend. The film is wavy. This indicates that more liquid is drained from the 

top of the 45o bend. As a consequence of this drainage, the liquid film at the outside of the 

45o bend thins out and become more uniformly distributed around it. The uniformity of the 

liquid film outside the 45o bend could be due to a balance of circumferential drag, shear and 

gravity forces. Another possible explanation could be that the pin probes limited to thin liquid 

film measurements failed to detect the thick films outside the 45o bend.  

 The data collected can be used to understand the variation of liquid film thickness 

distribution with gas and liquid superficial velocities. This information can actually aid in 

providing information about where to locate a flow controller. 

 
5. Conclusions 
The knowledge of the phase distribution in the bends and the influence of the bends on flow 

downstream of them is crucial when a desired flow patterns need to be maintained in pipes.  

From the data provided, appropriate diameters could be suggested to achieve a specific flow 

pattern.  The information presented provides useful guidance on where sensors driving flow 

controllers should be located.  If there is a requirement to have or avoid slug flow, then a 

detector should be positioned just downstream of a vertical to horizontal bend.  However, 

because slug flow can reform further downstream, a second detector ~100 D further 



downstream might be sensible.  It is noted that the full cross section distribution of the phases 

is not required.  The approach proposed by Jeanmeure et al. [31} would be much simpler yet 

perfectly adequate.  It could be adaptable for industrial applications.  It employs capacitance 

measurements and is so is applicable only to non-conducting liquids.  However, an equivalent 

version using resistance for conducting liquids such as water should be possible. 

The material presented above has shown that state of the art instrumentation is required to 

extract the complexities of gas-liquid flows in bends. These instruments, though suitable for 

laboratory applications would need significant developments before they could be utilised in 

industrial applications.  Therefore, the contribution of this work to the control of gas-liquid 

flows in bends will be limited to the passive type, where the knowledge influences the design 

of geometry employed and the flow rates used. 

In the case of fired heaters, coking occurs is just before the bend. This is caused by the rate of 

entrainment of drops from the film and the rate of evaporation from the film is greater than 

the rate of replenishment of the film by depositing drops. A more important problem is the 

split of feed between tubes in parallel. If one of these tubes has a low flow, that is the one in 

which coking will occur.  

The data provided in the paper will be useful in developing a fit-for-purpose phase separator. 

The bend/T-junction separators require the majority of the liquid on the outside of the bend in 

a steady manner, i.e., stratified flow is preferable to slug flow.  The accumulated knowledge 

above will enable the optimum pipe diameter to be selected. 

Acknowledgements 
Elements of this work were carried out as part of grants from the UK Engineering and 
Physical Sciences Research Council (grant numbers EP/E004644/1 & EP/F016050/1).  

This work has been undertaken within the Joint Project on Transient Multiphase Flows and 
Flow Assurance, sponsored by Advantica; BP Exploration; CD-adapco; Chevron; 
ConocoPhillips; ENI; ExxonMobil; FEESA; IFP; Institutt for Energiteknikk; Norsk Hydro; 
PDVSA (INTERVEP); Petrobras; PETRONAS; Scandpower PT; Shell; SINTEF; Statoil and 
TOTAL. The Authors wish to express their sincere gratitude for their support.  



M. Abdulkadir would like to express sincere appreciation to the Nigerian government 
through the Petroleum Technology Development Fund (PTDF) for providing the funding for 
his doctoral studies. L.A. Abdulkareem would like to express sincere appreciation to the 
University of Zakho and the Ministry of Higher Education, Kurdistan Regional Government 
for providing the funding for his doctoral studies. 
 
References 
[1] Corder, S.B. The near-surface expansion of gas slugs: insights from laboratory 

experiments into eruptive activity at low-magma-viscosity volcanoes. PhD Thesis, 
Lancaster University, U.K. (2008). 

[2] G. Sakamoto, T. Doi, Y. Murakami, K. Usui, Profiles of liquid film thickness and 
drop flow rate in U-bend annular mist flow. 5th

 
International Conference on 

Multiphase Flow, Yokahama, May 30-June 4, paper Mo. 317 (2004). 
[3] B.J. Azzopardi, Gas-liquid flows. New York: Begell House (2006). 
[4] L.P. Golan, A.H. Stenning, Two-phase vertical flow maps. Proc. Inst. Mech. Engrs., 

184 (1969) 108-114. 
[5] T. Takemura, K. Roko, M. Shiraha, S. Midoriyama, S., Dryout characteristics and 

flow behaviour of gas-water two-phase flow through U-shaped and inverted U-shaped 
bends. Nucl. Eng. Design, 95 (1986) 365-373. 

[6] L.Y. Chong, B.J. Azzopardi, D.J. Bate, . Calculation of Conditions at which dry out 
occurs in the Serpentine Channels of Fired Reboilers. Chem. Eng. Res. Des., 83 
(2005) 412-422. 

[7] G.F. Hewitt, A.H. Govan, Phenomenological modelling of non-equilibrium flow with 
phase change. Int. J. Heat Mass Trans., 32 (1990) 229-242. 

[8] B.J. Azzopardi, D.A. Colman, D. Nicholson, D., Plant application of a T-junction as a 
partial phase separator. Chem. Eng. Res. Design, 80 (2002) 87-96. 

[9] F. Sanchez-Silva, V. Hernandez-Perez, I. Carvajal-Mariscal, J.G. Barbosa-Saldaña, 
J.A. Cruz-Maya, Separation of a two-phase slug flow in branched 90 deg elbows. J. 
Fluids Eng., 132 (2010) 051301-1-051201-8. 

[10] G. Baker, W. Clark, B.J. Azzopardi, J.A. Wilson, Controlling the phase separation of 
gas-liquid flows at horizontal T-junctions. AIChE Journal, 53 (2007) 1908-1915  

[11] G. Baker, W. Clark, B.J. Azzopardi, J.A. Wilson, Transient effects in gas-liquid phase 
separation at a pair of T-junctions. Chem. Eng. Sci., 63 (2008) 968-976 

[12] G.H. Anderson, P.D. Hills, Two-phase annular flow in tube bends. Symposium on 
Multiphase Flow Systems, University of Strathclyde, Glasgow, Paper J1. Published 
by Institution of Chemical Engineers Symposium, Series No. 38. (1974). 

[13] J.D. Balfour, D.L.Pearce, Annular flows in horizontal 180o bends: measurements of 
water rate distributions in the film and vapour core. C.E.R.L. Note No. RD/L/N96/78 
(1978).  

[14] K. Hoang, M.R. Davis, Flow structure and pressure loss for two-phase flow in round 
bends. J. Fluids Eng. 106 (1984) 30 -37  

[15] Tingkuan, C., Zhihua, Y., and Qian, W., 1986. Two-phase flow and heat transfer in 
vertical U-shaped tubes (I) Flow pattern transitions in the bend. Journal of Chemical 
Industry and Engineering (China) 1, 1-12. 

[16] J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in 
horizontal pipes. Int. J. Multiphase Flow 1 (1974) 537-553. 

[17] J. Weisman, S.Y. King, Flow pattern transitions in vertical and upwardly inclined 
lines. Int. J. Multiphase Flow 7 (1981)271-291. 



[18] P.W. James, Azzopardi, B.J., D.I. Graham, C.A. Sudlow, C.A., The effect of a bend 
on droplet distribution in two-phase flow. International Conference on Multiphase 
Flow in Industrial Plants, Bologna, 13-15 September (2000). 

[19] M. Abdulkadir, D. Zhao, S. Sharaf, L. Abdulkareem, I.S. Lowndes, B.J. Azzopardi, 
Interrogating the effect of 90o bends on air–silicone oil flows using advanced 
instrumentation, Chem. Eng. Sci. 66 (2011) 2453–2467.  

[20] M. Abdulkadir, D. Zhao, A. Azzi, I.S. Lowndes, B.J. Azzopardi,. Two-phase air–
water flow through a large diameter vertical 180o return bend. Chem. Eng. Sci. 79 
(2012) 138–152. 

[21] M. Abdulkadir, A. Azzi, D. Zhao, I.S. Lowndes, B.J. Azzopardi, Liquid film 
thickness behaviour within a large diameter vertical 180o return bend, Chem. Eng. 
Sci. 107 (2014) 137–148. 

[22] T. Oshinowo, M.E. Charles,  Vertical two-phase flow- Part 1: Flow pattern 
correlations. Can. J. Chem. Eng. 52 (1974) 25-35. 

[23] K.D. Kerpel, T. D. Keulenaer, S. D. Schampheleire, M. D., Paepe, Capacitance sensor 
measurements of upward and downward two-phase flow in vertical return bends. Int. 
J. Multiphase Flow 64 (2014) 1-10. 

[24] L.-C. Hsu, I.Y. Chen, C.-M. Chyu, C.-C. Wang, Two-phase pressure drops and flow 
pattern observations in 90o bends subject to upward, downward and horizontal 
arrangements. Exp. Thermal Fluid Sci. 68 (2106) 484-492 

[25] S. Yadav, H.B. Mehta, Experimental investigations of air–water two-phase flow 
through a minichannel U-bend. Exp. Thermal Fluid Sci., doi: 
http://dx.doi.org/10.1016/j.expthermflusci.2016.05.019 (2016) 

[26] A.A. Almabrok, A.M. Aliyu, L. Lao, H. Yeung, Gas/liquid flow behaviours in a 
downward section of large diameter vertical serpentine pipes, Int. J. Multiphase Flow 
78 (2016) 25-43. 

[27] A. Almabrok, L. Lao, H. Yeung, Effect of 180° bends on gas/liquid flows in vertical 
upward and downward pipes, WIT Trans. Eng. Sci., 79 (2013) 435-445. 

[28] S.M. Huang, Impedance sensors-dielectric systems. In: Williams, R.A., Beck, M.S. 
(Eds.), Process Tomography. Butterworth-Heinemann Ltd., Cornwall (1995). 

[29] K. Zhu, S. Madhusudana Rao, C. Wang, S. Sundaresan,  Electrical capacitance 
tomography measurements on vertical and inclined pneumatic conveying of granular 
solids. Chem. Eng. Sci. 58 (2003) 4225–4245. 

[30] A. Hunt, J. Pendleton, M. Byars, Non-intrusive measurement of volume and mass 
using electrical capacitance tomography. In: Proceedings of the 7th Biennial ASME 
Conference on Engineering  System  Design  and  Analysis, Manchester, UK, ESDA 
2004-58398 (2004). 

[31] B.J. Azzopardi, V Hernandez Perez, R. Kaji, M.J. da Silva, M. Beyer, U. Hampel,. 
Wire Mesh Sensor Studies in a Vertical Pipe. Fifth International Conference on 
Transport Phenomena in Multiphase Systems, Bialystok, Poland (2008). 

[32] L.A.Abdulkareem,. Tomographic Investigation of Gas–Oil Flow in Inclined Risers, 
PhD Thesis, University of Nottingham (2011). 

[33] L.F.C. Jeanmeure, T. Dyakowski, W.B.J. Zimmerman, W. Clark, Direct flow-pattern 
identification using electrical capacitance tomography, Powder Technol. 112 (2000) 
174-192. 

[34] M.J. da Silva, S. Thiele, L.A. Abdulkareem, B.J. Azzopardi, U. Hampel, 2010. High-
resolution oil-gas two-phase flow measurement with a new capacitance Wire-Mesh 
Tomography. Flow Meas. Instr. 21 (2010) 191-197. 

http://dx.doi.org/10.1016/j.expthermflusci.2016.05.019


[35] S. Sharaf, M. Da Silva, U. Hampel, C. Zippe, M. Beyer, B. Azzopardi, Comparison between 
wire mesh sensor technology and gamma densitometry, Meas. Sci. Tech. 22 (2011) 104019 
(13 pp) 

[36] B.J. Azzopardi, L.A. Abdulkareem, D. Zhao, S. Thiele, M.J. da Silva, M. Beyer, A. Hunt, 
Comparison between Electrical Capacitance Tomography and Wire Mesh Sensor output for 
air/silicone oil flow in a vertical pipe, Ind. Eng. Chem. Res. 49 (2010) 8805-8811. 

[37] J.C. Asali, T.J. Hanratty, P. Andreussi,  Interfacial drag and film height for vertical 
annular flow, AIChE J. 31 (1985) 895–902. 

[38] P. Andreussi, A. Di Donfrancesco, M. Messia, 1988. An impedance method for the 
measurement of liquid hold-up in two phase flow, Int. J. Multiphase Flow 14 (1988) 
777–85. 

[39] N.A. Tsochatzidis T.D. Karapantios M.V. Kostoglou A.J. Karabelas,. A conductance 
method for measuring liquid fraction in pipes and packed beds. Int. J. Multiphase 
Flow; 5 (1992) 653–67. 

[40] M. Fossa, Design and performance of a conductance probe for measuring liquid 
fraction in two-phase gas-liquid flow, Flow Meas. Inst., 9 (1998) 103–109. 

[41] F. Saidj, R. Kibboua A. Azzi, N, Ababou, B.J. Azzopardi, Experimental investigation 
of air–water two-phase flow through vertical 90◦ bend, Exp. Thermal Fluid Sci. 57 
(2014) 226–234. 

[42] J.E. Koskie, I. Mudawar, W.G. Tiederman,  Parallel wire probes for measurement of 
thick liquid films. Int. J. Multiphase Flow15 (1989) 521–530. 

[43] G. Conte, B.J. Azzopardi, Film thickness variation about a T-junction. Int. J. 
Multiphase Flow 29 (2003) 305–325. 

[44] R.J. Belt, On the liquid film in inclined annular flow. PhD Thesis, Delft University of 
Technology, Netherlands. (2006). 

[45] G. Geraci, Inclination effects on circumferential film flow distribution in annular 
gas/liquid flows. AIChE Journal, 53 (2007) 5, 1144-1150; G. Geraci, Effect of 
inclination on circumferential film thickness variation in annular gas/liquid flow. 
Chem. Eng. Sci. 62 (2007) 3032- 3042. 

[46] M.H.S. Zangana, Film behaviour of vertical gas–liquid flow in a large diameter pipe. 
Ph.D. Thesis, University of Nottingham, United Kingdom. (2011). 

[47] M. Miya, Properties of roll waves. PhD Thesis, University of Illinois, Urbana, USA. 
(1970).  

[48] M. Miya, D.E. Woodmansee, T.J. Hanratty, A model for roll waves in gas– liquid 
flow. Chem.Eng.Sci.26 (1971) 1915 – 1931. 

 
 
 
 
Vitae 
 
Dr Donglin Zhao is Senior Lecturer in Chemical Engineering in London South Bank 
University. He obtained PhD in chemical Engineering in the University of Surrey. He has 
more than 20 years’ experience working in the areas of gas-liquid mixing, enhanced heat 
transfer and multiphase flow. He is a co-author of a book and published dozens of papers in 
refereed journals and conference proceedings. 
 
Dr Abdulkadir Mukhtar has a PhD in Chemical Engineering from the University of 
Nottingham, United Kingdom. Currently, he is a senior lecturer in the Chemical Engineering 
Department, Federal University of Technology, Minna, Nigeria. He is also a visiting assistant 



professor, Petroleum Engineering Department, African University of Science and 
Technology, Abuja, Nigeria. Dr. Abdulkadir is interested in multiphase flow research which 
finds applications in the oil/gas production, process and power sectors of industry. He also 
has research interests in the development of computational fluid dynamics models to 
characterize the complex phenomena exhibited by gas–liquid flows in straight pipes and 
bends.  
 
Dr Lokman A Abdulkareem is Dean of the Faculty of Engineering at the University of 
Zakho. He received Ph.D. in Chemical engineering from the University of Nottingham/ 
United Kingdom. He has more than 18 years experience of academic teaching and research. 
His research projects are involving the application of advanced tomographic instrumentation 
such as Electrical Capacitance Tomography and wire mesh sensor. He has led many research 
grants and contracts funded by institutions and Industry. In addition, he has been a member of 
Master projects panels at some institutions. He teaches many modules in different universities 
and institutes. He has published over 40 articles in refereed journals, conference proceedings, 
and other edited collections. 
 
Dr Abdelwahid Azzi is Professor in Mechanical Engineering at the University of Sciences 
and Technology Houari Boumedien, Algiers (USTHB). He carried a large part of his PhD 
thesis at the Technical University of Hamburg Harburg (TUHH), Germany. For several years, 
he led the Two-phase flow group in the Multiphase Flow and Porous Media Laboratory 
(USTHB). From 2006, he started his research collaboration with Prof. B.J. Azzopardi from 
the University of Nottingham. During his several research stays at this University, sponsored 
by the EPSRC as well the Algerian Ministry of High Education and Research, he worked on 
several projects: all in the multiphase flow area. 
 
Dr Faiza Saidj is Lecturer in Process Engineering at the University of Sciences and 
Technology Houari Boumedien, Algiers (USTHB). She started her research career by 
preparing a Master degree in chemical engineering. This research work were dealing with oil 
extraction from plants. The results of these investigations have been published in journal 
papers and conferences. In 2010, she joined the Multiphase Flow and Porous Media 
Laboratory, to carry out her PhD research thesis. In 2015, she received her PhD degree from 
the same university.  Her research thesis concerned the analysis of two-phase flow behaviour 
in vertical 90° bend. Actually, she is working on topics all of them in two-phase flow area. 
 
Dr Valente Hernandez-Perez is a research fellow in the Mechanical Engineering Department, 
National University of Singapore, Singapore, within the Centre for Offshore Research 
Engineering (CORE). He worked previously as a research fellow at Nottingham University, 
United Kingdom. Dr. Hernandez-Perez obtained his PhD in Chemical Engineering from the 
University of Nottingham, United Kingdom. His research has been focused on multiphase 
flow (mainly gas-liquid) by means experimental and computational methods. 
 
Mr. Rajab Omar completed the BSc. degree in chemical engineering from Al-Zawia 
University, Libya. He received the MSc in Chemical Engineering from the University of 
Nottingham, UK in 2011. Currently he is conducting research on transitional two phase flows 
around 90° bends in The University of Nottingham for a PhD degree in chemical engineering. 
 
Dr. Buddhi Hewakandamby has a PhD in Chemical Engineering from the University of 
Sheffield. Currently, he is an assistant professor in the Department of Chemical and 
Environmental Engineering, University of Nottingham, United Kingdom. His research 



interests include multiphase flows phenomena across various length scales, flow instabilities, 
flow with heat transfer and CFD modelling. 
 
Barry Azzopardi is Lady Trent Professor of Chemical Engineering at the University of 
Nottingham.  He is the author of two books and more than 300 refereed papers on aspects of 
multiphase flow.  He has designed and operated very large experimental facilities and applied 
state of the art instrumentation to multiphase flow, particularly electrical tomography.  He has 
worked on drops and films in annular flow, bubbly, slug and most recently churn flows.  As 
well as working on pipe flows he is recognised as an expert on venturis and T-junctions as 
well as bends. 


