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This paper introduces a chaotic spiral dynamic algorithm (CSDA) for optimization
problems. The algorithm is developed by incorporating the chaotic maps pattern into the
original spiral dynamic algorithm (SDA) by replacing the rotational radius in SDA with
chaotic map, so as to enhance the search diversity of the algorithm avoid potential trap in
local optima. The performance of the algorithm is assessed in comparison to SDA with a
set of benchmark functions and PD controller tuning of a single link flexible robot
manipulator system (SLFRMS). The results show that the CSDA outperforms the SDA
with enhanced search capability and escaping local optima.

1. Introduction

Metaheuristic approaches have attracted significant attention of researches as
sensible solver of optimization problems. The metaheuristic optimization
algorithm may be categorized into bio-inspired and nature-inspired types.

A bio-inspired algorithmic is associate based on behavior of living organisms
whereas a nature-inspired optimization is based on natural phenomena. Examples
of bio-inspired optimization algorithm are genetic algorithm (GA) adopted from
the process of genetic evolution, particle swarm optimization that mimics the
communication behavior of fish and bird flocking. Artificial bee colony algorithm
based on the behavior honey bee foraging the food source [1]. Spiral dynamic
algorithm (SDA) is based on the spiral pattern such as in tornados [2] is an the
example of natural-inspired optimization algorithms.

Since its introduction, SDA has been applied to solving various real
problems. It has however, been noted that the algorithm can easily get trapped in
local optima when exposed to solving high dimension problems. There has also
been an attempt to resolve this issue in SDA. For example, [3] proposed an
adaptive formulation by varying the size of radius and displacement of spiral
model in order to resolve this issue.

Chaos has unstable behavior and also has complex and bounded
characteristic. It generates deterministic sequence and is very sensitive to the
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initial starting point. Many methods have been reported in the literature on
attempts to enhance a metaheuristic algorithm are using chaotic sequence [4].
The reported results show encouraging performances, especially with the
optimization algorithm escaping local optima points. In this paper, such a
strategy is adopted by introducing chaotic sequence as a variable rotational
radius value into SDA to arrive at a new optimization algorithm, referred to as
chaotic spiral dynamic algorithm (CSDA).

2. Development of Chaotic Spiral Dynamic Optimization Algorithm

2.1 Spiral Dynamic Optimization Algorithm

SDA is inspired from spiral phenomena such as tornado or nautilus shell. The
control parameters for the algorithm are radius and rotation angle. These are two
constant and their values are specified by the user [5]. The search strategy in a
meta-heuristics is to devise diversification in early stages of the search and
intensification in later stages of the search. In SDA, diversification occurs
during the early phase of the search and intensification later near the center of
the spiral [5]. Figure 1 shows an example of the spiral trajectory for 50 steps
with spiral radius = 0.95 and rotational angle = /4.

Figure 1. Spiral trajectory [5].

The rotational model of SDA is shown as follows:
xi(k +1) = Sp(r,0)x;(k) — [Sp(r,6) — L]x" e))
where x* is the spiral center point, S, (r, 0)x; is a stable matrix, x; is location of

apointati = 1,2...,k, r is a rotational radius where the value of r is 0 < r <
1 and k is cycle numbers.

2.2 Chaotic Maps

In chaotic theory, the small changes in initial value will have large impact on the
final results of the system where this behavior can increase the performance of
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the system [6]. The chaotic map is bounded nonlinear has unstable and ergodic
behavior. In this paper, several well-known chaotic maps such as logistic map,
Chebyshev maps and Iterative map are used to replace the rotational radius, r in
SDA. Mathematical expressions and associated ranges of these maps used in this
work are shown in Table 1.

Table 1. Chaotic Maps mathematical expression.

Chaotic map Mathematical expression Range
Chebyshev X471 = cos(icos™1(x)) (-1,1)
logistic Xy = ax;(1—x),a=4 0.,1)

. jax
Iterative Xit1 = Sin (7>,a =0.7 (-1,1)

L

2.3 Chaotic Spiral Dynamic Optimization Algorithm

To improve the performance of SDA and also to overcome the problem of
algorithm getting trapped at local optima during the search process, the chaotic
maps were introduced into SDA by replacing the rotational radius with the
chaotic sequence. By adding chaotic sequence in SDA, the SDA step size will
become more dynamic and this will help the algorithm come out of local optima.
A pseudo-code of the proposed algorithm is shown as follows

Step 1: Initialization.

e  Set number of search points, m where m > 2

e Setrotational angle, 0 < 6 < 27w

e Replace rotational radius, r with chaotic sequence, 7.4, Where 1.4, 1S
from O to 1

e  Maximum iteration number k,,

e [Initial points x;(0) € R™i=1,2,...,m, randomly placed in the
feasible region and choose the centre of spiral x* = x;,(0),i, =
argminf(xi(O)),i =12,...,m

Step 2: Update next search point, x;.
xi(k +1) = S, (Tenao O)xi (k) — [Sn(Tenao, 0) — L]x* i =12, ... ... ,m. (2)

Step 3: Update centre point of spiral, x™.
x"=xg(k +1),i5 = arg minf(xl-(k + 1)),1’ =12,...,m. 3)
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Step 4: Check whether to terminate the search when k reaches maximum,
terminate the search process, otherwise increase k by 1 and go back to step 2.

3. Validation using benchmark functions

The performance and accuracy of the proposed optimization algorithm were
assessed using benchmark functions of multimodal and unimodal types. Three
different benchmark functions detailed in Table 2 were used in this work.

Table 2. Benchmark test functions.

Objective function f(x) Range 501(1: EEE?(IX*)
n
Fl(x) = Z x;2 [-5.12,5.12] 0
i=1

1 n
F2(x) = —20exp| —0.2 ;Z x;%
i=1

[-15,30] 0
1 n

—exp| — Z cos(2mx;) | +20+e
n i=1

F3() = — Zn 2 nn (xi)+1 600,600 0
x—4000 i=1Xi i=1COS - [- R 1

In this simulation, the initial parameters used for both SDA and CSDA were
m=40, 8 = /4, D = 30, maximum iteration = 300. The simulation results are

shown in Table 3. Each simulation was repeated 30 times and the best average
values are indicated in bold.

Table 3. Statistical performance results of the SDA and CSDA.

Benchmark SDA CSDA-Logistic CSDA-Iterative CSDA-Chebyshev
function Ave' Std" Ave' Std" Ave' Std" Ave' Std”
F1 150.41 51.72 49.38 26.77 68.70 33.88 49.80 42.83
F2 18.93 1.18 17.78 1.25 17.99 0.62 17.65 1.49

F3 511.20 | 166.35 | 168.04 | 10423 | 240.52 | 11647 | 195.55 | 148.73

“Average, "Standard deviation.
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Figure 2. Convergence plots of SDA and CSDA for benchmark functions.

It is noted in Table that the CSDA-Logistic has better results for F1 and F3
and CSDA-Chebyshev outperformed other algorithms in case of F2. It further
clear in Figure 2 that SDA converged pre-maturely by getting stuck at local
optimum in all three cases whereas the CSDA algorithm continued searching
and converged faster and closer to the local optimum points.

4. SLFMS control tuned using CSDA

This section presents results of optimization of PD controller design for set-
point tracking of a single link robot manipulator system (SLFRMS) using
CSDA. Figure 3, shows a schematic diagram of the SLFRMS.

Flexible Link (p. E.L L)

Rigicd Hieb ( 1n )

Figure 3. SLMFS schematic diagram [7].



556

The research focus on the optimization of the PD controller using CSDA
and the details of the SLMFS can be found in [8] and PD controller structure for
SLMEFS can be found in [7]. Figure 4 shows the PD control structure of the
single link manipulator system, where K, and K, are the proportional and
derivative gains, A, is the manipulator motor drive amplifier gain, and Ry is the
demanded reference angular position.

+ + u(t) Flexible H(Q

Rr . . Manipulator

System 0(;)
Ko [*

Figure 4. PD controller system for SLFRMS.

CSDA is design to tune the values of K, and K, until it reach the optimum
value. There are several of objective functions that may be considered in the
optimization algorithm for tuning these parameters such as mean squared error
(MSE), integral of squared error (ISE) and integral absolute error (IAE). In this
paper, MSE of the angular position is used. To suppressed the response
overshoot and undershoot, the absolute maximum overshoot (0S) and
undershoot (US) values are weighted, w and added to the MSE function. Thus
the resulting objective is defined as:

J = (AZN-A(e()?) +10S] = wy + US|+ w @

where, the error e(t) is the difference between reference angular position Rf and
actual angular position 6(t).

The algorithm parameters used in this work to optimize the PD controller
were number of searching point, m = 40, rotational angle, 6 = /4, spiral radius,
r = 0.9, starting point for all chaotic maps was 0.7. Figure 5 shows hub-angle
response of the manipulator with PD controllers designed using the SDA and the
CSDA. It is noted the system response with SDA-designed controller had an
overshoot, whereas responses with CSDA-designed controllers did not have
overshoot. The rise times of the responses with CSDA-designed controllers were
comparable with those of SDA-designed controllers.
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Figure 5. Hub angle output of the SLEMS.

Among the three CSDA-designed control systems, the response with
CSDA-iterative type was slightly slower compared to others and the response
with CSDA-Chebyshev was the fastest. Numerical values of optimised
controller parameters and corresponding system response indicator are shown in
Table 4. It is noted that all system designs achieve zero state error, the CSDA-
design system responses reached the set point without overshoot and there was
about 4.57% overshoot in the response of the CSDA-design control system.
Furthermore, the response rise times were comparable to one another among the
systems and the response settling time of the CSDA-Chebyshev based system
was the shortest. Thus, the results above clearly demonstrate the potential
benefit of CSDA for solving optimisation problems.

Table 4. Controller and system response parameters.

Tuning technique
Measurement SDA CSDA-Logistic CSDA-Iterative | CSDA-Chebyshev
Kp 3.64 2.20 0.98 1.24
Kd 1.13 0.83 0.45 0.52
Overshoot 4.67% 0 0 0
Settling time 1.14 1.26 0.98 0.86
Rise time 0.59 0.71 0.78 0.70
Steady state error 0 0 0 0

5. Conclusion

A chaotic spiral dynamic optimization algorithm by incorporating the potential
advantages of chaotic maps into the spiral dynamic algorithm has been
developed. The algorithm has capability of jumping out of local optima points
and fast convergence to accurate results close to the global optimum.
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Comparative assessments of performance of the proposed algorithm in
benchmark test function and controller design of flexible robot manipulator
system have shown that it outperforms the original spiral dynamic algorithm and
thus can be used as potential contender in solving optimization problems of
various kinds.

Acknowledgment

Mohd Ruzaini bin Hashim is currently on study leave and is sponsored by
ministry of higher education Malaysia and Universiti Teknikal Malaysia
Melaka.

References

[1] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive
survey: artificial bee colony (ABC) algorithm and applications,” Artif:
Intell. Rev., vol. 42, no. 1, pp. 21-57, Mar. 2012.

[2] K. Tamura and K. Yasuda, “Spiral Multipoint Search for Global
Optimization,” 2011 10th Int. Conf. Mach. Learn. Appl. Work., vol. 2, no. 2,
pp. 470-475,2011.

[3] A.N. K. Nasir, M. O. Tokhi, O. Sayidmarie, and R. M. T. Raja IsmailL, “A
novel adaptive spiral dynamic algorithm for global optimization,” 2013
13th UK Work. Comput. Intell., pp. 334-341, Sep. 2013.

[4] L. Ding, H. Wu, and Y. Yao, “Chaotic Artificial Bee Colony Algorithm for
System Identification of a Small-Scale Unmanned Helicopter,” vol. 2015,
2015.

[5] K. Tamura and K. Yasuda, “Spiral Optimization,” no. 1, pp. 1759-1764,
2011.

[6] E. N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of the
Atmospheric Sciences, vol. 20, no. 2. pp. 130-141, 1963.

[7] M. O. Tokhi, Z. Mohamed, J. M. Martins, M. a. Botto, and J. Sa da Costa,
“Approaches for dynamic modelling of flexible manipulator systems,” /EE
Proc. - Control Theory Appl., vol. 150, no. 4, pp. 401411, Jul. 2003.

[8] H. Poerwanto, “Dynamic simulation and control of flexible manipulator
systems.” University of Sheffield, 1998.





