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Abstract 27 

Ultrasound imaging can be used to study tendon movement during muscle contraction to 28 

estimate tendon force-length relationship in vivo. Traditionally, such tendon displacement 29 

measurements are conducted manually (time consuming and subjective). Here we evaluated a 30 

Lucas-Kanade based tracking algorithm with an optic flow extension that accounts for tendon 31 

movement characteristics between consecutive frames of an ultrasound image sequence. 32 

Eleven subjects performed 12 voluntary isometric plantarflexion contractions on a 33 

dynamometer. Simultaneously, the gastrocnemius medialis tendon was visualized via 34 

ultrasonography. Tendon displacement was estimated manually and by using two different 35 

automatic tracking algorithms. Maximal tendon elongation (manual: 17.9±0.3mm; automatic: 36 

17.0±0.3mm) and tendon stiffness (209±4N/mm; 218±5N/mm) generated by the developed 37 

algorithm correlated with the manual method (0.87≤R≤0.91) with no differences between 38 

methods. Our results suggest that optical flow methods can potentially be used for automatic 39 

estimation of tendon movement during contraction in ultrasound images, which is further 40 

improved by adding a penalty function.  41 

 42 

Key words: Ultrasound, optical flow, automatic tracking, Achilles tendon, voluntary 43 

contraction, Lucas-Kanade  44 
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Introduction  50 

Analysis of human tendon length changes from ultrasound (US) images during maximal 51 

voluntary muscular contraction performed on a dynamometer is widely used, and has become 52 

highly popular, to assess the in vivo force-length-relationship of the tendon (Maganaris and 53 

Paul 2000; Arampatzis et al. 2005; Reeves et al. 2005). The benefits of the method are that it 54 

is non-invasive, affordable, easily applied and it tracks a quantity that is proposed as a 55 

surrogate measure of tendon mechanical properties. The application of the US method 56 

synchronously with force measurements has provided relevant information with respect to 57 

tendon injury, and tendon adaptive changes due to aging, disuse and various physical exercise 58 

interventions (Reeves et al. 2003, 2005; Arya and Kulig 2010; Karamanidis and Arampatzis 59 

2007; Arampatzis, et al. 2007). 60 

Tendon length changes by US during muscular contraction is usually estimated by choosing a 61 

tissue landmark (e.g. myotendinous junction) and manually digitizing that landmark frame by 62 

frame from rest until maximal tendon force (Arampatzis et al. 2005; Arya and Kulig 2010). 63 

Manual tracking, however, may be time consuming and requires a lot of experience. An 64 

automated method for tracking tendon length changes from US images during voluntary 65 

contractions on dynamometric devices would provide a time-efficient means for assessing 66 

tendon elongation and the force-length relationship. Moreover, if tendon elongation could be 67 

accurately assessed during contraction, instead of post-measurement by manually digitizing a 68 

tissue landmark frame by frame, an immediate assessment of tendon mechanical properties 69 

would be possible. Once examined for its accuracy, such an analysis method would provide a 70 

time-efficient means for assessing human tendon stiffness in vivo, and could have significant 71 

applications in clinical and scientific settings. 72 

Several attempts have recently been made to implement automated tracking by determination 73 

of the optical flow between successive US images (Lee et al. 2008; Korstanje et al. 2010; 74 

Pearson et al. 2013; Kim et al. 2011). Optical flow is defined as the distribution of apparent 75 
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velocities for individual pixels between two images (Horn and Schunck 1981). The Horn-76 

Schunck algorithm is a global method determining the optical flow over the whole image 77 

frame. In our numerical experiments, we found that a regularization term controlling the 78 

smoothness leads to a considerable lag of the integrated optical flow behind manual tracking. 79 

However, a number of approaches have previously been taken in an attempt to automatically 80 

track tendon displacement (Lee et al. 2008; Korstanje et al. 2010; Pearson et al. 2013; Kim et 81 

al. 2011). Of these, only one study examined voluntary contractions and compared an 82 

automated tracking method using with manual measures of highly loaded in vivo tendon 83 

excursions (Pearson et al. 2013), revealing difference in the maximal elongation of the tendon 84 

between methods of ≤ 0.81 mm for a mean displacement value of about 16.5 mm. We base 85 

our approach on minimization of the sum of the squared differences between a template 86 

region and a warped image. This approach differs from Pearson et al. (2013) who used 87 

normalized cross correlations for automatic tracking of in vivo displacement of the tendon. 88 

While we allow linear-affine deformations such as rotational, shearing or scaling 89 

transformations of the matched regions, it seems that Pearson et al. used direct cross 90 

correlations of the matched regions. Allowing deformations makes our method suitable for the 91 

analysis of rather large frame-to-frame displacements and deformations, as well as for lower 92 

framerates. In that study (Pearson et al. 2013), only one subject was examined, thereby 93 

neglecting differences in image quality across subjects that will affect the ability of the 94 

algorithm to track the tendon accurately during loading. In addition, none appear to have 95 

examined whether the estimation of optical flow on an US video can be improved by 96 

adjusting the algorithm to the tendons highly coherent movement during loading. 97 

Therefore, we aimed to develop a Lucas-Kanade optical flow based template tracking 98 

algorithm (Lucas and Kanade 1981) that eliminates any unwanted jumps in the tracking of the 99 

gastrocnemius medialis tendon (GMtendon) elongation during maximal voluntary isometric 100 

ankle plantar flexion contractions (MVIP) on a dynamometer. In addition, we aimed to 101 
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compare, in vivo, our discussed modified automated method with both the established manual 102 

method and the automated tracking method proposed by Schreiber (2007) in wide range of 103 

different US videos to examine the accuracy of our current tracking algorithm during MVIP. 104 

As direct measurement of human tendon elongation is not possible in vivo, automated 105 

tracking was compared with manual tracking in living subjects using the same US image 106 

sequences. We hypothesized that the developed tracking algorithm that takes into account the 107 

characteristics of the movement of the GMtendon in US videos during MVIP will generate a 108 

higher agreement than the initial Lucas-Kanade based optical flow algorithm proposed by 109 

Schreiber (2007) when compared to the values assessed by the manual tracking method. 110 

 111 

Materials and Methods  112 

Experimental setup and joint kinetics analysis 113 

Eleven healthy young male subjects (means and SD; age: 28 ±6 yrs.; body height: 179 ± 4cm; 114 

body mass: 75.5 ± 7.8kg) participated in the study. Approval was obtained from the 115 

university's committee for the protection of human subjects and informed consent was given 116 

by all subjects. 117 

After warming up (combination of hopping and stretching for about 5 minutes to precondition 118 

the tendon), the subjects were seated on a custom built dynamometer with the shank 119 

perpendicular to the foot and the knee fully extended (neutral position; see Fig. 1). A custom 120 

made harness built from ski bindings was applied around the foot and the dynamometer foot 121 

plate to reduce any joint motion during contraction. All subjects had to perform 6 MVIP 122 

contractions during two different sessions on the dynamometer, using either the left or the 123 

right leg. The instructions given to the subjects were to produce maximal isometric force ramp 124 

contractions, gradually increasing the plantarflexion effort over 3-5 seconds (loading) and to 125 

hold the achieved moment about 2-3 seconds similar to methods reported in the literature 126 

(Arampatzis, et al. 2007; Karamanidis and Arampatzis 2007). 127 
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Fig. 1 128 

The resultant moments at the ankle joint were calculated using inverse dynamics and the 129 

compensation of moments due to gravitational and compression forces was done for all 130 

subjects before each plantarflexion contraction (Arampatzis, et al. 2007; Karamanidis and 131 

Arampatzis 2007). To calculate the lever arm of the ground reaction force acting about the 132 

ankle joint during plantarflexion contractions, the point of force application under the foot 133 

was assessed via dynamometry (see Fig. 1). In order to do so, the reaction forces under the 134 

foot during contraction were determined by three strain gauge load cells fixed at predefined 135 

distances on the foot plate (100Hz; Fig 1). The axis of rotation of the ankle joint was defined 136 

by the midpoint of the line connecting both malleoli. Eight light-emitting diodes (LEDs) were 137 

used as active markers to examine kinematics (Fig. 1). Four active markers were placed on the 138 

lower extremity (head of the fibula, malleolus lateralis, malleolus medialis and calcaneus) and 139 

four markers were fixed on the force plate at predefined locations. A motion capture system 140 

consisting of two digital high-speed cameras (Basler, Germany, 15Hz) was used to record the 141 

markers. The 2D trajectories of the markers were automatically tracked frame by frame via a 142 

custom-made algorithm in MATLAB (The Mathworks, Inc, Massachusetts, U.S.A., ver. 143 

R2010b). Due to the slow limb motion during such isometric voluntary ramp contractions, 144 

kinematic data were collected with a relatively low sampling frequency aimed to further 145 

shorten the amount of post processing time duration by our developed automatic marker 146 

tracking algorithm. 147 

Fig. 2 148 

The elongation of the GM myotendinous junction during contraction (see Fig. 2) was visually 149 

reproduced using a 7.5 MHz linear array US probe (fixed linear array frequency) and stored 150 

on the US device at 73Hz (Aloka α7, Tokyo, Japan). The probe was fixed at the 151 

myotendinous junction in a longitudinal direction according to the literature (Karamanidis et 152 

al. 2014). The GM myotendinous junction and hence, most proximal part of the GM tendon, 153 



7 
 

which served as an anatomical marker, was identified for each individual before probe 154 

fixation by scanning the triceps surae muscle-tendon unit in the transversal plane. This 155 

procedure assured correct positioning of the probe for all subjects. Before probe fixation, an 156 

echo-absorptive marker was attached on the skin to act as a fixed reference from which 157 

manual and automatic measures of tendon elongation could be made, similar to previous 158 

works (Arampatzis et al. 2007; Karamanidis et al. 2014). From each subject, 12 US videos 159 

during MVIP were recorded, leading to a total of 132 US videos. In order to synchronize the 160 

different signals, two LEDs, a transistor-transistor logic (TTL) signal and an optical trigger on 161 

the US were used. All trigger signals were automatically identified using a custom-build 162 

semi-automatic analysis software in MATLAB. As a result, real-time synchronization of all 163 

signals was possible. The tracking of the length changes of the GMtendon of all 132 US videos 164 

during the loading phase was performed both manually as well as by using two different 165 

automatic tracking algorithms: the Schreiber (2007) method and the current modified 166 

algorithm. 167 

The start of the tendon tracking procedures were defined as when AT force was zero and 168 

ended when maximal tendon force was reached. AT force was calculated by dividing the 169 

ankle joint moment by the AT moment arm. The tendon moment arm was estimated for each 170 

individual by the perpendicular distance from the ankle joint centre of rotation (i.e. axis 171 

through the inferior tip of the medial and lateral malleoli) to the AT according to the method 172 

proposed by Scholz et al. (2008). Concerning tendon stiffness assessment for each tracking 173 

method, we used the method described previously (Karamanidis et al. 2014). Briefly, tendon 174 

elongation due to the inevitable ankle joint rotation during contraction (Magnusson et al. 175 

2001) was calculated using the tendon excursion method (An et al. 1983; Maganaris 2000) by 176 

multiplying the estimated moment arm with the ankle joint angular rotation during 177 

contraction. In this way, the actual tendon elongation due to the exerted tendon force could be 178 

estimated. The stiffness of the tendon was calculated as the ratio of the increase in the 179 
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calculated tendon force and the increase in the tendon elongation from 50 to 100% of the 180 

maximum tendon force (Karamanidis et al. 2014). Because the synchronization of all signals 181 

and the AT force calculation were accomplished in real-time, it was possible to perform the 182 

automatic US tracking procedure immediately after each measurement. 183 

 184 

Manual tracking  185 

For the manual tendon tracking a custom image data processing software was developed in 186 

MATLAB. The investigator marked a muscle fascicle in every frame of the recorded US 187 

video at the intersection with the bottom aponeurosis close to the GM myotendinous junction 188 

and digitized the US videos frame by frame from rest until maximal tendon force (Fig. 2). 189 

This lead to one set of manually tracked data for each of the 132 US videos. All manual 190 

tracking analyses were performed by one highly experienced investigator, and the tracked 191 

landmarks on the US videos were checked again by two further investigators for each video 192 

frame by frame, who were blind to the previous results. This was done in order to check all 193 

manual digitized landmarks as carefully as possible. Scaling in pixels per millimeter was 194 

assessed via MATLAB (2014a) software using the known depth and width of field in the US 195 

images (depth: 1 mm = 11.29 pixels or 1 pixel = 0.088mm; width: 1 mm = 10.67 pixels or 1 196 

pixel = 0.094mm; US frequency: 7.5 MHz) as a calibration factor in the automated and 197 

manual tracking program to ensure equivalent pixel-to-millimeter ratios for all three tracking 198 

procedures. 199 

 200 

Schreiber’s Lucas-Kanade optical flow tracking algorithm 201 

Each US video was also automatically tracked using a Lucas-Kanade (Lucas and Kanade 202 

1981) based template tracking algorithm provided by Schreiber (2007) denoted here as the 203 

Schreiber algorithm. Using the notations of Baker and Matthews (2004), let In(x) stand for the 204 

n
th

 image in a given video sequence, here 𝐱 = (𝑥1, 𝑥2) are the pixel coordinates and n = 0,1,2,. 205 
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. . is the frame number. A subregion of the initial frame I0(x) is extracted and becomes the 206 

template T(x). Let W(x;p) denote the parameterized set of allowed deformations of the 207 

template, where p = (p1, . . . ,pk)
T
 is a vector of parameters. The warp W(x;p) takes the pixel x 208 

in the coordinate frame of the template T(x) and maps it to a sub-pixel location, W(x;p), in 209 

the coordinate frame of the image In(x). Lastly we denote the robust weights per pixel, used 210 

for tracking the template T1(x) = I0(x) in image In(x), by ωn(x). 211 

The equation of the warp can be anything from a very simple translation W(x;p)=212 

(𝑥1 + 𝑝1, 𝑥2 + 𝑝2)
𝑇, if we have a planar non rotating object moving, to a complicated affine 213 

or even non-linear transformation. 214 

For a realistic map of the 3D movement of tendon we restrict ourselves to a set of affine 215 

warps: 216 

𝐖(𝐱;𝐩) = (
(1 + 𝑝1)𝑥 + 𝑝3𝑦 + 𝑝5
𝑝2𝑥 + (1 + 𝑝4)𝑦 + 𝑝6

) = (
1 + 𝑝1 𝑝3 𝑝5
𝑝2 1 + 𝑝4 𝑝6

)(
x
y
1
)      (Eq.1) 217 

 218 

This parameterizes all possible linear-affine 2D transformations such as translations 219 

(characterized by the parameters 𝑝5, 𝑝6), rotations, shear and scaling transformations, and to 220 

some extent can handle also the US specific problem of continuous 3D structures that enter or 221 

leave the observed planar cross-section. For instance, the intersection of a three-dimensional 222 

ball entering or leaving the plane would appear as a growing or shrinking circle that is locally 223 

well described by an isotropic scaling transformation. 224 

The only requirement for the set of warps is that they are differentiable with respect to the 225 

warp parameters. Schreiber (2007) introduced an algorithm as an extension to the inverse 226 

compositional algorithm that uses a fixed template. The goal of this was to find the best match 227 

to the template in the subsequent frame, and update the template in every step. The initial 228 

function that has to be minimized is: 229 

 230 
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∑[𝐼(𝐖(𝐱; 𝐩)) − 𝑇(𝑥)]2

𝑥

 (Eq.2) 

where minimization of the above expression is performed with respect to 𝑝 = (𝑝1, … , 𝑝6), and 231 

the sum is performed over all the pixels of the template. 232 

After a 1st order Taylor expansion on 𝐼(𝐖(𝐱; 𝐩) + ∆𝐩), and the introduction of robust 233 

weights, the least squares solution is: 234 

∆𝐩 = 𝐻𝑠
−1∑𝜔𝑛(𝐱) [∇𝑇

𝜕𝐖

𝜕𝐩
] [𝐼𝑛(𝐖(𝐱; 𝐩)) − 𝑇(𝐱)]

𝑥∈𝑇

 (Eq.3) 

 235 

and the Hessian: 236 

𝐻𝑠 =∑𝜔𝑛(𝒙) [∇T
𝜕𝐖

𝜕𝐩
]
𝑇

[∇T
𝜕𝐖

𝜕𝐩
]

x

 (Eq.4) 

The robust weights are fixed, so the Hessian can be pre-computed.  237 

Schreiber (2007) also uses a cumulative error function: 238 

𝐸𝑛+1(𝐱) = (1 − 𝑎) ∙ 𝐸𝑛(𝐱) + 𝑎 ∙ 𝑓([𝐼𝑛(𝐖(𝐱; 𝐩)) − 𝑇1(𝐱)]) (Eq.5) 

 239 

where 𝑎, is an adaption rate parameter with a typical value of 0.1. 240 

After calculating the cumulative error function, the robust weight are updated as 𝜔𝑛−1(𝐱) =241 

𝜂(𝐸𝑛−1(𝐱)) where 𝜂 is a robust estimator. We use the robust extension of the Lukas-Kanande 242 

method by Schreiber (2007) as reference method for a comparison with our method described 243 

below.  244 

 245 

Current modified Lucas-Kanade optical flow tracking algorithm 246 

The main obstacles of the automated tracking in US videos are the noise and the tissue 247 

irregularities that frequently lead to clearly non-physiological jumps of the matched region 248 

between two frames, since spurious correlations in the speckle noise patterns may dominate 249 
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over the real information. However, the motion of tendons during active contraction is always 250 

continuous, and allowing big jumps can only lead to errors in tracking. In order to overcome 251 

this problem, we introduced a penalty function that effectively confines the motion of the 252 

matched regions between two frames to physiologically accessible velocities. 253 

For the current work, we have chosen to track the US images with a Lucas-Kanade based 254 

template tracking algorithm. It is based on Schreiber's (2007) algorithm, with the addition of a 255 

jump penalty function. In order to penalize jumps over many pixels, a hyperbolic tangent 256 

function was inserted. The hyperbolic tangent function is differentiable, and at the same time 257 

can perform a penalization. The penalty function took the following form: 258 

𝑔(𝑝) =
𝜆

2
(tanh (

𝑝 − 𝑑

ℎ
) + 1) 

(Eq.6) 

where 𝑝 = ‖𝐩‖:= √𝑝5
2 + 𝑝6

2 is the size of the translation vector (𝑝5, 𝑝6)
𝑇 in pixels. The 259 

parameter 𝑑 can be interpreted as a soft threshold for the acceptable jump size (in pixels), 260 

while ℎ is a width parameter controlling the width over which the penalty function varies 261 

from negligible to large values in the vicinity of 𝑑. After testing the method on several US 262 

video formats and qualities, the parameters were set to 𝜆 = 7, ℎ = d = 5. With the choice 263 

𝜆 = 0, the penalty term is switched off, and the method reduces to the classical Lucas-Kanade 264 

method. The parameter ℎ controls the smoothness of the threshold. The larger the values of ℎ, 265 

the smoother is the transition from 0 to the maximum value 𝑔(∞) = 𝜆. For ℎ → 0, the 266 

threshold becomes a step function. 267 

 268 

Following the same steps as in the original Lucas-Kanade tracking algorithm, we want to 269 

minimize the expression: 270 

∑[𝐼(𝐖(𝐱; 𝐩 + ∆𝐩)) − 𝑇(𝐱)]2

𝑥

+ [𝑔(‖𝐩 + ∆𝐩‖)]2 (Eq.7) 

 271 
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with respect to ∆𝐩, and then update the parameters 𝐩 as 𝐩 + ∆𝐩 iteratively. 272 

 273 

After performing a first order Taylor expansion the expression to be minimized becomes 274 

 275 

∑[𝐼(𝐖(𝐱; 𝐩)) + ∇𝐼
𝜕𝐖

𝜕𝐩
∆𝐩 − 𝑇(𝐱)]

2

𝑥

+ [𝑔(‖𝐩‖) +
𝜕𝑔

𝜕𝐩
∆𝐩]

2

 (Eq.8) 

 276 

Following Hager and Belhumeur (1998), it is assumed that the current estimates of the 277 

parameters are approximately correct: 278 

𝐼(𝑊(𝑥; 𝑝)) ≈ 𝑇(𝑥) which after using the chain rules becomes: ∇𝐼
𝜕𝐖

𝜕𝐱
≈ ∇𝑇. 279 

That turns the previous expression to  280 

∑[𝐼(𝐖(𝐱; 𝐩)) + ∇𝑇 (
𝜕𝐖

𝜕𝐱
)
−1 𝜕𝐖

𝜕𝐩
∆𝐩 − 𝑇(𝑥)]

2

𝑥

+ [𝑔(‖𝐩‖) +
𝜕𝑔

𝜕𝐩
∆𝐩]

2

 (Eq.9) 

  281 

where: 282 

(
𝜕𝐖

𝜕𝐱
)
−1

= (
1 + 𝑝1 𝑝3 −  1
𝑝2 1 + 𝑝4

)
−1

=
1

(1 + 𝑝1)(1 + 𝑝4) − 𝑝2𝑝3
(
1 + 𝑝4 −𝑝3
−𝑝2 1 + 𝑝1

) (Eq.10) 

 283 

and 284 

(
𝜕𝐖

𝜕𝐱
)
−1 𝜕𝐖

𝜕𝐩
=

1

(1 + 𝑝1)(1 + 𝑝4) − 𝑝2𝑝3
(
𝑥 0 𝑦 
0 𝑥 0 

0 1 0
𝑦 0 1

) × 

×

(

 
 
 

1 + 𝑝4 −𝑝3
−𝑝2 1 + 𝑝1
0 0

0 0
0 0

1 + 𝑝4 −𝑝3

0    0
0    0
0    0

0    0
0    0
0    0

−𝑝2 1 + 𝑝1
0 0
0 0

0 0
1 + 𝑝4 −𝑝3
−𝑝2 1 + 𝑝1)

 
 
 
= 𝛤(𝐱)𝛴(𝐱) 

 

(Eq.11) 

 285 
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The partial derivative of the expression in Eq. (9) with respect to ∆𝐩 is: 286 

2∑[∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇[𝐼(𝐖(𝐱; 𝐩)) + ∇𝑇𝛤(𝐱)𝛴(𝐱)∆𝑝 − 𝑇(𝐱)]

𝑥

+ 2[
𝜕𝑔

𝜕𝐩
]𝑇  [𝑔(‖𝐩‖) +

𝜕𝑔

𝜕𝐩
∆𝐩]  

(Eq.12) 

 287 

Setting the previous expression equal to zero and solving for ∆𝐩, gives us the minimum ∆𝐩. 288 

∆𝐩 = −(∑[∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇[∇𝑇𝛤(𝐱)𝛴(𝐱)] +

𝑥

[
𝜕𝑔

𝜕𝐩
]𝑇[
𝜕𝑔

𝜕𝐩
])

−1

× (∑[∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇

𝑥

[𝑇(𝐱) − 𝐼(𝐖(𝐱; 𝐩))] + [
𝜕𝑔

𝜕𝐩
]𝑇𝑔) 

 

(Eq.13) 

This leads to the following algorithm steps: 289 

 290 

Pre-compute: 291 

1. Evaluate [
𝜕𝑔

𝜕𝐩
]𝑇 [

𝜕𝑔

𝜕𝐩
] , [

𝜕𝑔

𝜕𝐩
]𝑇𝑔, ∇𝑇. 292 

2. Evaluate 𝛤(𝐱)𝛴(𝐱) 293 

3. Compute the matrices [∇𝑇𝛤(𝐱)𝛴(𝐱)], [∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇  294 

4. Compute the matrix (∑ [∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇[∇𝑇𝛤(𝐱)𝛴(𝐱)] +𝑥 [
𝜕𝑔

𝜕𝐩
∇𝑔]𝑇[

𝜕𝑔

𝜕p
])
−1

 295 

 296 

Iterate: 297 

5. Warp 𝐼, with 𝐖(𝐱; 𝐩) to compute 𝐼(𝐖(𝐱; 𝐩))  298 

6. Compute the error image 𝑇(𝑥) − 𝐼(𝐖(𝐱; 𝐩)) 299 

7. Compute (∑ [∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇𝑥 [𝑇(𝐱) − 𝐼(𝐖(𝐱; 𝐩))] + [
𝜕𝑔

𝜕𝐩
]𝑇𝑔) 300 

8. Compute    301 
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 302 

∆𝐩 = −(∑[∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇[∇𝑇𝛤(𝐱)𝛴(𝐱)] +

𝑥

[
𝜕𝑔

𝜕𝐩
]𝑇[
𝜕𝑔

𝜕𝐩
])

−1

× (∑[∇𝑇𝛤(𝐱)𝛴(𝐱)]𝑇

𝑥

[𝑇(𝐱) − 𝐼(𝐖(𝐱; 𝐩))] + [
𝜕𝑔

𝜕𝐩
]𝑇𝑔) 

 

(Eq.14) 

9. Update 𝐩 ← 𝐩 + ∆𝐩 303 

All automatic tracking algorithms were implemented in MATLAB, along with a Graphic-304 

User-Interface. 305 

 306 

Statistics  307 

In total, 132 different US videos of the GMtendon during the loading phase of a MVIP were 308 

recorded and analyzed using the three different tracking methods: manual tracking that we 309 

considered as our gold standard, and automatic tracking once with the earlier Schreiber (2007) 310 

Lucas-Kanade optical flow template tracking algorithm, and once with the modified Lucas-311 

Kanade based algorithm developed for the purposes of this work. The entire curve of the 312 

excursion of the GMtendon during the loading phase, from rest until maximal tendon force, was 313 

considered for the comparison between the tracking methods. As a consequence, the same 314 

start and end US frame was used in each video for all three tracking methods. To determine 315 

the differences in absolute value between the three methods and to compare the entire curve 316 

of the excursion of the tendon, from rest until maximal tendon force, the root mean square 317 

error (RMSE) was used. The RMSE was estimated between all three data sets (manually 318 

tracked data vs. Schreiber’s algorithm; manually tracked data vs. modified algorithm; 319 

Schreiber’s algorithm vs. modified algorithm) as follows: 320 

𝑹𝑴𝑺𝑬 = √
∑ (𝒙𝒊 − 𝒚𝒊)𝟐
𝒏
𝒊=𝟎

𝒏
, 
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where 𝑥𝑖 is the elongation of the tendon in millimeters at the frame number 𝑖 of a certain data 321 

set. 𝑦𝑖, is the elongation of the tendon in millimeters, at the frame number 𝑖 of the same video 322 

of another data set, and n is the total amount of frames. Additionally, the mean jumps for 323 

every video were estimated for the two algorithms. The mean jumps were estimated from the 324 

following formula: 325 

𝑴𝒋 =∑
√(𝒙𝒊 − 𝒙𝒊+𝟏)𝟐

𝒏

𝒏−𝟏

𝒊=𝟎
 

Potential differences in the mean jumps between the initial and modified algorithm were 326 

examined by using a T-test for dependent samples. Furthermore, in order to determine the 327 

agreement between methods and examine any differences between the three tracking 328 

procedures with respect to the maximal GMtendon elongation and tendon stiffness calculations, 329 

Bland-Altman plots (Bland and Altman 1999) and a one way analysis of variance (ANOVA), 330 

with the method as a factor, was used. Bonferoni’s post-hoc comparison was performed when 331 

a significant main effect was detected. The level of significance was set at α = 0.05. For both 332 

parameters, maximal GMtendon elongation and tendon stiffness, the relationships between 333 

methods have been examined using a linear regression model. All results in the text and 334 

figures are presented as mean and standard error of mean. Furthermore, the range of the 335 

middle half of the scores (25th-75th percentile; interquartile range: IQR) was calculated for 336 

the analysed parameters and are provided in the text. 337 

Fig. 3 338 

Fig. 4 339 

Fig. 5 340 

Fig. 6 341 

 342 

Results 343 
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Examination of the excursion of the GMtendon during the loading phase (see for example Fig. 344 

3) revealed significantly lower mean jump values for the modified, in comparison to the 345 

automatic tracking algorithm (7.2±0.2 mm vs. 9.0±0.4mm per 10
3
 frames; P < 0.05) with a 346 

time period of interest for all 132 videos of 6203 ± 116 ms (equal to 453 ± 9 frames). 347 

Furthermore, the absolute RMSE in tendon excursion during the loading phase between 348 

methods was lowest for the comparison between the manual and the modified algorithm (1.4 349 

± 0.1 mm) and highest between the manual and the Schreiber algorithm (2.0 ± 0.2 mm). For 350 

the comparison between the Schreiber algorithm and the modified algorithm, the RMSE in 351 

tendon excursion during loading was 1.8 ± 0.2 mm. The tracked GMtendon elongation assessed 352 

with manual and the two automated tracking algorithms during MVIP is provided in Fig. 4. 353 

Concerning the maximal GMtendon elongation during MVIP, there was no statistically 354 

significant method effect (manual tracking: 17.9 ± 0.3 mm; Schreiber algorithm: 17.0 ± 0.3 355 

mm; modified algorithm: 16.9 ± 0.3 mm; Fig. 4). However, there was a tendency (P = 0.054) 356 

for lower tendon elongation values for the manual compared to both automated tracking 357 

methods. The Blant-Altman plots in Fig. 5C and 5D reveal that the mean differences or bias 358 

between measurements (manual method - automatic method) was 1.0 mm and 0.9 mm for the 359 

Schreiber and modified algorithm respectively and the 95% confidence intervals indicated 360 

that the maximum difference to manual tracking are higher for the Schreiber algorithm (7.4 361 

mm) than for the modified algorithm (3.6 mm). Furthermore, the relationship between the 362 

three methods in maximal tendon elongation was significant (P < 0.05), with higher 363 

correlation values between the modified and manual algorithms (R = 0.87) than between the 364 

Schreiber and manual algorithms (R = 0.56; see Fig. 5A and 5B). There were no significant 365 

differences in tendon stiffness values between the manual (209 ± 4 N/mm) and modified 366 

algorithms (218 ± 5 N/mm) and the bland-Altman plot indicated that the mean difference or 367 

bias (manual method - automatic method) was -10 N/mm and that within the 95% confidence 368 

limits, the difference does not exceed 47 N/mm (Fig. 6D). In contrast to this, there were 369 
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significantly (P < 0.05) higher tendon stiffness values generated by the Schreiber algorithm 370 

(229 ± 6 N/mm) in comparison to the manual method, and the Bland-Altman plot indicated 371 

that the mean difference or bias between measures (manual method - automatic method) is -372 

21 N/mm and that within the 95% confidence limits, the difference can reach values up to 106 373 

N/mm (Fig. 6C). As for the maximal GMtendon during MVIP, the relationship between 374 

methods in tendon stiffness was significant (P < 0.05) with higher correlation values between 375 

the modified and manual algorithms (R = 0.91) than between the Schreiber and manual 376 

algorithms (R = 0.52; Fig. 6A and 6B). The IQR of the measurements was smaller for the 377 

modified algorithm (maximal tendon elongation: 3.7 mm; tendon stiffness: 64 N/mm) than for 378 

the Schreiber algorithm (4.6 mm; 76 N/mm) and, hence, closer to the values of the manual 379 

method (3.5 mm; 54 N/mm). In the same manner, for the bias between measures (difference 380 

between manual and automatic method) IQR was smaller for the modified (1.8 mm; 23 381 

N/mm) than for the Schreiber algorithm (2.7 mm; 36 N/mm). Maximal calculated tendon 382 

force was on average 3657 ± 45 N and ranged between 1190 and 4430 N for the analysed 132 383 

contraction trials. 384 

 385 

Discussion 386 

Although automatic tracking algorithms already exist (Lucas-Kanade 1981; Horn-Schunck 387 

1981; Schreiber 2007), and are quite successful when tracking solid objects in good lighting 388 

conditions (Schreiber 2007; Baker and Matthews 2004), the accuracy of tracking algorithms 389 

for US videos examining human tendon length changes in vivo has not been thoroughly 390 

examined during voluntary contractions. Therefore, the main aim of the present work was the 391 

development and examination of a Lucas-Kanade optical flow based template tracking 392 

algorithm that would track GMtendon elongation from US images during MVIP. 393 

One of the difficulties that optical flow algorithms have to overcome is the fact that the 394 

appearance of objects on a video does not stay the same throughout a frame set. Speckle noise 395 
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and violation of the constant intensity assumption add further difficulties to the estimation of 396 

optical flow in an US video. In the case of length changes of the GMtendon during MVIP, it has 397 

to be kept in mind that the motion of the tendon of the US video is uniform and relatively 398 

slow. That led us to adding a jump penalty function to the algorithm, in order to eliminate any 399 

unwanted jumps in the tracking of the elongation of the GMtendon Our results clearly 400 

demonstrate that this was achieved, since the current developed algorithm executed a mean of 401 

72 µm jumps per frame when examining all of the 132 US videos, while Schreiber's (2007) 402 

initial algorithm produced significantly higher values with a mean of 90 µm jumps. Thus, our 403 

modified algorithm executed approximately 20% less jumps from frame to frame when 404 

examining GMtendon elongation from US images during MVIP on a dynamometer, in 405 

comparison to the already existing Schreiber algorithm.  406 

During an isometric ramp contraction, tendon elongation is uniform and slow and, hence, an 407 

algorithm that executes less jumps from frame to frame should be beneficial for following 408 

tendon excursion during loading more accurately. Accordingly, the RMSE of GMtendon 409 

excursion during the loading phase shows that the current developed algorithm was closer to 410 

manual tracking (on average: 1.4 mm), than the RMSE from the Schreiber (2.0 mm). An 411 

analysis of the entire curve of the tendon excursing during MVIP on a dynamometer is 412 

particularly important for the examination of the force-length relationship of the tendon in 413 

vivo. Regarding this issue, it was found that the use of the Schreiber algorithm to track AT 414 

length changes during MIVIP resulted in a significant overestimation in tendon stiffness 415 

values when compared to manual tracking (229 ± 6 N/mm vs. 209 ± 4 N/mm), with a bias 416 

between measures of -21 N/mm. In contrast to this, tendon stiffness values generated by the 417 

modified tracking algorithm were not significantly different to manual tracking (218 ± 5 418 

N/mm vs. 209 ± 4 N/mm). Moreover, there was a higher relationship in tendon stiffness 419 

between the modified algorithm and manual tracking (R = 0.91) than between the Schreiber 420 

algorithm and manual tracking (R = 0.52). Therefore, assuming that manual tracking is a valid 421 
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method to examine tendon length changes during MIVP, the results of the current study 422 

suggest that the proposed algorithm (the first to directly compare tendon stiffness values 423 

generated with automatic tracking) can improve the assessment of tendon mechanical 424 

properties with dynamometric devices when using optical flow tracking algorithms. 425 

When normalizing the RMSE by the total tendon excursion one might argue that the ~7% 426 

error found for the modified algorithm in the current study is similar to the results provided by 427 

Lee et al. (2008), who used optical flow to assess the displacement of the GMtendon by US 428 

during a passive ankle joint motion. The authors reported errors of 6-8% in tendon 429 

displacement during passive ankle joint angular rotation using a similar manual tracking 430 

method as a reference. However, a passive ankle joint motion reduces movement dynamics of 431 

the triceps surae muscle-tendon unit, whereas in a voluntary maximal contraction condition, 432 

used in the current study, errors will likely be larger due to the GMtendon being dynamically 433 

stretched during loading, leading to some deformation and making automatic tracking more 434 

difficult. In line with this suggestion, Pearson et al. (2013) recently reported that the automatic 435 

tendon tracking error found in their study was about 1.6 times higher during active compared 436 

to passive tests. 437 

The tests reported here are the first to directly compare automated tracking with manually 438 

measured GMtendon excursion during maximally loaded voluntary contractions in a large 439 

number of different US videos and using different tracking algorithms. To our knowledge, 440 

only one previous study discussed comparisons of highly loaded in vivo tendon excursions 441 

using an automated tracking method and manual measures (Pearson et al. 2013). The authors 442 

reported absolute errors in maximal GMtendon elongation of up to 0.81 mm, which is lower to 443 

that seen on average here (about 0.9 mm). However, it has to be noted, that in the current 444 

study we examined 132 different US videos from 11 subjects. In contrast Pearson et al. (2013) 445 

only analyzed one subject, thereby neglecting potential differences in image quality across 446 
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subjects that will affect the agreement or the ability of the algorithm to track regions 447 

effectively. 448 

The Blant-Altman plots indicated that the mean differences in maximal GMtendon elongation 449 

were only slightly lower for the current modified algorithm compared with the Schreiber 450 

algorithm and, therefore, it is reasonable to question whether the identified differences 451 

between our modified algorithm and Schreiber’s algorithm is clinically or physiologically 452 

meaningful. However, the 95% confidence intervals indicated that the maximum differences 453 

to manual tracking are clearly higher for the Schreiber algorithm than for the modified 454 

algorithm (7.4 mm vs. 3.6 mm) with higher correlation values between the modified and 455 

manual algorithms (R = 0.87) than between the Schreiber and manual algorithms (R = 0.56). 456 

Moreover, our statistical test revealed higher tendon stiffness values for the Schreiber 457 

algorithm in comparison to the manual method with an average relative difference between 458 

methods of about 10%. In contrast, there was a higher agreement in tendon stiffness values 459 

between modified algorithm and manual tracking with an average relative difference between 460 

methods of about 5% and clearly lower difference in the 95% confidence (47 N/mm vs. 106 461 

N/mm). Moreover, the modified algorithm, as opposed to the Schreiber algorithm, had lower 462 

measurement variability and reduced variability in the error compared to the manual method, 463 

as demonstrated by the lower IQR (up to 37% reduction) in maximal tendon elongation and 464 

tendon stiffness, indicating increased method robustness. We believe that such improvements 465 

in the accuracy and robustness of the method in AT length-tension property assessment are 466 

relevant and should not be neglected. In particular, when monitoring the time course of 467 

tendon mechanical changes resulting from injury, maturation, aging and altered mechanical 468 

loading, the identification of small changes in tendon mechanical properties is relevant for 469 

clinical and scientific settings.  470 

There were several methodological drawbacks to this work which need to be noted. The 132 471 

videos were captured as analog video and therefore, their qualities were influenced by 472 
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converting them to different formats. This process severely impacted the quality of the tendon 473 

tracking. While this procedure is generally used for studying tendon biomechanical properties 474 

in vivo (Reeves et al. 2005; Arampatzis et al. 2007; Arya and Kulig 2010; Lee et al. 2008), 475 

due to raw data not usually being available from commercial US devices, future studies could 476 

try to use and analyse the radio frequency data. Another consideration is that we did not 477 

precisely control the rate of torque development and/or the time to reach peak joint moment 478 

during each ankle plantarflexion contraction. As a consequence, the number of US frames 479 

analysed for all examined 132 US videos ranged between 231 (minimum) and 700 480 

(maximum) frames. However, as we used the same time region of interest for each video for 481 

all three methods, our main findings with respect to the comparison between tracking 482 

techniques will not be influenced. Fig. 3 shows that our method cannot eliminate noise-483 

induced jumps completely, but it confines the jumps to a size controlled by the parameter 𝑑 484 

that roughly describes the typical step size tolerated by the algorithm. In our case, 𝑑 = 5 485 

corresponds to a jump size of 5 pixels, or a displacement of approximately 0.5mm. Both 486 

automatic methods fluctuate around the results obtained using the manual tracking method, 487 

but the fluctuations in our penalty based method are considerably smaller. Finally, one might 488 

argue that the lack of a test-retest reproducibility analysis of the modified tracking data 489 

weakens the current study. It is important to note that the data reported in this work were 490 

assessed on two separate sessions for each individual, with 6 US videos (6 contractions) from 491 

each session, originally performed in order to examine the test-retest reliability of the 492 

generated tendon length changes. However, when using such an analysis of tendon length 493 

changes during maximal voluntary muscle contraction, day-to-day physiological variation in 494 

muscle and tendon properties prevents an accurate assessment of the methods’ 495 

reproducibility. For this reason we decided not to include the test-retest session analysis and 496 

pooled all data together. That being said, the examination of the test-retest reproducibility in 497 

tendon stiffness generated by our modified tracking algorithm showed no significant 498 
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differences in tendon stiffness values between sessions (mean values session one: 220 ± 8 499 

N/mm, range of data: 181 to 256 N/mm; session two: 215 ± 8 N/mm, range: 183 to 258 500 

N/mm) and there was a significant correlation between the two sessions in tendon stiffness 501 

values with R = 0.91 (P < 0.001). Thus, we are confident that the modified tendon tracking 502 

algorithm is a valid measure of tendon length change and may be used to reliably examine 503 

Achilles tendon mechanical properties in vivo. Although not investigated, the current 504 

developed tracking algorithm is not restricted to a specific muscle-tendon unit and may, in the 505 

future, be applied to other tendons (e.g. quadriceps femoris tendon) in order to examine 506 

tendon and/or aponeurosis length changes during muscular contraction, as long as it is 507 

possible to identify a clear tissue landmark (e.g. myotendinous junction or the insertion of a 508 

fascicle into the aponeurosis).  509 

In conclusion the results of this study suggest that the earlier Lucas-Kanade optical flow 510 

based template tracking algorithm proposed by Schreiber (2007) can be potentially used for 511 

non-subjective automatic estimation of the length changes of GMtendon during MVIP in 512 

ultrasound images. However, adding a penalty function to the algorithm that eliminates 513 

unwanted jumps in the tracking of the elongation of the tendon can improve the estimation of 514 

GMtendon elongation during MVIP on a dynamometer and hence, the assessment of in vivo 515 

tendon mechanical properties when compared with the established manual method. Further 516 

development and testing of image processing prior to application of the tracking algorithm is 517 

recommended to further improve the accuracy of the algorithm to estimate in vivo tendon 518 

displacement during maximal voluntary muscle contractions.  519 
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Figure Captions List 622 

Fig. 1: Schematic illustration of the experimental setup, including camera view (medial and 623 

lateral side) and the arrangement of the three strain gauge load cells fixed at predefined 624 

locations on the foot plate. The joint kinematic data in the sagittal plane and the force 625 

measurements were basically used to calculate the resultant ankle plantarflexion joint 626 

moments, and hence, tendon forces during contraction. 627 

 628 

Fig. 2: Ultrasound images of the triceps surae muscle-tendon unit at rest (top) and at maximal 629 

gastrocnemius medialis tendon elongation (bottom) during the loading phase of a maximal 630 

ankle plantar flexion contraction. The red symbol represents the tracking node point. 631 

 632 

Fig. 3: A typical trace of the gastrocnemius medialis tendon during a voluntary isometric 633 

ankle plantar flexion contraction on a dynamometer using the three methods (manual tracking, 634 

Schreiber’s automatic tracking algorithm and the current modified tracking algorithm). The 635 

plot illsutartes that our developed algorithm cannot eliminate noise-induced jumps 636 

completely, but it confines the jumps to a size controlled by the parameter 𝑑 that roughly 637 

describes the typical step size tolerated by the algorithm. In our case, 𝑑 = 5 corresponds to a 638 

jump size of 5 pixels, or a displacement of approximately 0.5mm. Both automatic methods 639 

fluctuate around the results obtained using the manul tracking method, but the fluctuations in 640 

our penalty based method are considerably smaller. Please note that the subjects had to release 641 

their force after several seconds of holding the force at maximum and therefore, the tendon 642 

shortens again during the unloading phase (t > 6.5 sec).   643 

 644 

Fig. 4: Mean (and standard error of mean; n=132) force-length relationship of the 645 

gastrocnemius medialis tendon from rest until maximal tendon force during voluntary 646 

isometric ankle plantar flexion contractions on a dynamometer estimated by the three 647 



28 
 

different tracking methods: manual tracking, the Schreiber’s automatic tracking algorithm 648 

(Schreiber automatic) and the current modified Lucas-Kanade optical flow automatic tracking 649 

algorithm (Modified automatic) which was adapted to tendons’ continuous and relatively slow 650 

movement characteristics by implementing a jump penalty function. 651 

  652 

Fig. 5: Comparison of maximal gastrocnemius medialis tendon elongation during voluntary 653 

isometric ankle plantar flexion contractions on a dynamometer between tendon tracking 654 

methods. In the top two figures, the relationship between manual and the initial Schreiber’s 655 

automatic tracking algorithm (A) and between manual tracking and the current modified 656 

automatic tracking algorithm (B) are presented. Bottom figures: In C (manual vs. Schreiber 657 

automatic tracking) and in D (manual vs. modified automatic tracking) the Bland-Altman 658 

plots showing the mean differences or bias between measures (manual method - automatic 659 

method) and 95% confidence limits. In total, 132 ultrasound videos were analyzed by the 660 

three methods.  661 

 662 

Fig. 6: Comparisons of gastrocnemius medialis tendon stiffness values generated by the 663 

different tendon tracking methods. In the top two figures the relationship between manual and 664 

the initial Schreiber’s automatic tracking algorithm (A) and between manual and the current 665 

modified automatic tracking algorithm (B) are presented. Bottom figures: In C (manual vs. 666 

Schreiber automatic tracking) and in D (manual vs. modified automatic tracking) the Bland-667 

Altman plots showing the mean differences or bias between measures (manual method - 668 

automatic method) and 95% confidence limits. In total 132 ultrasound videos were analyzed 669 

by the three methods. 670 


