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Abstract— In this study, a single-channel electroencephalog-
raphy (EEG) analysis method has been proposed for automated
3-state-sleep classification to discriminate Awake, NREM (non-
rapid eye movement) and REM (rapid eye movement). For
this purpose, singular spectrum analysis (SSA) is applied to
automatically extract four brain rhythms: delta, theta, alpha,
and beta. These subbands are then used to generate the appro-
priate features for sleep classification using a multi class support
vector machine (M-SVM). The proposed method provided 0.79
agreement between the manual and automatic scores.

I. INTRODUCTION

Sleep analysis plays a significant role in clinical and
physiological sciences. Objective assessment of sleep is
often based on the monitoring of sleep and wake states
throughout the entire night’s sleep. An important factor in
sleep analysis is discrimination of sleep–wake states. To
this end, polysomnography (PSG) signals are recorded and
analyzed according to the standard rules. The Rechtschaffen
and Kales standard (R&K) [1] and American Academy of
Sleep Medicine (AASM) [2] are the most common guidelines
to govern the standards for sleep classification. According
to R&K, standard sleep stages are divided into: Awake,
rapid eye movement (REM), and non-rapid eye movement
(NREM) including stages 1, 2, 3, and 4 [3]. The study of
sleep and wakefulness can be accomplished through PSG
including electroencephalography (EEG), electromyogram
(EMG), electrooculogram (EOG), respiratory effort and an
electrocardiogram (ECG) [4].

Awake stage occurs at the beginning of sleep and is
characterised by alpha rhythm (8-12 Hz), eye movements
and high muscle tone. Almost 75% to 80% of the total
sleep cycle is formed by NREM sleep. Each stage of the
four stages of NREM corresponds to discrete brain activity
and physiology. Stage 1 is referred to as a shift stage from
wakefulness to sleep with a considerable representation of
theta-wave activity (4-7.5 Hz). Stage 2 can be identified by
the incidence of sleep spindles and K-complexes. Stages
3&4 are associated with delta activity which are combined
and called slow wave sleep (SWS). Following the NREM
stages, the REM stage, which contributes 20%-25% of total
sleep, is characterized by incidence of rapid movements of
the eye muscles under closed eyelids [5]. Fig. 1 indicates ten
second segments of a single channel (C3–A2) of the EEG
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Fig. 1. Ten second segments of single channel EEG signal in three sleep
states (Awake, NREM, and REM)

signal in three sleep states (Awake, NREM, and REM).
Since manual sleep classification is very time consuming,

several methods have been developed for automatic sleep
staging. Generally, the research of automated sleep analysis
is basically focused on three basic tasks: artifact removal,
feature extraction and stage classification.

In the same spirit, this study proposes an automated
sleep classification method using singular spectrum analysis
(SSA). SSA is a widely used method of a well-established
time series analysis. In contrast to the previous time-series
methods, the basic SSA method is non-parametric and we
do not have to make prior statistical assumptions about the
data. SSA has been utilized in biomedical signal processing
area for different applications including detection of murmur
from heart sounds [6], localizing localizing heart sounds in
respiratory signals [7], and separation of ECG and EMG
[8]. In this paper, SSA is applied to extract the desired EEG
subcomponents, such as delta, theta, alpha and beta. These
subbands are then utilized to construct features for sleep
classification.
Many real signals particularly physiological signals such
as EEG are nonstationary. However, SSA comprises the
elements of multivariate geometry and statistics, classical
time series analysis, signal processing, linear algebra, and
dynamical systems which can dominate the nonstationarity
of the signal [9]. Another remarkable benefit of SSA is that
during the decomposition stage the noise component can be
eliminated from the signal.

In this paper for automatic features extraction a new
constrained SSA has been proposed. These features are
then classified using a multi class support vector machine
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(M-SVM) and compared to visual analysis. The result
showed a high level of agreement between the automatic
and manual analysis.

The paper is organised as follows: section 2 explains the
fundamentals of the employed method. Section 3 reveals
the result of implementing the proposed method to real data
and the last section draws the concluding points.

II. METHOD

A. Singular Spectrum Analysis

SSA is a time-series technique which can be used in
decomposing a signal into a sum of interpretable components
such as trend, periodic, quasi-periodic and noise, and can
be applied to any time-series with a complex structure [6]
[8]. The basic SSA technique comprises two stages which
complement each other; decomposition and reconstruction.
Both stages, in turn, entail two discrete stages.

1) Decomposition: This stage includes embedding oper-
ation accompanied by singular value decomposition (SVD).
a) Embedding: In the embedding stage, an original signal
presented as a one-dimensional vector fs = ( f1, . . . , fs)

T of
length s is chosen. At this stage, the vector should be mapped
into a matrix X ∈Rl×n known as a multidimensional trajec-
tory matrix where n = s− l +1 and l is the window length
(1 < l < s). The embedding method starts by producing
n lagged vectors (xi) and continues by entering them as
columns of the desired trajectory matrix [9]:

xi = ( fi, fi−2, . . . , fi+l−1)

X = [x1, . . . ,xn]

= (xi j)
l,n
i, j=1

=


f1 f2 f3 ... fn
f2 f3 f4 ... fn+1
...

...
. . .

...
fl fl+1 fl+2 ... fs


(1)

X is a Hankel matrix as the entries along the diagonals
(i+ j = const) are equal. Remember that, in order to keep
the information about the data variation, the window length
l should be adequately large [9], [6]. b) Singular Value
decomposition: In this step, SVD is applied to the pro-
duced trajectory matrix. j-th eigenvalue (λ j) and eigen-
vector (q j) of covariance matrix Cx = XXT define the j-
th component of SVD. Cx can be diagonalised as QΣQT

since it is a symmetric-positive matrix, where Σ is a di-
agonal matrix of eigenvalues arranged in decreasing order
(λ1 > λ2 > .. . > λl) and Q is the corresponding eigenvectors
[9]. Therefore, SVD of the trajectory matrix can be rewritten
as:

X =
r

∑
j=1

X j =
r

∑
j=1

√
λ jq jvT

j

v j = XT q j/
√

λ j

(2)

in which
√

λ j is known as the singular value of matrix X
and

r = max( j, such that λ j > 0) = rank(X) (3)

The set (λ j,q j,v j) is named the j-th eigentriple of the matrix
X. The definition of X j is equivalent to the elementary
matrix.

2) Reconstruction: This stage is composed of two steps:
grouping and diagonal averaging.
a) Grouping: In this stage, the elementary matrices from the
previous stage are split into several X̃g where:

X =
gt

∑
g=1

X̃g (4)

in which gt shows the total number of groups, index g assigns
the g-th subgroup of eigentriples, and X̃g specifies the sum
of X j within group g.
b) Diagonal averaging: In the final stage, a specific (X̃g)
is selected and transformed into the form of a Hankel
matrix. This matrix is then converted into a process using
the diagonal averaging. To do this, the k-th element of the
signal is obtained by averaging the matrix entries x̃i j over all
i, j where (i+ j = k+1).

B. Constrained SSA

Grouping the desired subspaces is a challenging issue
for the SSA-based applications. To solve this, generally,
some a priori knowledge is used to define heuristic criteria
for noise rejection and subspace extraction. Similarly, sleep
EEG signals contain both desired components (meaningful
brain rhythms) and noise (artifacts). Thus, SSA is applied to
remove the noise and separate the desired components such
as delta, theta, alpha and beta. The fundamental periodic
components are localized by analyzing the relevant subspace.
Thus, it is first required to define an appropriate signal space
so that it covers all essential subspaces. To this end, noise
space is associated with eigenvalues below 90% of the total
variance of the signal. Thus, eigenvalue λ j with index j is
rejected if j > L [7].

L = min

{
h, such that

∑
h
i=1 λi

∑
l
i=1 λi

> 0.9

}
(5)

In addition, the desired frequency band is used as a priori
knowledge for the grouping stage to reconstruct the required
brain subbands. Generally, in SSA periodic components are
represented by a pair of eigenvalues with similar amplitudes.
However, the following points should be considered for
the eigenvalue pairs selection: 1) two eigenvalues may not
be exactly equal and 2) the spurious pairs can be created
due to the noise. Therefore, in order to acquire the actual
periodic pair, the eigenvalue pairs λ j and λi are selected
as a pair only if both of the following conditions are applied:

1) The corresponding pair of indexes are within the
signal subspace (index i and j are less than L , where



L is defined in (5))

2) |1− λ j
λi
|< 0.05

Rejection in selecting the eigenvalue pairs means that no
component is found in the desired time domain signal [10].
However, if some eigenvalue pairs are selected, the highest
peak in the Fourier transform of the corresponding eigenvec-
tors is relevant to the frequency of the periodic component
[11]. Thus, the spectral power is utilized to compute the
relevant frequency. The peak in the Fourier transform is
needed to fall into the bandwidth of interest delta (1-4 Hz),
theta (4-7.5 Hz), alpha (7.5-12 Hz), beta1 (16-18 Hz), and
beta2 (18-40 Hz).

C. Feature Extraction

After reconstructing the desired components, the following
features are obtained for individual EEG epochs, i.e. window
of 30-seconds.
• The mean and standard deviation (SD) of different

subbands including delta (up to 4 Hz), theta (4-7.5 Hz),
alpha (7.5-12 Hz), lower beta or beta1 (16-18 Hz), and
higher beta or beta2 (18-40 Hz).

• Sum of the power in all five frequency bands.
• The mean and SD of various ratios alpha

sum , beta1
sum , adding

the other 4 features.
• Since the resting wakefulness is usually determined

by plentiful alpha frequencies and infrequent delta fre-
quencies, the mean and SD of the ratio alpha×beta1

delta are
calculated as features the for awake state [12].

Using the above features, each 30-second EEG data epoch
is represented by a 17-dimensional input vector which is
utilized in a classification algorithm.

D. Multiclass SVM classification

SVM is a supervised learning method used for regression
and classification in various applications [13]. One hallmark
of SVM is that, it can minimize the empirical classification
error and at the same time maximize the geometric margin.
SVM looks for an optimal hyperplane to classify through
different classes exploiting a few features with the maximum
distance between the decision boundaries and training set
[14].

Principally, the design of SVMs are based on discrimina-
tion between two classes. However, our objective here is to
automate sleep state classification for discriminating between
three classes (Awake, NREM, and REM). For this purpose,
application of an M-SVM classifier is more appropriate. For
this classifier, a “one–against–all” approach is used [15].

III. APPLICATION TO SLEEP EEG

To evaluate the performance of the proposed method, we
have applied it to sleep analysis. Sleep consists of two major
states NREM and REM with different neural activities. In
this study, we aim to propose a 3 state classification to
discriminate the Awake-NREM-REM stages. To this end, we
have used a subset of the dataset recorded in the Sleep Centre

TABLE I
SVM CLASSIFICATION RESULTS VIA SSA.

`````````Manual
Automatic Awake NREM REM Sensitivity

Awake 18 0 2 90.0%
NREM 15 281 12 91.2%
REM 2 0 52 96.2%

Specificity 51.4% 100.0% 78.8%
Agreement 92.0%

Cohen’s Kappa 0.79

TABLE II
THE RELATION BETWEEN LEVEL OF AGREEMENT AND KAPPA VALUES

[16]

Agreement Kappa

Substantial 0.61 - 0.80
Moderate 0.41 - 0.60

Fair 0.21 - 0.40
Slight 0 - 0.20

of the University of Surrey. PSG data of approximately 8
nights is collected. The dataset is recorded from subjects
participating in an EEG recording for a baseline night (BL,
8 hours).

To start the EEG decomposition, the eigenvalue pairs
were identified for individual brain rhythms (delta, theta,
alpha, beta) using the aforementioned criteria. Then, each
subband was reconstructed via the corresponding eigentriple
and its Fourier transform was calculated. After generating the
desired brain subbands, features were extracted for a single
epoch and were fed to the multi class support vector machine
(M-SVM) classifier, (see Section 2.3). As we have used M-
SVM, it automatically constructed a model by following the
dynamics of the training data.

A. Result

382 epochs from 6 subjects are selected. Half of the
dataset are utilized for training set and the rest are considered
for testing set. In order to evaluate the classification, the
confusion matrix of 3 state Awake-NREM-REM manual
scoring versus automated scoring via SSA is presented in
Table 1.
To evaluate the performance of our classifier three statistical
measures were obtained: (i) sensitivity (reflects the perfor-
mance of the automatic classifier compared to the visual
analysis) (ii) specificity and (iii) Cohen’s Kappa coefficient
of agreement [17] which provides a more insightful measure
of the general performance of the classifier. A heuristic way
of explaining the Kappa values is represented in Table 2 [16].
Utilizing single channel EEG signal and automatic analysis
through SSA, the epoch-by-epoch agreement (percentage of
epochs that were assigned to the same state) was 92% and
Kappa coefficient was measured as 0.79 which represents
substantial agreement between manual and automated scor-
ing. As shown in Table 1, classification sensitivities of all
three states exceeded 90% which indicates that the individual
states have been well discerned via the features extracted
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Fig. 2. Representative 3 state sleep classification of the first 320 epochs
obtained using manual scoring (top) and SSA (bottom).

from SSA. As an example, Fig. 2 illustrates both manual
and automatic scoring obtained for the first 320 epochs of a
single subject.
Note that in most automatic sleep scoring systems both EMG
and EOG are considered for differentiating the REM stage
[18], [19]. However, in this study we have performed single
channel (C3–A2) EEG analysis. As we defined specific fea-
tures for Awake state and we applied 3 states classification,
REM state is well distinguished from Awake and general
NREM states.

IV. CONCLUSIONS

In this paper, we have utilized a constrained SSA method
to decompose a single-channel sleep EEG and extract the
features. The proposed method not only extracted the peri-
odic components automatically, but also removed the inher-
ent noise subspace. Using the generated features, M-SVM
performed 3 state classification to distinguish the Awake-
NREM-REM stage. The proposed method paves the way for
further analysis of sleep EEG to enable characterisation of
sleep abnormalities and many mental and physical disorders.
The novel approach presented here is also able to extract the
sleep spindles and K-complexes as another avenue for more
investigations.
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