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Abstract 

This thesis is a thorough examination of high-pressure enriched oxygen system design 

and analysis focussing on material selection and incident investigation.  The aims are to 

develop a model to predict spontaneous ignition temperatures (SIT), enable the use of 

more accessible measurement apparatus, and to devise a scientific methodology to 

investigate oxygen incidents. 

Chapter 1 contains examples of incidents in high-pressure enriched oxygen and outlines 

current methods of material selection and incident investigation.  The major flaws with 

the current systems are explored and the objectives of this work are identified. 

Chapter 2 details the current state of the knowledge in relation to oxygen incidents.  

Materials flammability is explored, and the importance of correct material selection is 

established. The criteria, standards and test methods currently used to aid this decision 

are assessed, and the importance of proper oxygen incident investigation is determined.  

Chapter 3 shows a programme of experimental work with details on the use of different 

apparatus for the measurement of SITs.  Data acquired from the BS 4N 100 bomb test, 

and pressurised, and ambient, differential scanning calorimetry are recorded.  The use 

of Thermal Desorption/Gas Chromatography is explored to identify polymer 

evaporation and degradation products.  

In Chapter 4 a simple model is developed to adapt SIT allowing calculation of the SIT 

of a non-metal in any pressure or oxygen concentration.  Data obtained in chapter 3, 

and from the literature, is used to validate this model.  Data on metals is also collected 

from the literature to be incorporated into a methodology demonstrating the kindling 

chain. 

Chapter 5 covers the development of a ‘tool kit’ for oxygen incident analysis.  

Understanding of ignition modes, heat transfer modelling, flow diagrams, and the SIT 

model are used to examine past oxygen incidents, and understand kindling chains.   

Chapter 6 examines ‘real life’ incidents and applies the Chapter 5 ‘tool kit’ as a clear 

scientific methodology, identifying likely incident ignition sources and kindling chains.   

Finally Chapter 7 gives conclusions, identifying the successes and limitations of this 

work, and points where difficulties were encountered. Areas where further scientific 

investigation is required are identified. 
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Chapter 1                                                                                                                       

Introduction to the Use of High Pressure Enriched Oxygen Systems 

Oxygen is the second most abundant gas in air (only nitrogen is more plentiful), making 

up about 21% of our atmosphere with a boiling point of 90K at atmospheric pressure.  

Oxygen is vital to sustain life and for this reason life support systems or breathing 

apparatuses are used in a wide number of areas, including civil and military aircraft, 

medical breathing apparatus and hyperbaric chambers, and diving and mountaineering 

systems.   It is also used in a number of industrial processes, but is most often used for 

combustion.  Combustion is the rapid runaway oxidation of a fuel material.  It requires 

an initial energy input to push the exothermic oxidation reaction rate to pass a critical 

point, meaning the energy released is then enough to bring about further oxidation of 

any fuel.  This results in a self-perpetuating reaction, which continues as long as there is 

enough oxygen and fuel to sustain it.  The heat produced by combustion is widely used 

e.g. for cutting and welding in oxy-acetylene equipment.   

As oxygen is used so extensively it is often necessary to store and use it at high 

pressures and concentrations.  Where the pressure or concentration of oxygen is 

increased well above that of atmospheric, oxidation reactions occur more readily, and at 

a faster rate, relative to those under atmospheric conditions.  Certain circumstances can 

result in unwanted ignition, resulting in the destruction of property and endangerment 

of life, as illustrated in 1.1.   

In order to stop these ignitions (that can result in extremely serious catastrophic failures 

dangerous to people and property), reduce their occurrence, or reduce their severity, the 

choice of materials used for the construction of an oxygen system must be made with 

great care, taking into account the latest information, and ideally involving testing of 

the materials that are going to be used.  The first major aim of this work is to allow the 

prediction of ignition, and particularly the Spontaneous Ignition Temperature, of 

materials used in oxygen systems under a range of conditions.  It is unrealistic to 

propose that materials be tested under every set of circumstances, for example under 

different oxygen concentrations or pressures.  This would be both costly in terms of 

time and money. Thus this work will develop a method of prediction using a single test 

result.  This would advise the suitability of materials to be used in oxygen systems, and 

also enable the identification of any likely sources of ignition in active systems, or after 

oxygen incidents.  
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While the ignition, and first material ignited is key in any fire, it is not the only 

important aspect of the fire’s progression.  Being able to predict, or at least to 

understand the full progression, or kindling chain, of a fire in an oxygen system should 

expose any design or engineering areas that might be improved to reduce the chance of 

spread, or reduce the danger an incident might pose to equipment operators.  Thus the 

second major aim of this work is to understand kindling chain reactions, from the 

ignition source and ignition of the first material ignited to further system components 

using heat transfer calculations.   

After an incident has occurred a number of different groups may be involved in the 

investigation to find out what happened.  There may be a range of methodologies 

looking at physical and chemical evidence.  This work will aim to enable a more 

effective investigation of oxygen incidents, looking at past incident reports, and 

identifying areas that could be improved with a deeper understanding of ignition, heat 

transfer and modern forensic and investigative philosophies and techniques.  The 

following section has some examples of oxygen incidents, demonstrating why 

understanding and preventing them is so important. 

1.1 Illustrative examples of catastrophic failure incidents in high pressure 

enriched oxygen systems 

These are illustrative of the events that have actually occurred and are listed in the 

British standard for aeronautical oxygen systems BS 5N 100-5 (2006).  They not only 

demonstrate the seriousness of incidents of this type but also that incidents can be 

classified by their technical root cause.   

A fire and explosion occurred at an oxygen filling plant when a valve to a cylinder pack 

was opened after being connected to a filling hose (BS 5N 100-5 2006).  The cylinder 

pack, a mobile supply for filling aircraft life support systems, was due to be filled with 

oxygen to 24.8 MPa.  The procedure to fill the cylinder pack involved a prior inspection 

to check for valve contamination, residual pressure, damage and odour.  Occasionally 

cylinders are returned to the filling station with pressures up to that attained at the 

original filling.  If a pack contains a cylinder with a residual pressure the procedure 

states that the operator should top up this to the fill pressure.  The incident occurred 

when the filling hose was connected to the cylinder pack and the valve to the first 

cylinder had just been opened.  It appears that cylinder no. 1 contained residual oxygen 

at pressure.  Upon opening the valve the filling hose rapidly filled with oxygen.  Then, 
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as the filling hose was not pressurized, the flow of oxygen into this closed volume 

resulted in a rapid rise in temperature caused by the adiabatic compression of the 

oxygen.  It was suspected that this temperature rise exceeded the Spontaneous Ignition 

Temperature (SIT) of the hose lining material and ignition occurred.   

Another incident involved the manufacture of an oxygen pressure-reducing valve (BS 

5N 100-5 2006).  The valve incorporated a blanking cap over the valve adjusting head.  

The cap was secured by five screws and sealed by a silicon rubber “O” ring.  Its 

maximum operating pressure was 14.5 MPa.  To adjust the reducing valve assembly the 

cap must be removed, and then replaced again after the adjustment.  An incident 

occurred during this stage of the process.  At a pressure of about 11 MPa there was a 

sudden escape of gas and a drop in pressure.  On examination a gap of approximately 

1.5 mm was found between the blanking cap and the valve body.  The seal had 

completely burned away.  The investigators concluded that the seal had been ignited 

due to resonance in the cavity between the cap and the body.   

In one incident (BS 5N 100-5 2006) an operator “cracked open” the outlet valve of a 

portable oxygen cylinder assembly momentarily to produce an audible hiss of gas to 

check its contents and function.  As the operator replaced the assembly in its storage 

area, it burst into flames causing severe facial injury.  Examination afterwards showed 

considerable damage to the operating head with loss by combustion of a sizeable part of 

the outlet valve housing, seat and seal.  The cylinder was designed for use up to 12.4 

MPa.  It had an aluminium body.  The PTFE spindle seat was rigidly attached to the 

end of the rotating spindle made from austenitic stainless steel.  All the assemblies 

showed particulate contamination of the PTFE (found to be aluminium), presence of 

grease (found to be a silicone-type), and sharp edges to the cut seat.  It was concluded 

that adiabatic heating of the gas as the valve was closed was the mode of failure, in the 

presence of a non-compatible lubricant.  These incidents demonstrate the importance of 

being able to identify the cause of an incident.  The causes are described in the 

following section.   

1.2 Classification of the causes of oxygen incidents 

The main sources of ignition, according to BS 5N 100- 2006 (part 5) in any oxygen 

system are: 

- Pressure shock and rapid adiabatic compression (accumulated oil/ grease often 

facilitates this method of ignition). 
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- Impact by contaminant particles 

- Mechanical impact  

- Friction in valves 

- Cavity resonance 

- Electric arcing (e.g. short circuit arcing through sheath) 

- Kindling chain (initial ignition caused by the combustion of other constituent 

materials or contaminants resulting in a chain of ignitions) 

The accumulation of dust in a system, the contamination by grease not suitable for high 

pressure oxygen, poor design or inappropriate component material selection resulting in 

shearing and particle generation can all contribute to the ignition.  Yuen et al (1988) 

suggests that there is usually more than one cause for oxygen related mishaps, and that 

a combination of factors may be involved.    

1.2.1 Ignition by pressure shock and adiabatic compression 

When high-pressure valves are opened quickly gas entering the system rapidly can 

result in heating of materials by two modes.  Firstly where high pressure fast flowing 

gas enters closed-ended components it will be compressed, a process known as 

adiabatic compression.  Due to that compression the gas heats up, and this hot gas can 

in turn heat surrounding component materials.  Secondly this rapid gas flow can result 

in a supersonic shock wave, referred to as pneumatic shock, as successive compression 

waves coalesce, and this shock wave further heats materials in the system. In reality it 

is difficult to determine which of these modes of heating might have occurred, as they 

generally happen together (Newton and Steinberg 2009).   

 

Yuen et al (1988) stated that at pressures of 40MPa (approximately 6000psi), 

temperatures produced by adiabatic compression were up to 1773K (1500°C). The 

theoretical maximum temperature of rapid pressurisation of a gas can be calculated 

using: 

𝑇𝑓

𝑇𝑖
= (

𝑃𝑓

𝑃𝑖
)

1
𝛾𝑐𝑝

 

Eqn. 1.1 

where 

Tf  = Final temperature 

Ti = Initial temperature 

Pf = Final pressure 

Pi = Initial pressure 
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γcp =  
𝑐𝑝

𝑐𝑝−𝑐𝑣
 

where 

cp  =  Specific heat at a known constant pressure 

cv  = Specific heat at a known constant volume 

γcp for oxygen = 3.50 

This effect has been known to ignite any vapour from accumulated grease and oils in 

oxygen systems, which then provides the energy for further ignition of the system 

components.  Testing has shown that this force can result in ignition of polymers, and 

lighter metals/ alloys.  Newton et al (2000) reported a case of an aluminium medical 

regulators igniting due to this cause.  In this case an oxygen cylinder valve was opened 

allowing pressurised oxygen into the regulator, which had the flow control turned to the 

off position.  According to Yuen et al (1988) the chances of adiabatic compression can 

be decreased by the introduction of slow opening valves and heat sinks.  These 

engineering solutions may however result in an increase in cost that many end users 

might be resistant to accommodating.   

1.2.2 Ignition from impact by contaminant particles 

In flowing oxygen any particles, which enter or break off from within the system, can 

reach sonic velocities.  The impact of these particles is capable of igniting both metals 

and non-metals.  The mechanism of ignition varies.  Generally it is the particles that 

ignite on impact and the energy produced by this ignites further materials.  

Alternatively if the material being impacted upon is particularly flammable (e.g. 

polymers, aluminium) it may ignite before the particle. This secondary ignition is 

generally referred to as ‘promoted ignition combustion’ (Stoltzfus et al 1988, Yuen et al 

1988) found that bends and valves were likely to be the most critical ignition sites.  

Newton et al (2000) also reported particle impact had been responsible for igniting a 

number of aluminium bodied regulators, often indicated by contaminants in the system, 

or in attached cylinders.   

1.2.3 Ignition by mechanical impact 

Energy is transferred from kinetic energy, by the impact of an object with a large mass.  

Testing has succeeded in igniting only polymers and the very light metals and alloys 

(e.g. aluminium-bronze, titanium) and according to McColskey et al (1991) this type of 

test has not ignited the majority of bulk metals such as Stainless Steels, or brasses.  
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1.2.4 Ignition from frictional heating 

Continuous rubbing, for example, within a valve can cause a build-up of heat energy.  

In the case of metals it can also reveal clean metal that is not protected by an oxide 

layer.  The rapid oxidation of this new metal can provide the energy for a runaway 

combustion reaction.  Examples of this are a centrifugal compressor rotor rubbing 

against its casing, or friction in aluminium valves (ASTM G94 2005).  

1.2.5 Ignition by cavity resonance 

The ISO standard 14624-2 (2003) states that acoustic oscillations inside resonant 

cavities can cause a rapid rise in temperature.  If particles are present in the chamber, or 

if gas velocities are high, this resonance can produce much higher temperatures.  This 

type of ignition has been shown to be particularly ubiquitous where gas flows into a tee.  

Gas flowing into a tee and out of a branch port can form a resonant chamber at the 

remaining closed port.  This has been shown to provide enough energy to ignite 

polymers, aluminium and stainless steels in testing.   

1.2.6 Ignition by electric arcing and sparking  

Arcing and sparking are similar but not the same.  Arcing is the electrical breakdown of 

a gas causing an on-going plasma stream, while sparking is a momentary electrostatic 

discharge (via a plasma stream) from one charged surface to an earthed surface.  

However they are grouped together in this case because they can both result in very 

high temperature.  The ASTM fire hazards in oxygen systems standards technology 

training coursebook (2004) stated that they can be an effective ignition source for any 

flammable material.  They can occur from motor brushes, electric power supplies or 

even lightning.   

1.2.7 Ignition by flow friction 

This is a relatively newly proposed phenomena Beeson et al (2007) describe this as 

being caused as a gas flow travels across a polymer, causing erosion and the generation 

of heat.  It is reported by Gallus and Stoltzfus (2006) that a number of fires at NASA 

have been attributed to this, however Stoltzfus et al (2012) report that it had not been 

possible to replicate this supposed ignition source, and that other explanations, such as 

ignition or self-heating of foreign contamination, are more probable.  As this is not a 

credible source of ignition this will not be discussed further in this work. 
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1.2.8 Kindling chain ignition 

Once one material in a system has ignited the temperatures induced by the combustion 

energy release are often great enough to heat materials inducing further self-sustained 

oxidation reactions.  This is by far the most common cause of ignition of metals in 

oxygen systems.  It should be remembered that these causes often act concurrently, and 

are in some cases interconnected.  One example is friction.  Wear on metallic parts can 

produce enough heat to reach the ignition temperatures, but also produces particles, 

which can impact on, and ignite, other parts of the system.  The complex nature of 

metal system ignition means that it is not always possible to identify the exact cause. 

1.3 Criteria for the selection of materials for use in high-pressure enriched 

oxygen system devices/ component  

The incidents discussed in section 1.2 demonstrate the clear need for careful 

consideration when choosing materials for use in oxygen systems and apparatus.  There 

are a number of material properties that are relevant to selection for oxygen use.  There 

are also a range of test methods to ascertain flammability information on materials to 

assess their suitability for oxygen service.   

1.3.1 Spontaneous Ignition Temperature (SIT) 

The SIT of a substance is defined by Bodurtha (1980) as the temperature at which 

vapours ignite spontaneously from the heat of the environment.  The SIT depends on 

many factors i.e. ignition delay, concentration of vapours, environmental effects 

(volume, pressure and oxygen concentration), catalytic material and flow conditions.  

Clearly if a material ignites at a lower temperature there is a greater risk of it being 

ignited.  This is generally applied to the selection of non-metals.   

The most common method for this test is the high pressure bomb calorimeter, or high 

pressure bomb, test. The bomb (commonly used for non-metals) is a static atmosphere 

test and comprises of a sealed bomb in which the pressure can usually be changed.  A 

material is inserted into the bomb, and ramp heated under controlled pressure 

conditions.  Thermocouples measure the change in temperature within the bomb 

compared to the ambient, and results are recorded to allow the SIT to be determined.  

The SIT of gases can also be tested.  A gas is introduced to a test vessel and the vessel 

is heated in a hot air oven until ignition, identified as any visible flame, is observed via 

a mirror.   
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Another method of measuring the effective SIT of a material is Differential Scanning 

Calorimetry (DSC) which can be done under ambient conditions, or high pressure 

enriched oxygen conditions (PDSC) depending on the apparatus.   

Some work has been done to find the SIT of metals with laser ignition, but thermal 

testing for metallic materials is generally concerned with the identification of the 

maximum working pressure (see section 1.3.3).   

1.3.2 Combustion mechanism 

Ignition occurs when a source provides enough energy to initiate a self-sustaining 

oxidation reaction in which the heat production exceeds that lost to the external 

environment.  According to Drysdale (1998) to reach a point where most solids will 

burn they must invariably thermally decompose. The same is true for liquids.  The 

production of combustible volatiles might also occur from melting and evaporation 

process.  Evaporation or decomposition products will then mix with the oxygen in the 

atmosphere and if enough energy is provided, e.g. by heat, ignition will occur.  

According to Glassman (1996) there are two mechanisms by which materials are 

oxidised depending upon their individual characteristics.  The most common oxidation 

mechanism is homogenous oxidation, where materials are vaporised, and combustion 

takes place in the vapour/ gas phase.  The second mechanism is heterogeneous 

combustion.   In this case the materials do not produce volatiles.  Instead it is a surface-

burning process where the fuel is in solid or liquid form (a different phase to the 

oxidiser).  This is discussed later in section 2.2.3 as it is important to assess the 

combustion type when trying to calculate the SIT.  

1.3.3 Reaction thermodynamics  

There are a number of pieces of information that might be used to characterise a 

chemical reaction.  According to Yuen et al (1988) the energy released by the oxidation 

reaction substantially influences whether the reaction will be self-perpetuating so 

materials with higher heats of combustion will be more likely to undergo a sustained 

oxidation reaction.  The greater energy release also increases the likelihood of damage 

to other components.  Thus materials are ideally selected with a lower heat of 

combustion.  A careful choice must be weighed over choosing the correct materials 

based on physical properties versus reducing the possibility of a combustion reaction 

starting or a catastrophic failure if it does.   
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Other data that has been looked at in relation to combustion reactions for example Jones 

and Atkins (2000) state that higher activation energy results in greater reaction 

temperature dependence thus the higher the activation energy of the oxidation process, 

the less likely a combustion reaction is to take place.  The SIT (BS 4N 100-6 1999) 

extinguishing pressure and impact sensitivity (Davis 2012) are more commonly used 

for material selection). 

1.3.4 Critical Oxygen Index (COI) and Extinguishing Pressure 

The Critical Oxygen Index (COI), also called the Limiting Oxygen Index (LOI), is 

defined as the minimum percentage oxygen required in the surrounding atmosphere to 

sustain the oxidation of a material, the critical condition for combustion.  Experimental 

apparatus have been developed to identify this and the tendency of a material to 

continue to burn once ignited.  This test is often used on non-metallic materials, but is 

not generally carried out on bulk metals, as the majority of these require above 99.5% 

oxygen. According to Ikeda (1983) COI is one of three criteria used by Air Products 

and Chemicals Inc. to determine the degree of acceptability of materials for use in 

oxygen-enriched atmospheres.   

 

High Pressure Critical Oxygen Index (HP COI) has been used for testing metals by 

Benning and Werley (1986).  This test is reportedly similar to earlier COI tests, but has 

a high pressure vessel capable of measuring the oxygen index as a function of pressure, 

up to 20 MPa.  A thermite pill is used as the ignition source, and again a sustained 

complete or extensive combustion of the sample was used to identify the oxygen index.   

This was also one of the few methods used to explore the possibility of a kindling chain 

e.g. experiments identified that combustion of nitrile rubber could in turn ignite carbon 

steel. However the usefulness of this apparatus is questionable as majority of bulk 

metals require a comparably high percentage oxygen atmosphere for ignition to occur, 

making differentiation difficult. 

As metallic materials require such a high concentration of oxygen for combustion, tests 

have been devised that instead measure the ‘Extinguishing pressure’ as an alternative to 

COI.  This is the maximum pressure at which promoted combustion of a metal (using a 

small ignition charge) is not supported. Generally the extinguishing pressure is most 

commonly used for metal selection (Davis 2012) which is most commonly measured 
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using promoted ignition combustion test.  This consists of a sealed pressurised unit with 

a specimen (usually a rod) held vertically.   

Bulk metal thermal behaviour has been tested in a flowing environment.  For lighter 

metals and alloys the oxygen index test can be used. The minimum level of oxygen 

required to support combustion is recorded.  For heavier bulk metals (like those used in 

the manufacture of oxygen systems) the promoted-ignition combustion test has been 

adapted with a sample rod in flowing oxygen (Zawierucha and McIlroy 1989).   

1.3.5 The reaction of a material to impact stimulus 

When an object is impacted upon by another object the kinetic energy possessed by the 

object is transferred to other forms.  Some of it will turn to kinetic energy as the object 

rebounds from the surface, but much of it will be converted to heat.   

A material’s impact ignition sensitivity can be tested by a number of different methods.   

Mechanical impact tests involve dropping a known mass on to a fixed sample from a 

particular height.  Generally the same test will be used as a comparative experiment, 

with many samples placed in a ranking table.  This test is used for non-metals and the 

lighter metals (e.g. titanium, aluminium).  Where one mass, such as a small particle, 

impacts on a larger mass, such as an oxygen system component surface, the total 

energy, Ei, available for conversion to heat can be calculated from the mass of the 

impacting object, m, and the relative velocity it is travelling at, v, using: 

Ei = 21

2
mv   

Eqn. 1.2 

Particle impact tests are used on both metals and non-metals.  They involve shooting a 

particle (either of aluminium or iron) of known size, at a known velocity, on to a 

material’s surface.  In both of these tests the atmospheric pressure may be varied to find 

the maximum working pressure for the material.  The original particle impact test, 

according to Stoltzfus et al (1988), uses a 2mm particle made from 6061 Aluminium 

placed into a stream at Mach 3.5 (1191.015 m/s).  The maximum energy that can be 

imparted (assuming a spherical particle of mass 3.4mg) is 2.411 kJ, excluding ignition 

of the particle itself.   

Pneumatic impact tests provide energy via a combination of shockwaves and adiabatic 

compression, simulating conditions similar to the fast opening of valves.  A pressure 

shock, or series of pressure shocks, is applied over a very small period of time by 
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exposure to high-pressure oxygen shock waves.  This is often included under the title of 

impact testing, although it is more akin to a thermal test.  This is also only used on non-

metals and lighter metals.  

1.3.6 Examples of the variation that can exist between different flammability test 

methods 

There is a problem with comparing the results from the various metals’ and non-metals’ 

tests.  Firstly, due to the different oxygen partial pressures and energy inputs required 

for auto-ignition, different test methods must be used on the different materials.  But 

even within those groups different test pressures, heating rates, heating regimes, impact 

heights, or particles for impact are used (see section 2.4 for further details).  

One of the best examples of this variation is the promoted ignition test for metals. Table 

1-1 shows the large variety of different test pressures used by the various test facilities.  

Although these tests at different pressures produce rank tables, the numerical data from 

each cannot currently be compared with the others, or manipulated for other uses.   

Table 1-1 The test pressures used in a range of promoted combustion test criteria 

Promoted ignition test apparatus Test pressures MPa 

NASA White Sands test facility 

conducted promoted ignition tests - 

Stoltzfus et al (1988)  

68.9, 55.2, 48.3, 34.5, 20.7, 17.2, 13.8, 

6.9, 5.2, 4.1, 3.5, 2.1, 1.4, 0.2, 0.2, and 

0.17  

Lindé - McIlroy et al (1988) 30.7, 20.7, 6.9  

Air Products & Chemicals Inc. oxygen 

index test - Zabrenski et al (1989) 

10.34, 6.20, 5.17, 5, 2.41, 1.90, 0.62, 

0.17, and 0.1  

1.4 Techniques employed in the investigation of oxygen incidents  

Oxygen incident investigation often involves more than one organisation.  In the UK 

fire brigades, Health and Safety Executive, armed services (e.g. Royal Air Force, Royal 

Navy) private consultancies, insurance companies and interested industrial companies 

are among those that may be involved.  Worldwide, as well as government health and 

safety groups, and emergency service organisations, a number of standard standards 

institutions, societies and trade groups are have an interest in this area.  These include 

the American Society for the Testing of Materials, BSI group, the National Fire 

Protection Association (NFPA) and the Compressed Gas Association (CGA)/ European 

European Industrial Gas Association (EIGA).  There are a number of techniques, which 

may be employed by the investigators, discussed below. 
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1.4.1 The use of photography in oxygen incident investigation 

This is one of the best ways to document physical information. Recording the 

environment a system is kept in, the system design and assembly, and the condition of 

individual components is imperative at a scene in case evidence might be lost.  Any 

photographs taken should be in colour to show all of the fire damage in the most detail 

and notes should accompany them to describe what they depict.  Although many reports 

include photographs, they are not always well explained and a scale is rarely used. 

1.4.2 Interviews in oxygen incident investigation 

Any witnesses, persons involved with the incident, and persons involved in the use and 

maintenance of the system involved should be interviewed to identify normal practice, 

and the exact circumstances of the moments leading up to the incident.  Even small 

details from these interviews may provide the investigator with key information on the 

cause, or results of the incident.  They are used by organisations like the HSE to 

develop a chain of events leading up to the incident, and to help identify the root cause 

of the incident, the conclusions of which are summarised by investigators in their final 

report (used in this thesis). 

1.4.3 Component examination in an oxygen incident investigation 

Probably the most important part of the investigation is the examination of the physical 

evidence, i.e. a full examination of the system components involved in the incident.  A 

schematic diagram of the system design should be used to identify the components, and 

assess whether the system had been constructed correctly and in accordance with safety 

considerations.   

An in-depth examination of the system’s constituent parts and components must be 

carried out to identify the damaged areas and the seat of the ignition.  Comparison with 

new or undamaged components will help to identify damage and any missing 

component parts, the existence of which an investigator may be unaware.  The 

dimensions and constituent part materials should be recorded.  The damage should be 

measured, ideally by the measurement of dimensions and mass loss.   

 

Added to the physical evidence there may be chemical evidence.  In some cases, such 

as where there is no obvious cause, or where the materials identification is in doubt, it 

may be necessary to do further experimental testing.  This is especially important if the 

material is in a position, which may have been in, or close to, the site of ignition.  There 
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may be evidence of a residue.  Most oils and greases are highly flammable and if 

present in oxygen systems greatly increase the chance of ignition.  Although fire will 

generally destroy any residue inside an oxygen system it may be left between thread 

seals or other more protected areas.  Using a technique such as a non-invasive variety of 

Infra-red spectroscopy (IRS) to identify polymers may be useful as, on top of not 

destroying your sample, it is a fast and reliable way to check correct materials were 

being used.  Swabbing internal surfaces and then analysing the combustion or pyrolysis 

deposits may also allow identification, or confirmation, of the materials used in the 

system that have been burned away, using IRS or Gas Chromatography (GC) 

techniques.  It may also reveal evidence of oils or greases not suitable for use in oxygen 

systems that might have been part of the ignition process.   

It may be necessary to determine the thermal characteristics of materials using, for 

example e.g. Differential Scanning Calorimetry (DSC).  Physical examination details 

(for example component dimensions), GC and DSC have all been used in this work to 

explore the flammability of materials, to predict the SIT of materials, and try to 

understand the kindling chain reactions that can occur in oxygen systems.  

1.5 The problems with the current system of material selection and investigation 

of incidents in oxygen systems 

There is a need for predicting the performance of materials under a variety of 

conditions.  Crude guidance is available from league tables and from experimental data 

obtained from various methods and equipment, but these only apply to particular 

environmental conditions.  They do not take into account changes in oxygen 

concentration, or pressure.  They also do not take account of sample configuration, and 

the effects that changing these can have on the rank order of materials.  It is impossible 

to look at these results and to accurately predict the behaviour of the same materials in 

new circumstances. 

Because of this, there is a need to be able to establish mathematical relationships using 

experimental data and to apply these to any conditions: 

- employed in new designs 

- involved in an incident 

Also, currently there is no comprehensive system or set of guidelines available to 

examine incidents after they have occurred.  It is essential to ensure as much 

information as possible can be gleaned from the debris of an incident to help identify 
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inappropriate materials, aid in the design of oxygen system components, and most 

importantly, to prevent similar incidents occurring in the future.  Because of this, road 

maps and guidelines for the investigation of incidents are also required. 

1.6 The objectives of this work 

Based on the information in this chapter the main aims have been determined.  These 

are to develop a universal model to predict materials spontaneous ignition temperatures 

(SITs), to enable the use of more accessible measurement apparatus, and to devise a 

scientific methodology to investigate oxygen incidents and better follow the kindling 

chain.  In order to achieve these, the following objectives will need to be met; 

a) To review literature on the oxidation of materials in high pressure enhanced/ pure 

oxygen atmospheres in order to understand the fundamentals of flammability and to 

review the results of current ignition and flammability tests.  

b) To combine data bases relating to both metals and non-metals, which will provide 

scope to improve oxygen system designs, operations and incident investigations 

c) To continue the development of mathematical models, incorporating the pressure of 

an environment, the oxygen concentration, the pressure differential and system flow 

rate, and the sample mass, to predict ignition (oxidation) temperatures in scenarios 

involving single substances, using small scale testing 

d) To combine heat transfer models with databases to permit the prediction of 

sequential ignitions and oxidations prevalent in kindling chains, involving 

contaminants, non-metallic material decompositions and metals’ oxidation. 

e) To predict the SIT for non-metals in a defined scenario based on experimental 

measurements and theoretical/ empirical relationships. 

f) To form more structured and robust methodology for the investigation of oxygen 

incidents relating to the collection and analysis of information, incorporating a 

systematic procedure. 

g) To analyse past oxygen incidents using experimental data to validate the use of the 

heat transfer models for the prediction of ignition/ oxidation and thermal behaviour 

of materials within oxygen systems.   

h) To develop tools to enable the selection of safe materials for use in assemblies/ 

components (e.g. valves) based on spontaneous ignition data and a risk analysis 

procedure.  
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Chapter 2                                                                                                                          

A literature survey on the problems associated with high pressure enriched-

oxygen materials selection and incident investigation  

This chapter will detail the current state of knowledge in relation to oxygen incidents, 

and show the seriousness of these incidents, the worldwide problem they cause, and the 

need for the optimum safe operation and a methodology for the investigation of oxygen 

incidents.  The following sections illustrate the many ways in which compatibility of 

materials within oxygen systems can be (and are) assessed, and demonstrate the lack of 

comparability of these methods.  They also report the frequency and type of oxygen 

incidents that have occurred, as well as detailing the varying way that these incidents 

are investigated and reported.   

 

Information in this section has been sourced from a wide variety of sources including  

- Industrial contacts at Meggitts PLC, Honeywell Aerospace, Marshalls Aerospace & 

Defence Group and BOC Ltd. 

- Government contacts at the Ministry Of Defence (Defence Logistics Organisation) 

- Reports and safety advice from National Aeronautics and Space Administration 

(NASA), European Industrial Gas Association (EIGA) and the USA Compressed Gas 

Association (CGA). 

- Incident investigation reports by the Health & Safety Executive (HSE), NASA 

white sands facility staff, and the Health & Safety Laboratory (HSL).  

- BSi, ASTM and ISO Industrial standards 

- The seminal fire text books by Glassman and Yetter (2008a) and Drysdale (2011) 

- A range of applied and theoretical journals, and similar publications, including 

‘Combustion and Flame’, ‘Fire Safety Journal’, ‘Loss prevention in the process 

industry’, and ‘Flammability and sensitivity of materials in oxygen enriched 

atmospheres’. 

A large range of journal, book and similar sources have also been found, searched and 

viewed at the British library, the libraries of University College London and Imperial 

College London, and using the online directories ‘ScienceDirect.com’, 

‘OnlineLibrary.Wiley.com’, and ‘Scholar.Google.co.uk’. 
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2.1 Illustrative incidents of catastrophic failure in high pressure enriched-

oxygen due to combustion 

Section 1.1 detailed incidents for the purpose of showing their technical root causes.  

The following section demonstrates the number of serious incidents over the course of a 

relatively short period of time, both nationally in the UK, and internationally.   

Dicker and Wharton (1988) reported 28 high pressure oxygen incidents between 1982 

and 1985.  Fowler and Baxter (2000) detailed the occurrence of several incidents in the 

UK involving pressurized oxygen in the period 1996 – 1998.  Gregson (2008) recorded 

that between 1996 and 2002 158 oxygen incidents had been reported to the HSE, 

including 59 minor injuries, 25 major injuries and 5 fatalities.  

An oxy-acetylene cutting equipment incident, mentioned by Fowler and Baxter (2000), 

occurred when the operator lit the torch there was a flashback and the single storey 

workshop was completely demolished in the resultant explosion.  There was over one 

million pounds worth of damage, but fortunately no one was injured.     

Fowler and Baxter (2000) reported seven incidents involving the ignition of oxygen 

regulators (generally following connection of full, high pressure cylinders) causing 

injury.  In one case the operator’s clothes caught fire and he was seriously injured.  The 

hazards of high-pressure oxygen can be demonstrated here by two other incidents.   

In the first, oxygen was used instead of nitrogen to pressure test an air conditioning 

unit.  The oxygen reacted with the mineral oil present in the unit.  There was an 

explosion causing extensive damage.  The cause of oxygen incidents is often attributed 

to contaminants, such as greases or oils.   

The second incident was at a filling facility where calibration gas mixtures (methane/ 

oxygen) were being prepared.  It was thought that the pressurised oxygen was added to 

the methane.  The methane ignited, and the cylinder was blown apart.  The equipment 

layout and procedures for use were found to be at fault and allowed a single mistake, 

which resulted in the death of the operator.  The report recognises that high gas velocity 

(when valves are opened) can result in combustion due to adiabatic compression and 

that contaminant particles, such as rust or dust, can be pushed through a system causing 

frictional heat, resulting in ignition.   

According to Bradley and Baxter (2002), there were several incidents in the UK in the 

period 1998–2000 involving the use of high-pressure oxygen.  Oxygen can be supplied 
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in cylinders at pressures up to 23MPa.  This article recommends that equipment for 

oxygen use must be specifically designed for that purpose and should be cleaned 

rigorously.  In four of the most serious incidents oxygen was used to pressurise or 

“blow through” equipment (instead of Nitrogen or compressed air).  This resulted in the 

system igniting, either due to pneumatic impact/ adiabatic compression or contaminant 

particle impact.     

Bradley and Baxter (2002) also found that one of the main dangers of oxygen-enriched 

atmospheres is that clothing can catch fire more easily and burns very rapidly.  One 

incident occurred in a sewage treatment plant where three workers were upgrading 

equipment.  Sparks from an angle grinder ignited the clothes of a worker, who died 

very shortly afterwards.  The investigation revealed that they had been working in an 

underground chamber, close to an oxygen point.  Although the area had been assessed 

for confined space working and oxygen depletion, oxygen enrichment had not been 

considered. 

This is not just a problem in the UK, but internationally.  The NASA Oxygen-Enriched 

Fire Incidents reporting site (2013) records 119 documents on oxygen incidents 

between 1984 and 2009, primarily in the USA armed forces, hospitals or similar 

commercial establishments.  The vast majority of these are reports pertaining to actual 

oxygen incidents, while some are documents on testing in relation to simulated or 

proposed incidents.  The site also lists 30 further incidents occurring prior to 1992 in 

Boeing establishments.  One of the most recent incidents on the register is investigated 

by Lewis et al (2010) The register also includes a short report on a factory explosion in 

2003 where an oxygen pipe ruptured causing a fire/ explosion which killed 3 people.  

This is a voluntary recording system and is not therefore indicative of the total number 

of incidents in the USA, but does show there is in continuing problem.   

Ahrens (2008) shows the scale of the incidents involving oxygen usage stating that 

between 2002 and 2005 the US Fire Service attended and average of 182 fire incidents 

per year, where medical oxygen had been the cause of the fire, with an average of 46 

deaths per year resulting.  He also states that in the USA between 2003 and 2006 there 

were an average of 1190 thermal burns per year due to oxygen usage.  These are 

primarily from home usage.  The NFPA (2014) medical oxygen incident document also 

lists a selected 40 serious incidents, primarily in the home, involving significant death, 

injury or financial damage, where medical oxygen was involved, including 2 reports of 

fatal fires from 2014.   The EIGA Safety Advisory Group (2009) give examples of 
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oxygen incidents that have occurred, without giving numbers, but stating there have 

been many more similar incidents.   The recording of industrial incidents in other 

European countries varies, and is often missed due to the variation in Occupational 

Health and Safety Legislation, for example in Germany an incident need only be 

reported if it caused an employee to take 3 days or more off work (Bergman et al 2007). 

These incidents not only show how oxygen systems and their use can cause serious 

incidents, they support the information in section 1.2 on the various types of ignition 

sources.  The ignition sources are foremost in the minds of incident investigators.  They 

are also the main problems system designers have to contend with when designing 

operating procedures for oxygen systems.  Some compatibility criteria have been 

developed to aid in the material choices to prevent or reduce the chances of ignition.   

2.2 Theoretical basis for materials’ flammability 

Combustion in its simplest terms requires 3 things, oxygen, fuel, and energy, often 

referred to as the ‘fire triangle’. Combustion is an exothermic reaction between some 

form of fuel and an oxidant, usually oxygen, which generally requires some initial form 

of energy input to begin. Some sources have expanded this illustrative triangle to a 

tetrahedron, with the final side being a self-sustaining reaction.  The following sections 

will explain the mode of these reactions, and the effect reacting species and energy 

input have on the development of a self-perpetuating reaction. 

Different objects burn differently depending on a number of factors including their 

chemical and physical properties but the majority of solids and liquids must be 

converted into a vapour or gas in order to be part of a combustion reaction (Drysdale 

2011).  Although some oxidation may take place before this, a full oxidation 

combustion reaction will generally take place homogenously, completely in the gas 

phase (excluding some materials such as denser metals). 

The production of volatiles is generally the result of an energy input (e.g. an electric 

spark, or a rise in temperature) causing evaporation or thermal decomposition.  A 

combustion reaction can be written simply as a one-step global chemical equation, for 

example, 

CH4 + 2O2 → CO2 + 2H2O Eqn. 2.1 

but as a number of authors, such as Glassman and Yetter (2008a) and Drysdale (2011) 

have noted this hides much greater complexity.  What is written in a single equation is 
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actually representation of a large number of different reactions happening one after the 

other, and simultaneously.  The interim reactions can involve the initial reactants, and 

other atomic and molecular species in various states.  

In essence then a combustion reaction can be expressed in three stages; Initiation (with 

the creation of propagating species), chain propagation/ branching (where those radicals 

etc. beget more propagating species), and finally chain termination (where all species 

have reacted (radicals joined) and formed the final ‘product’).  These phases are by no 

means distinct from one another in time, and reactions from all of these stages may well 

happen at once.  Glassman and Yetter (2008a) describe a situation where ignition might 

be said to occur, where the rate of chain carrier (the atom or radical propagating the 

reaction) generation exceeds that of chain termination.  This results in an ‘ever 

increasing’ reaction rate.  For most liquids and solids that burn homogenously the 

major rate limiting step has been identified as the development of volatiles and gases as 

this limits the creation of those chain carriers.  Volatiles must reach the lower 

flammability limit (minimum atmospheric percentage) for combustion to be supported. 

This is not the only consideration however that influences the likelihood of a self-

sustaining reaction.  There are also thermal effects that must be considered.  Drysdale 

(2011) refers to Semenov’s theory which describes ignition as a thermal runaway or 

thermal explosion process which occurs where heat production exceeds heat loss. In 

actuality it is likely that both thermal, and chain branching/termination rates, play a role 

(Glassman and Yetter 2008a).  Because of this complexity and dual way of seeing any 

combustion reaction (or indeed any reaction) there are a number of constants, and 

processes that are used to assess the suitability of materials for use with enriched 

oxygen atmospheres. 

2.2.1 The effect thermal decomposition on material flammability 

When materials are exposed to higher temperatures they receive heat energy, and thus 

become energised.  In the case of non-metals this can cause evaporation of some 

species, but with larger more complex molecules such as polymer chains it can initially 

bring about a breakdown, or scission, at the molecular level which is referred to as 

thermal decomposition/ degradation.  Small sections of molecule can break away, and 

then evaporate to form a gas or vapour.  With great enough energy input ignition may 

occur, and the combustion of the polymer might then continue in the vapour phase 

(homogenous combustion).  Thus the ignition temperature of a polymer is directly 
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dependent on the vapours and gases released by thermal degradation, on the ignition 

temperatures of those substances, and the rate at which they are produced.     

Non-metals can degrade in a number of ways when exposed to heat.  This 

decomposition mechanism depends upon the unit structure of the molecules.  

According to Cullis and Hirschler (1981) the most common degradation mechanisms 

are random chain scission, end-chain scission, chain stripping, and cross-linking.  They 

also state that only one per cent of bonds in a polymer backbone need to be broken in 

order for catastrophic changes to occur.  In general polymers will decompose to their 

original monomers, but often, this process results in the release of other smaller 

molecules as well.   Many tests (see section 2.5.8) have been done to identify the 

thermal degradation products of non-metals, specifically polymers.   

If we know the gases or vapours released from a particular polymer, and the SIT of 

those substances, it may be possible to simply approximate the SIT of the polymer. The 

current literature lists SITs measured under idealised standard conditions, however it is 

unlikely that the gases or vapours from degraded polymers would ignite in the same 

manner as those conditions, and we would therefore expect some differences in the real 

life oxygen incidents. Also the rate of gas production by the decomposition process will 

have a significant influence on this. 

2.2.2 The effect of the oxidation activation energy on the flammability of 

materials 

The activation energy must be reached for a reaction to start, and therefore directly 

affects materials’ ignition. Once overcome, polymer thermal degradation products react 

as part of a self-perpetuating oxidation reaction (combustion), fuelled by the exothermic 

process.  For most hydrocarbons this activation energy does not vary a great deal (see 

Table 2-1). As discussed in section 1.6 there is no single system for assessing the 

suitability of materials for oxygen use, or the analysis of a system following an oxygen 

incident.  The following sections aim to show the range of criterion and tests currently 

used, and to further demonstrate the need for a model to enable investigators to 

calculate the SIT of any material, under a variety of conditions.    
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 Table 2-1. Literature information on activation energies  

Author Hydrocarbon Conditions Energy 

kJ/ mol 

Bonner and Tipper 

(1965a) 

Cyclohexane  Air. 503 – 623K. 0.027 MPa 167 

Bonner and Tipper 

(1965b) 

n-Heptane Air. 503 – 623K. 0.027 MPa 179 

Cheng and 

Oppenheim (1984) 

Methane 1600 – 2200 K. 0.101 – 0.303 

MPa 

193.7 

Chung and Sandler 

(1963) 

n-Pentane Oxygen (5 to 50%) and air. 

0.009 – 0.027 MPa. 503 – 573K. 

217 

Egerton et al (1957) Methane 0.013 – 0.053 MPa. 723 – 773K 163 

Griffin and Pfefferle 

(1990) 

Methane 800 – 1100 K 188 

Murty Kanury 

(1975) 

  

Propane Oxygen and air 130 

n-Octane Oxygen and air 167.36 

Melvin (1966) Methane Air and 60 – 90% Methane.  As 

low as 623K.   5.8-1.1 MPa 

188 

Penner and Mullins 

(1959)  

Methane 1246 – 1646K 121.3 

Iso Octane 1246 – 1646K 135.6 

Cyclohexane  1246 – 1646K 194 

n-Heptane 1246 – 1646K 253 

n-Hexane 1246 – 1646K 212 

Petersen et al (1999) Methane Highly diluted methane: oxygen 

mixtures.  1175 to 1880 K 

196 

Slack and Grillo 

(1981) 

Methane Oxygen and air. 1640 – 2150 K 218.8 

Trimm and Lam 

(1980) 

Methane Stoichiometric Methane: air 

mixture.  Below 800K 

172 

Vandenabeele et al 

(1960) 

Methane Methane (10 – 25%), Oxygen 

(10% to 40%) and Nitrogen; 300 

– 700 K 

158 
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2.2.3 The effect of combustion mechanism on material flammability 

As discussed in section 1.3, Glassman (1996) stated that there are two mechanisms of 

combustion.  The most common oxidation mechanism is homogenous oxidation.  In 

this mode the energy (in the form of heat) causes thermal decomposition of the main 

fuel load to form a vapour or gas layer on its surface.  The vapour or gas mixes with the 

oxygen in the atmosphere and if the energy input is enough, ignition will occur.  A 

combustion reaction then follows totally in the gas or vapour phase.  Both fuel and 

oxidiser are in the gas phase, hence the reaction is said to be homogenous.  Non-metals 

generally oxidise via this mechanism.  Under these circumstances the rate of production 

thermal degradation products (volatiles) is generally the rate limiting step (Lyon 1996, 

Glassman and Yetter 2008a). 

The second mechanism is heterogeneous combustion.  In this case the materials do not 

produce volatiles.  Their combustion process is therefore very different to that of the 

volatilisation process and, according to Glassman (1996) is more akin to that of coal 

char combustion.  This is a surface-burning process where the fuel is in solid or liquid 

form (a different phase to the oxidiser).  In the case of oxidation through liquids a 

higher oxide is formed in the molten layer and then the surface below is oxidised from 

this.  The surface burning rate, and accessibility to the oxidiser, determines how much 

of the material is consumed.  It generally takes far more energy for this type of 

oxidation/ combustion to occur.  Under these circumstances Ward (2007) reports for 

metals that the rate limiting factor will be the heat transfer rate, as no gasification of the 

metal is occurring. 

Some metals oxidise heterogeneously, while others oxidise homogeneously.  This 

makes calculation of a material’s SIT problematic.  An indicator of a metals’ mode of 

oxidation is Glassman’s criterion and burn ratios. 

2.2.3.1 The use of Glassman’s criterion and burn ratios to indicate flammability  

Glassman (1996) stated that if the boiling point of the metal oxide is greater than that of 

the parent metal then combustion occurs in the vapour phase.  Glassman used the burn 

ratio as a way to determine whether a metal will undergo phase transformation, and in 

which phase it will burn.   

The burn ratio is defined as the ratio of enthalpy of combustion at inlet conditions to the 

total enthalpy change of the reactant metal at either, its boiling point (BRbp), or melting 

point (BRmp), shown in Table 2-2.  The equations for these terms are: 
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Eqn. 2.3 

Where  

ΔHc = Heat of combustion 

ΔHrt-mp  = Heat to increase metal temperature from room temperature to melting point  

ΔHfusion = Heat of fusion 

ΔHmp-bp  = Heat required to heat material from melting to boiling point 

ΔHvap = Latent heat of vaporisation 

Gordon et al (1968) agreed with this principle, stating that if the surface temperature of 

self-sustained metal burning configuration is near the boiling point of the metal at least 

part of the combustion will occur via metal vapour transport from the surface to the 

reaction zone.  According to Keeping (1971) if the equilibrium combustion temperature 

is below the vaporisation temperature of the metal and its oxide the combustion process 

is kept going by the formation of a higher oxide on the molten slag.  Steinberg et al 

(1992) disagreed with this approach saying that within the literature there is disparity 

between boiling points and inconsistency in concept (sometimes boiling, decomposition 

or sublimation).  So clearly, other thermodynamic principles must also be taken into 

account.  Monroe et al (1983) calculated many (see Table 2-2) of these and stated that 

they are very satisfactory for determining whether a material will ignite or not. 

2.2.4 Spontaneous Ignition Temperature 

As stated in section 1.3, Bodurtha (1980) defined the Spontaneous Ignition 

Temperature (SIT, also referred to as the Auto-Ignition Temperature, or AIT) of a 

substance as the temperature at which vapours ignite spontaneously from the heat of the 

environment.  Clearly if a material ignites at a lower temperature there is a greater risk 

of it being ignited.  Bodurtha also lists a number of factors, upon which the SIT 

depends, and that should, in some way, be included into a spontaneous ignition model.  

These, some of which have already been discussed in this chapter, are shown in the 

Table 2-3 below.  The British Standard BS 4N 100-2 (1999) supports Bodurtha, adding 

that the rate of production of combustible volatiles, not just the concentration, will 

affect when the material reaches the Lower Flammability Limit, and thus can undergo 

spontaneous ignition. 
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Table 2-2 The BRbp and BRmp of selected metals 

Metals BRbp
a
 

Copper 0.2 

Nickel 0.5 

Iron 0.5 

Tin 0.8 

Lead 0.9 

Titanium 1.7 

Aluminium 2.2 

Zinc 2.4 

Magnesium 3.6 

Metals BRmp
b
 

Silver 0.4 

Copper 2.0 

CIDA 938 Tin bronze 2.8 

Monel 400 3.0 

Monel K 5008 3.6 

Nickel 3.7 

Ductile iron 5.1 

Iron 5.1 

304 stainless steel 5.4 

Titanium 13.1 

Lead 18.6 

Zinc 19.3 

Magnesium 22.4 

Aluminium 29.0 

Tin 44.8 

a Monroe et al, (1983). b American Society for Testing and Materials G94-05 (2005) 
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Table 2-3 Factors which influence the SIT according to Bodurtha (1980) 

Factor  

Vapour concentration The level of gases or vapours released by the material on 

heating must be between the flammability limits.  There 

must be a good ratio and mix of the vapours and oxygen.  

As it is the vapour that burns, it should be possible to 

calculate the SIT by combining the SITs of the thermal 

degradation products. 

Environmental effects The environment volume, pressure and oxygen 

concentration will affect the ignition.  Firstly the 

production thermal decomposition products must be great 

enough to reach the Lower Flammability Limit of that 

material.  Materials in ‘lower’ oxygen atmospheres (‘low’ 

pressure/ concentration) will require a greater energy 

input for ignition to occur, theoretically to encourage 

collision of reaction molecules.     

Ignition delay This time delay may be due to heat transfer within the 

system, and to the external surroundings, assuming the 

system is not adiabatic (thus, as Janoff et al 1997 states, it 

is important to consider factors like the thermal inertia, 

thermal conductivity and specific heat), to phase changes 

such as vaporisation, or may be the time lag due to pre-

combustion chemical reactions (Lakshminarayanan and 

Aghav 2010). 

Flow conditions Increased flow will provide fresh oxygen for oxidation, 

however initially it will also remove heat. 
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Table 2-4 The thermal properties of selected materials 

Material Specific 

Heat,  

J/g-K 

Thermal 

Conductivity W/m-

K 

Thermal Inertia  

(thermal effusivity ) 

(calculated) 

J m
-2

 K
-1

 s
-½

 

Metals 

Monel 400  0.427 21.8 9066 

Silicon brass 0.38 26 8995 

304 stainless steel 0.5 14.6 7594 

Inconel 600 0.444 14.8 7438 

Inconel 625 0.41 9.8 5823 

Red brass 0.38 159 22992 

6061 aluminium 0.89 180 20846 

Naval brass 0.38 116 19288 

Nickel 0.456 70 16845 

Tin bronze  0.376 74 15650 

Aluminium bronze 0.375 57 12929 

Ductile cast iron 0.461 37 10930 

Non-metals 

Nylon 6,6  1.4 – 2.75  0.24 – 0.49  990 

PTFE Moulded 1.4 0.27 910 

PEEK Victrex  2.13 0.25 830 

Silicone rubber 1.46 0.31 800 

Vespel SP1   1.13 0.346 750 

Polyurethane 1.58 0.245 740 

Aflas 1.67  0.2  720 

PES Radel A 1 .09 0.24  620 

Rulon polycarbonate 1.2-1.3 0.19-0.22 560 

PCTFE 0.9  0.135  510 

PVC 1.046 0.15  470 

Viton AH-V 0.95     

Properties from www.matweb.com (2013). Properties defined at room temperature. 

BS 4N 100-2 also provides a definition for the Statistically Defined Spontaneous 

Ignition Temperature (SDSIT).  This is defined as the mean of several measured SIT 
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values, minus twice the standard deviation.  It was used historically as a safety measure, 

as results obtained from Bomb tests prior to the 4N100 Bomb (see section 3.1) had 

particularly large standard deviations.  The advantage of the SIT is that it is one number 

that, under prescribed conditions of containment and gradual heating, which can be 

used to compare materials without the need to understand the decomposition, and 

ignition processes.  

2.2.5 Heat release 

Heat release of material due to oxidation is regarded to a key part of influencing 

whether a reaction will be self-sustaining, and thus advance to becoming a full 

combustion reaction.  In terms of measuring a material’s flammability Glassman and 

Yetter (2008a) place a great emphasis on the adiabatic flame temperature, which is 

related to the enthalpy of combustion and heat capacity of the material, while 

Babrauskas and Peacock (1992) state that this is less important than the rate at which 

energy is released.  When comparing the flammability of materials it seems more 

logical to initially compare the energy output of material combustion to understand the 

danger they might pose in a high pressure enriched oxygen environment particularly as, 

as Yuen et al (1988) states, the heat of combustion has a great influence on whether the 

combustion reaction will start at all.   

2.3 Current compatibility criteria used to select materials for oxygen service 

This section describes the main criteria that can be used for assessing the flammability 

of materials.  They include criteria created by industry bodies, and engineering 

companies. 

2.3.1 The Air Products and Chemicals Inc. Acceptability Index for comparing 

materials’ suitability for use in high pressure enriched oxygen systems 

At Air Products and Chemicals Inc. experts discuss and review experimental data and 

the scenarios in which materials are to be used, undertaking a risk assessment.  As part 

of this process Lapin (1973) established an ‘’Acceptability Index’’ and an “Equivalence 

Concept’’ to be used as a basis for approving non-metallic materials for Oxygen 

service.  Lapin decided that the Oxygen Index of a material would be the most 

important since it was desirable that a material should not burn at all, or require the 

highest concentration of Oxygen to burn.  It was also decided that the SIT should be as 

high as possible in order to prevent ignition and the Heat of Combustion be as low as 

possible reducing the effects cause by initial ignition.   
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In order to use the Acceptability Index, Lapin introduced the Equivalency Concept. 

With this, two materials with equivalent oxygen compatibility have equal Acceptability 

Indices.  Lapin measured the Acceptability Index of a wide variety of materials. He 

devised a scale of minimum Acceptability Indices for specific end use materials, 

evaluated from known oxygen compatible materials in such end use configurations but 

emphasised that the Index should only be used to compare different materials and 

should be used alongside other test methods that assess the end use compatibility of the 

system as a whole.  Lapin devised the numerical Acceptability Index (i) as: 

𝑖 =
𝑂2𝑇𝐴𝐼

∆𝐻𝑐
 

Eqn. 2.4 

Where 

O  =  Oxygen Index, % Oxygen 

TAI = Auto-Ignition Temperature in 100% at 100kPa Oxygen, in °R 

ΔHc = Heat of combustion, cal/g 

Note: Non S.I. units part of the industry standard Acceptability criteria 

This is a thorough measure but is complex, requiring the use of 3 different test 

procedures. 

2.3.2 The BOC group Ltd (Linde) method of assessing a material’s suitability for 

use in high pressure enriched oxygen systems 

According to Irani (2004) the most commonly used calculations at BOC group Ltd are 

those using heat of combustion and mass to simply work out the maximum energy 

produced by an oxidation reaction in the system.  This can be used for any material, 

metals or non-metals.  The heat of combustion allows the reaction to self-perpetuate.  

The higher the heat of combustion is, the more violent the oxidation reaction.  This 

results in a greater chance of further ignition chain reactions and greater damage to the 

system.  The total energy released by a component can be calculated by using the 

equation, 

cH m H    Eqn. 2.5 

Where 

H  = Total energy release 

m  = Material mass 

cH  = Heat of combustion of material 
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It is possible to use this value to calculate the temperature a component, or system, 

might reach if it absorbed such heat, using: 

pH mc T    Eqn. 2.6 

Where 

pc  = Specific heat at constant pressure 

T  = Change in system temperature 

Multiple items can be incorporated into this equation using: 

1 1 2 2( ..... )p p n pnH mc m c m c T      Eqn. 2.7 

This would give the possible uniform temperature a system could reach when exposed 

to the specific energy release, and BOC group Ltd have used this to identify the hazard 

posed by a material in an oxygen system.  However this does not indicate the 

probability of a material’s ignition.   

2.3.3 The use of pre-existing ignition test rank tables for assessing the suitability 

of material use in high pressure enriched oxygen systems 

Often rather than doing expensive and time consuming testing of materials at high 

temperatures in pure oxygen, industry will choose to use existing data to assess the 

suitability of materials for oxygen service.  There are a number of published tables 

ranking materials by their flammability in particular circumstances for both metals and 

non-metals for various test methods (see section 2.4).  There are a number of problems 

with this method of assessment.  Firstly the formulation of alloys and particularly those 

of polymers can vary significantly.  Ingredients in alloys are usually defined by a range, 

rather than a specific value, while in order to maintain or improve particular properties, 

polymer manufacturers will change ingredient levels, meaning that materials may be 

different from batch to batch.  The flammability may very well be affected by these 

alterations/ variations, rendering any previous ranking tables meaningless.  The 

following section will attempt to explain the reasons for this variability in flammability 

by exploring the theoretical factors affecting ignition and sustained oxidation reactions. 

2.4 Standard test procedures for assessing bulk metal flammability 

Metals are used as the main structural materials in all oxygen systems.  Although not 

generally the first materials in oxygen incidents to ignite, their oxidation is generally 

the most violent of the system components.  It is therefore important to understand their 
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flammability.  The variety and number of different tests for metals’ flammability are 

shown in Table 2-5.  

Table 2-5. Metal flammability testing areas 

Test class Description Tests 

Thermal These tests assess the metals’ 

behaviour when a rapid amount of 

heat is applied to the surface.  This can 

be done in a variety of configurations.  

The pneumatic impact test can be 

regarded as an impact test but ignition 

is likely caused by thermal effects of 

the shockwave/ adiabatic compression 

Promoted combustion 

Limiting oxygen index 

Hollow vessel  

Auto-ignition test 

Pneumatic impact 

Impact  These may test resistance to ignition 

when the oxide layer is broken, by 

impacting various objects on the 

samples.  

Particle impact 

Mechanical impact 

 

Abrasive  These tests generally involve a 

stationary piece and a moving piece 

touching, with the ignition energy 

being generated by friction.   

Frictional heating 

 

Fracture  These test the likelihood that a 

material (often in pipe configuration) 

will fracture under high-pressure 

conditions. 

 

Configurational  These will be designed for a very 

specific configuration and set of 

environmental conditions, for use in a 

particular apparatus. 
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The majority of these tests are designed for one specific application, and this makes it 

difficult or often impossible for the data from each to be compared to the other.  Details 

of the main tests employed for the determination of flammability characteristics of 

metals compound the view that there is a need for a clearer system. 

2.4.1 Promoted ignition testing 

This is the most commonly used test apparatus for metals.  It involves a pressurized 

chamber in which the test specimen is fixed.  A promoter, fixed to the specimen, can be 

ignited electrically to encourage combustion.  Thermocouples and pressure transducers 

take measurements.  The majority of tests measure upward combustion, however 

downward combustion has also been investigated.  The results of this test method are 

regarded to be the most important contained in the ASTM G94 standard with a number 

of significant characteristics being identified, including: 

- Highest No-Burn Pressure (HNBP) historically called the threshold or extinguishing 

pressure. 

- Burn length 

- Highest No-Burn Temperature (HNBT) 

- Burn/ propagation rates and characteristics including the Regression Rate of Metal 

Interface (RRMI), the interface between solid and molten liquid metal. 

This is one of the only standardised test for metals’ flammability with oxygen-enriched 

environments (described in the ASTM G124 standard 2010) and is meant to mimic the 

ignition of a contaminant, such as oils, greases or particles.  The standardisation of this 

test was important to obtain comparable data.  However, the comparability of the data is 

limited to the pressure used in the individual tests, the materials selected for testing and 

the criteria applied to the results.  Generally the apparatus is used to provide a rank 

order, however, testing can sometimes result in vague results, as the results in Table 2-6 

show, and do not necessarily allow discernment between materials.   A similar thermal 

test, which can also be used to find the HNBP of a metal, is the limiting oxygen index 

test.  The upward directional version of ASTM G124 (2010) is used in ISO 14624-1 

(2003), and has been adopted into NASA technical standard NASA-STD-(I)-6001A 

(2008).   

The test also involves paper beneath the sample to test for danger of ignition from 

debris, and can be used with ultrasonic transducers to measure ‘real-time’ regression 



33 

rate data (RRMI).  A similar test is used for evaluating electrical wiring insulation in 

ISO 14624-2 (2003) but this is not relevant to oxygen systems. 

Table 2-6 Promoted ignition test results from 2 different apparatus displaying the 

extinguishing pressure for several alloys 

Materials 

 

NASA WSTF
a
 

HNBP, MPa 

Linde
b
 HNBP, MPa 

Monel K-500 >68.9 >30.3 

Inconel MA 754 >68.9  

Monel 400 >68.9 >30.3 

Brass 360 >68.9  

Nickel 200 >55.2 >30.3 

Copper 102 >55.2  

Red brass >48.3  

Tin bronze >48.3 >30.3 

Yellow brass >48.3  

Naval brass  >30.3 

Hastelloy C22 34.5  

Inconel 600 20.7 >30.3 

Stellite 6 (B) 20.7 >30.3 

Hastelloy C-276  20.7 

Inconel 625 20.7 20.7 

Ductile Cast Iron <3.5  

Inconel 718 6.9 6.9 

Invar 36 <6.9  

304 SS 6.9 <6.9 

17-4 PH  <6.9 

316 SS 3.5 <20.7 

Nitronic 60 <3.5  

9% Nickel Steel <3.5  

Aluminium bronze 1.4 <6.9 

Aluminium 1100 <0.7 <6.9 

Ti-6Al-4V <0.007  

a NASA NSS 1740.15 (1996). b McIlroy et al (1988). Shaded areas denote materials 

not tested. 
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Promoted combustion tests have been conducted using different sample configurations 

(geometry and thickness).  A number show that changing this can impact on the HNBP 

of a metal.  Most noteworthy are Schadler and Stoltzfus (1993) and Zabrenski et al 

(1989).  Zabrenski et al compared the HNBP of solid rods (6.4 mm thick) and tubes 

(6.4 mm thick wall) for a number of steels.  Despite the same thickness, they found that 

while the HNBP did not vary for, inter alia, stainless steel 430, 9% nickel steel, it did 

for aluminium 6061 and stainless steel 316 showing that rank order could be changed.  

Schadler and Stoltzfus (1993) compared the HNBP of Monel 400, stainless steel 316, 

and some tin bronzes.  Solid rods and sintered filters were compared for all three 

materials.  While tin bronze was relatively unaffected by the change in configuration, 

both the stainless steel, and surprisingly, the Monel were dramatically affected.  The 

stainless steel rod and sintered filter had a HNBP of 6.9 MPa and 82.0 kPa respectively.  

The Monel rod HNBP of over 68.9 MPa fell to 0.69 MPa for the sintered piece.  Again 

this demonstrates that varying the shape of a material changes its flammability. 

2.4.2 Auto-ignition of metals 

This is used to measure the SIT.  This test is far more common for powdered metals 

than for the bulk variety, due to the high temperatures and pressures necessary for the 

bulk metals to ignite.  The bulk metal test requires an extremely powerful heating 

source, for example a continuous wave carbon dioxide laser, as used by Bransford 

(1986).  No method has been standardised for this test. 

2.4.3 Particle impact testing 

One or more particles enter an oxidant stream and impinge on a sample.  Generally this 

tests flammability when fresh, un-oxidised metal is exposed to the oxygen stream.  This 

is apparently a rare test for metals, despite the relatively high likelihood of ignition 

resulting from ignition by particles in a system.  It has been used on polymers, such as 

by Forsyth et al (2000), but is not a common test method for these materials.  The high-

velocity particle impact test system at WSTF (Bryan et al 1993) consists of three major 

sections,  

i. The gas inlet and flow straightener,  

ii. The particle injector and converging nozzle, and  

iii. The diverging nozzle and test specimen holder. 

Particles are carried in an accelerated oxygen stream.  The particles released into the 

oxygen can be varied.  In the initial experiments, NASA employed a single 2000μm 



35 

particle made from 6061 aluminium, (later 5g samples of an iron powder/inert particle 

mix).   Samples are configured as a cylinder and positioned to expose the end to the 

impacting particle.  The system inlet pressure is kept constant at 28MPa, and 

temperature of the sample is varied from 220 to 700K. 

Table 2-7 NASA WSTF particle impact ignition results (Stoltzfus et al 1988) 

Material  Sample temperature above 

which ignition did not 

occur K 

Monel 400 > 630 

Tin bronze > 580 

Yellow brass > 620 

Inconel 600 > 605 

Inconel 718 475 

Ductile cast iron 475 

Incoloy 800 470 

316 SS   325 

304 SS 320 

Nitronic 60 310 

6061 aluminium 240 

2.4.4 Mechanical impact 

A plummet (weight) is dropped on to a sample down a sliding carriage.  This is only 

used to ignite the lighter aluminium and titanium alloys, and is therefore not very useful 

in the context of oxygen service flammability. 

2.4.5 Pneumatic impact 

This test replicates adiabatic compression/ shockwave ignition.  Like mechanical 

impact, it also only ignites the lighter metals and alloys and has restricted use when 

assessing flammability in oxygen service. 

2.4.6 Frictional heating 

These tests can take a variety of forms, but there is always one stationary and one 

moving component.  The two pieces are placed in contact with each other and the 

contact pressure is increased until ignition of the metal occurs.  They can be used to test 

the likelihood of ignition of a number of samples due to frictional heating (reaction to 

heat and disruption of the oxide layer).   
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Table 2-8 NASA WSTF Frictional heating results for selected similar and 

dissimilar pairs (ASTM G94-05 standard 2005) 

Similar pairs ‘PV product’ 
a
 

at ignition 

Dissimilar pairs ‘PV product’ 

a
 at ignition 

Stationary and 

Rotary W/m² x 10
-8

 

Stationary Rotary 

W/m² x 10
-8

 

Inconel MA 754 

3.96-4.12 

Ductile cast 

iron Monel 400 1.28-1.45 

Nickel 200 

2.29-3.39 Monel 400 

Nitronic 

60 1.03-1.69 

Tin bronze 2.15-2.29 Tin bronze 304SS 0.97-1.25 

Hastelloy C-22 

2.00-2.99 Monel K-500 

Incone1 

625 0.93-2.00 

Inconel 625 1.63-1.73 Monel K-500 304SS 0.92-1.13 

Monel 400 1.44-1.56 Inconel 718 304SS 0.90-1.18 

Monel K-500 1.37-1.64 Monel 400 304SS 0.85-0.94 

Hastelloy C-276 

1.21-2.82 

Ductile cast 

iron Stellite 6 0.84-1.16 

304 stainless steel 

0.85-1.20 Monel K-500 

17-4 PH 

SS 0.80-1.00 

Aluminium 6061  

0.061 

Tin bronze Aluminiu

m bronze 0.77-0.84 

 

304 SS 

17-4 PH 

SS 0.75-1.09 

Monel 400 

17-4 PH 

SS 0.66-1.53 

17-4 PH SS 

Inconel 

625 0.64-1.09 

a
 Where the ‘PV product’ is the product of the contact pressure (N/m

2
) and the surface 

speed (m/s) at ignition   

The most commonly used example of this test is the NASA Frictional heating 

apparatus.  Useful for testing pairs of materials, NASA has two examples of this test.  

NASA has carried out extensive testing with the WSTF Frictional heating apparatus, 

which consists of a high-pressure test chamber, an electric motor and transmission 

assembly, and a pneumatic actuation cylinder. The apparatus chamber contains a 
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rotating shaft that extends the length of it. The shaft is attached at one end to the drive 

motor-transmission assembly and at the other end, to the pneumatic actuation cylinder.  

The rotating test specimen is mounted on the shaft and the stationary test specimen is 

affixed to the test chamber via a sample mounting housing.  The rotating test specimen 

has a surface velocity of approximately 20 m/s when the shaft turns at 17,000 rpm.    

2.5 Standard test procedures for non-metals 

The variety of tests for the compatibility of non-metals with enriched oxygen 

(demonstrated in Table 2-9) is just as extensive.  Again the comparability of the data 

depends upon the materials and the test pressure selected.   

Table 2-9 Non-metals’ flammability testing areas 

Test class Description Tests 

Thermal These methods test for ignition 

from heating. The pneumatic 

impact test is in this group as 

ignition is likely caused by 

thermal effects of shockwave 

and adiabatic compression. 

Bomb test 

Pot test  

Critical oxygen index 

Differential Scanning Calorimetry  

Pneumatic shock (impact) 

Impact  Energy imparted to sample by 

a weight, (or pneumatic shock/ 

adiabatic compression). Can 

be in liquid or gaseous oxygen. 

Mechanical 

Pneumatic shock 

Vapour analysis Sample is heated, and resulting 

vapours are analysed. 

Thermal Desorption/ Gas 

Chromatography 

Configurational  Designed for a very specific 

configuration, and set of 

environmental conditions. 

These tests do not apply to this 

research. 

2.5.1 Bomb tests 

As discussed in section 1.5.1 this method covers the determination of the temperature at 

which liquids and solids will spontaneously ignite.  The current UK standard is the BS 

4N-100 – 1999 (Part 2) bomb test (discussed later in section 3.1).  A 100 2 mg sample 

is taken, and split into 20 equally sized blocks, and exposed to high pressures and 

temperature in the bomb.  The temperature is ramped at a rate of 10K/ min.  The test is 

terminated at ignition, or at 773K, whichever is earlier.  The data from these tests would 
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be collated in a league table, enabling comparison of the materials.  Table 2-10 shows 

the maximum working pressures (MWP) of a number of selected non-metals.  Court 

(2001) defines the MWP as the greatest pressure at which a material is bomb tested six 

times, with no ignition occurring.  The SIT at 13.2 MPa for component selection is used 

as it is approximately 25 °C below the SIT at the maximum working pressure.  Another 

proposed safety margin is proposed by BAM, who use a figure 100 °C below the SIT 

for a working temperature.  These enable comparison in specific circumstances.  Table 

2-11 shows some types of bomb, and Table 2-12 some results. 

Table 2-10 Maximum working pressure based upon new bomb results (Court 

2001) 

SIT at 13.2 MPa, °C Maximum working pressure (MPa absolute) up 

to 363K 

> 200  0.4 

> 230 1.1 

> 250 2.1 

> 300 4.1 

> 350 10.1 

> 375 15.1 

> 400 20.8 

> 500 34.6 

  

Table 2-11 Other bomb tests 

Test Pressure, 

MPa 

Sample 

size, g 

Other information 

ASTM G72 Bomb 

(ASTM G72/ G72M – 

09 2009) 

2.1 — 

20.7 

0.2 +/- 

0.03 

Heat rate 5 +/- 1 °C min. Maximum 

425 °C. 

BAM (Wegner et al, 

1988) 

5 & 10 0.4 +/- 0.1 Heat rate 120 °C/min.  5 tests per 

material.  

Linde ≤ 25 0.5 Heat rate 5-6 °C /min.  Maximum 

500 °C. 

L’Air Liquide 

(Vagnard et al 1991) 

12 - Heat rate 10 °C /min. 

Nihart & Smith 

(1964) 

≤ 70 - Maximum 823 °C. 
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Table 2-12 SIT data from some selected polymers at 13.2MPa in 99.5% oxygen. 

Polymer SIT (°C) at 13.2 MPa 

PTFE 490 

Fluorel 336 

Vespel SP1 410 

Viton 325 

Poly (vinyl)chloride 272 

Aflas 318 

PEEK 350
 a
 

Silicone Rubber 310 

Polycarbonate 320 

Chloroprene  193 

Nylon 6,6 219 

Polystyrene 250
 a
 

Polypropylene 170
 a
 

Nitrile 268.5 

Butyl rubber 200
 a
 

PB 187 

Polyurethane 230
 a
 

SIT values from LSBU database (see table 3-2 for further results). 
a
 Additional values from Wendell Hull & Ass. Inc. Oxygen compatibility materials 

database (2013) 

2.5.2 Pot test 

These tests are designed to replicate the conditions in low pressure flowing systems.  

The BS4N100- 2 test was developed to simulate the dynamic conditions found in 

oxygen hoses or masks, with pressures below 0.69 MPa, and a maximum temperature 

of 673 K (400 °C).  This test is described by Keeping (1971).  A sample (60 mg) is 

placed into a glass tube and heated by a furnace (to the desired temperature, sustained 

for 15 minutes) while the oxygen flow is maintained at 2x10
-3

 m
3
/min at atmospheric 

pressure. The sample is examined for signs of ignition.  A material is regarded as 

suitable for use up to 0.4 MPa if the highest temperature recorded (before ignition) is 

not less than 523 K.  According to Wegner et al (1988) another example of this type of 

test is the BAM ambient pressure test.  Hilado and Clark (1972) do not recommend this 

test alone for determination of materials’ suitability as it always gives higher values 

than the Bomb test.   



40 

2.5.3 High Pressure Critical Oxygen Index (HPCOI) 

A standard COI test is used to determine the minimum concentration of Oxygen in a 

flowing mixture of Oxygen and Nitrogen that will support combustion, generally at 1 

atm but can be performed at higher pressures depending upon the application of the 

material under test.  HPCOI is used by Air Products and Chemicals Inc. as part of their 

materials’ selection criteria for non-metals for use in high pressure oxygen systems.  

Described by Benning and Werley (1986) this apparatus increased the previous 

maximum pressure limit of 2 MPa to 20 MPa.  The sample is exposed to a thermite 

igniter, using a particular configuration that enables the heat to be transferred from the 

pill, before the molten pill could run through the base.  A solder plug is used to prevent 

the loss occurring too early, while a sample with a thinned wall and tapered length at 

one end allow smooth transition of the flame to a thicker walled section.  The pressure 

vessel is constructed in stainless steel, with brass plates to shield the bulk from the 

reaction spatter.  Copper exhaust vents also prevent hot gas exposure.  A copper pipe 

contains the test specimen, around which is wound a thin brass pipe, through which 

water is circulated to remove heat.  The test gas (variable mixture of oxygen and argon) 

flows through the vessel at 1.67 x 10
-5

 m
3
/s.  This test was designed to allow the testing 

of metallic materials, which have a far higher oxygen index value than non-metals, but 

practically provides limited capacity for differentiation between the large varieties of 

metals used in oxygen system manufacture.  Table 2-13 shows some examples of 

results from an oxygen index test 

Table 2-13 Oxygen index results from Benning (1983) at approx. 2MPa 

Polymer 

Oxygen Index 

% 

Fluorel 31.0 

Neoprene 25.5 

Nylon 6,6 21.5 

 

2.5.4 Differential Scanning Calorimetry (DSC) 

The DSC measures change of enthalpy with time versus temperature.  The DSC uses a 

method of differential heat flow measurement based on the power consumption of a 

reference sample to that of the test sample. A more detailed description of this is in 

section 3.2. 
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2.5.4.1 Pressurised Differential Scanning Calorimetry (PDSC) 

Some DSC instruments can be pressurized (PDSC), and operated in oxygen 

atmospheres to determine the SIT.  A more detailed description of this device can be 

found in section 3.3. 

2.5.5 Mechanical impact 

Mechanical impact tests involve a sample being placed in liquid oxygen and subjected 

to an impact from a plummet (the plummet providing a known energy amount).   The 

UK standard is the BS4N100 – 2 Liquid oxygen mechanical impact test.  The test 

involves dropping a plummet of a known weight from a known height on to a striker 

pin, on a sample imparting energy.  The sample (normally mixed with an abrasive 

ignition-enhancing powder, e.g. carborundum) is immersed in liquid oxygen in a Nickel 

foil cup.  The material is considered to have passed the test if no audible detonation 

occurs in a set number of trials.  Further details of these are shown in Table 2-14. 

Table 2-14 Standardised and industry mechanical impact tests 

Test Plummet 

mass 

Drop 

height 

Impact 

Energy 

Other 

BS4N100 – 2  9.1 kg 1.37 m 122 J Tested at 4.0 MPa or 20.8 — 34.6 

MPa (used alongside bomb test at 

higher pressure). No audible 

detonation to occur in 10 

successive tests. If visual 

detonation occurs, a further 10 

successful tests must be performed 

for material to pass. 

ASTM G86 

(2011) test 

(pressurised) 

9.04 kg 1.1m 98 J Elevated pressure in cryogenic, 

ambient or elevated temperature 

oxygen environments  

B.A.M. Test  

 

76.5 kg Variabl

e 

127 J Test is terminated if a material still 

reacts at a drop height of 0.17 m  

L’Air Liquide 

Test  

(Vagnard et al, 

1991) 

9 kg 1.1 m 97 J No audible detonation to occur in 

20 successive tests. If one test fails, 

a further 40 successful tests must be 

performed for material to pass. 
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2.5.6 Pneumatic shock 

The tests described in this section provide energy via pneumatic impact and adiabatic 

compression.  They simulate conditions similar to the fast opening of valves, and are of 

a pass/fail nature.  A sample is exposed to heated high-pressure oxygen via a series of 

cyclic pressure shocks.  The test sample must not burn or suffer any internal damage to 

be considered compatible.  There are two standardised methods (shown in Table 2-15).    

Table 2-15 Pneumatic shock tests 

Test Temperature  

°C             K 

Other 

BS EN ISO 2503:2009 

Pressure shock test  

60 333 20 MPa. 20 10s pressure shocks 

(20ms pressure rise time) at  

30s intervals.  

(Used by B.A.M with 0.2-0.5 g 

sample) 

ASTM G74 Gaseous oxygen 

impact test (2008) 

21 294 Configurational 

5 cycles per minute 

2.5.7 SIT test for gases and liquids 

Also discussed in section 1.5.1 this covers the determination of the temperature at 

which gases and liquids will spontaneously ignite, according to BS EN 14522:2005 

“Determination of the autoignition temperature of gases and vapours”.  A 200 ml 

narrow-necked Erlenmeyer flask made of borosilicate glass is used as a test vessel, and 

gaseous or liquid samples are injected into it.  The Test vessel is placed into a hot air 

oven, and the temperature is raised at a ramp rate of 5 °C/ minute.  The test vessel can 

be viewed by using a mirror.  The sample is judged to have ignited when there are 

visible flames. 

2.5.8 Identification of polymer thermal degradation products  

A number of different techniques described in the literature analyse the thermal 

degradation products of polymers.  A popular technique is Thermal Desorption (TD) 

and pyrolysis.  In this analysis the non-metal is exposed to high temperature, by 

pyrolysis (heated in the absence of oxygen), followed by analysis of the gaseous 

materials released.  Most researchers conduct this analysis using Gas Chromatography 

(GC), which is sometimes twinned with Mass Spectrometry (MS) or Infra-Red (IR) 

analysis.  Some results are shown in Table 2-16.   
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Table 2-16 Current literature decomposition results 

Material Author Analysis Atmos. Temp. °C 

 

Released 

Acrylonitril

e Butadiene 

Styrene 

(ABS) 

Herrera et 

al (2003) 
Py Nitrogen 330-490 

Butadiene and 

styrene etc. 

Butyl rubber 
Dubey et 

al (1995) 

Refers to 

Mamadov 
- 600 

CH4 0.4%, C2H6 

7.5%, C2H4 

2.9%, C3H6 

4.5% 

Chlorinated 

alkanes 

Bergman 

et al 

(1984) 

GC-MS Helium 300 – 700 

Benzene, 

toluene and 

chlorinated 

alkanes 

Poly-

chloroprene 

Fuh and 

Wang 

(1998) 

Py GC 

MS HP 5 
- 50 – 280 

Chloroethene, 

1,3 butadiene, 2 

chloro 1,3, 

butadiene, 

benzene, 

toluene, 

chlorobenzene 

Gardner 

and 

McNeill 

(1971) 

Py TLC  

270 – 400  

and  

400 – 500 

Methane, 

propene 

Low 

Density 

Poly-

Ethylene 

Hajekova 

and  Bajus 

(2005) 

Pyrolysis Nitrogen 450  

Mainly alkanes 

and alkenes 

produced 

Nylon 6,6 

Morimoto 

et al 

(1976) 

Py – IR Nitrogen  
Methane, 

ethane, ethene 

Poly-

Butadiene 

Chen and 

Qian 

(2002) 

Py-GC 

Ov101 

50m 

Nitrogen 25 – 300 

Methane, C2 – 

4, cyclohexene, 

vinylcyclohexe

ne, xylene, 

Methylnaphthal

ene, Fluorine 

Poly-

Ethylene 

Marimoto 

et al 

(1976) 

 Air  
Methane, 

ethane, ethene 

Poly-Ether-

Ether-

Ketone 

Day et al 

(1990) 

Py – 

GC/MS 
Nitrogen 1000 – 1500 

Mainly phenol, 

some benzene 

and small 

volatile 

components 

Poly (n 

butyl 

methacrylat

e) 

Ettre and  

Varadi 

(1963) 

Py-GC - 400 –950 

Methane, 

ethane, 

methanol, 

ethanol, 

propanol 
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Poly-

carbonate 

Jansen et 

al (1988) 

TD — GC 

(Tenax)-

FTIR-MS 

Nitrogen 
350 

 

chlorobenzene, 

phenol, p-

alkylphenol 

Polyester-

urethanes 

Jansen et 

al (1988) 

TD  -GC 

(Tenax)-

FTIR-MS 

Nitrogen 
350 

 

aliphatic diols/ 

esters, 

cyclopentanone, 

tetrahydrofuran

e 

Polystyrene 

Shappi 

and Hesso 

(1990) 

Pyrex 

pyrolysis, 

GC (SE54 

25m) and 

GC-MS 

Air and 

Nitrogen 

300 

 

C7 – C36 

alkanes, 

toluene, 

benzene, 

styrene, phenol 

for both 

atmospheres, 

but with a 

greater variety 

in air. 

Cascaval 

et al 

(1979) 

Py-GC Argon 420 – 790 

C1-C3 

aliphatic, 

benzene, 

toluene, etc. 

Morimoto 

et al 

(1976) 

Py – IR Nitrogen  
Methane, 

ethane, ethene 

Polypropyle

ne 

Fardell 

(1993) 
- - - 

Alkanes, 

Alkenes, 

Benzenes 

Buchalla 

et al 

(2000) 

TDS-GC 

(Tenax, 

1701)-MS 

Irradiation 

in air 

160 

 
Simple alkanes 

Hajekova 

and Bajus 

(2005) 

Pyrolysis Nitrogen 450  

Mainly alkanes 

and alkenes 

produced 

Polyurethan

e 

Morimoto 

et al 

(1976) 

Py – IR Nitrogen  
Methane, 

ethane, ethene 

Poly-Vinyl-

Chloride 

Boettner 

et al 

(1969) 

GC/ MS Air 25 – 580 

Basic aliphatics, 

propene, 

benzene, 

toluene 

Buchalla 

et al 

(2000) 

TDS-GC 

(Tenax, 

1701)-MS 

Irradiation 

in air 

160 

 
Simple alkanes  

Andersson 

(1988) 

TD-GC-

MS 
Helium 160 

Aliphatic 

hydrocarbons, 

alcohols, 

aldehydes, 

ketones 
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Aracil et 

al (2005) 

Horizontal 

quartz 

reactor 

Nitrogen 500-1000 

Methane, 

propane, 

Pentane, 

Hexane, 

benzene, 

toluene, 

Natural 

Rubber 

Chen and 

Qian 

(2000) 

Py-GC 

Ov101 

50m 

Nitrogen 200 –600 

C1-6 aliphatics, 

benzene, 

toluene 

2.6 Oxygen system hazard analysis and risk assessment 

There are two main standards for the selection of materials for use in oxygen enriched 

environments.  In the UK the main set of standards are the British Standard BS N100 

series.  In the USA, the ASTM G88-05 (2005) (compiled mostly by NASA) 

incorporates a number of other standards to give an overall picture of oxygen system 

risk assessment and materials’ selection. 

2.6.1 The BS N100 series of standards advice on the design and testing of high-

pressure enriched oxygen systems and their component parts  

This standard covers the design, installation and testing of oxygen systems and the 

materials used in their construction.  It also deals with the investigation of incidents.  In 

terms of system hazards the most important sections are: 

a) BS 4N 100 – Design and installation (1999) 

This section specifies that the oxygen systems be separated from all other potentially 

hazardous systems, such as electrical systems, and clear of any moving parts.  The 

couplings and connections should prevent excessive pressure charging and be 

accessible so as to prevent cross contamination. Replenishment points should have 

filters to prevent foreign particulates from entering the system, and system seals should 

not be directly exposed to the oxygen stream.  Finally all materials used, including 

soldering, brazing, welding and cleaning materials should be compatible with enriched 

oxygen environments. 

b) BS 5N100 – 5 Guide to fire and explosion hazards associated with oxygen, 

including handling, storage and replenishment (2006) 

Part 5 states that, with a few exceptions, both metallic and non-metallic materials 

continue to burn in oxygen-rich atmospheres once ignited.  BS 5N 100-5 also deals 

with the common causes of oxygen incidents, as covered in section 1.2, and includes 

case studies demonstrating them. 
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c) BS 4N100 – 6 Guidance and recommendations on the selection of materials for 

use with oxygen (1999) 

In this part the selection of metallic and non-metallic materials is discussed.  Table 1 of 

this standard is a smaller version of column 1 in Table 2-6 (in section 0 of this work) 

showing the Promoted ignition-combustion test results.  Non-metallic materials must be 

proven to be compatible with the temperatures and pressures likely to occur in use, by 

bomb test. 

2.6.2 The ASTM G88- 05 (2005) Standard guide for designing systems for 

oxygen service  

This document applies to the design of systems, but rather than being a comprehensive 

document, refers to the G63-99 (2007) and G94-05 (2005) standards that deal with the 

selection of materials.  Section 5 of G88 does, however, define thermal ignition as the 

heating of material in an oxidizing atmosphere to a temperature sufficient to cause 

ignition, and describes the major factors leading to it (covered by section 1.2 of this 

document).  One of the most useful elements in G88 is a graph showing the potential 

velocity of an oxygen stream resulting from a pressure differential, enabling designers 

to check the flow-rate within a component or a system.   

Section 7 of G88 specifies oxygen system design.  It insists that a system must avoid 

unnecessary elevated temperatures and pressure.  Heat, radiation, electrical sources, and 

contaminants should also be avoided.  The standard details the use of filters and the top-

wards orientation of bypass valves to prevent the accumulation of contaminants.   

Enriched oxygen compatible materials should also be used.   

Neither BS N100, nor ASTM G88 standards detail how an oxygen incident 

investigation should be carried out.  Forsyth et al (2003) have constructed a method to 

assess hazards in oxygen systems using the ASTM G88 standard guide, shown in Table 

2-17.  This encourages a step by step approach, looking at a system as a whole, as well 

as each individual component and their constituent parts.  A similar process can be 

applied to incident investigations.  This guide is useful to investigators who are very 

familiar with oxygen systems however it still does not go into the sort of forensic detail 

that might be required to be collected in order to fully assess a system, or an incident.  

In this approach a series of ranking criteria are used to assess the ignition likelihood, 

based on the different physical factors (0 being almost possible, and 4 being highly 

possible), but no true numerical analysis is carried out.   Although it can be adapted to 
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incident investigation, this approach does not directly cover oxygen incident 

investigation.  Section 0 briefly demonstrates the information that is sometimes missed 

by investigators. 

Table 2-17 Hazard assessment of oxygen systems (Forsyth et al 2003) 

1. System level analysis 

a. Component listing - Composing schematics and list 

b. Component severity 

and compliance 

ranking  

- Analyse system schematic and perform a visual 

inspection. 

- Assess the maximum working conditions, design 

for cleanliness and possibility for ignition. 

c. Component priority 

listing 

- Create a list of components requiring in-depth 

ignition hazard analysis 

2. Component level analysis 

a. Component priority 

listing 

- Compile component cross section drawings 

b. Component hazard 

analysis 

 

- Analyse each part 

- Evaluate materials’ flammability 

- Explore possible ignition mechanisms 

- Predict reaction effects 

- Evaluate overall likelihood of an incident occurring 

 

Rosales et al (2007) have added to this in the NASA document TM-20070213740 

stating that the worst case operating conditions must also be identified. 

2.7 Incident investigation 

This section contains the details from 2 investigation reports for oxygen incidents.  

They will demonstrate the sort of incidents that can occur in oxygen systems and the 

variation in the way that these incidents can be reported.   

2.7.1 The catastrophic failure of a charging panel and connective hose 

In 2007 an oxygen incident occurred in Tidenham, Gloucestershire.  This was 

investigated by the HSE and further investigated by HSL.  While gauging the gas 

contained within two 7-litre cylinders connected to a gas charging panel an explosion 

occurred.  The gas charging panel was extensively damaged and the tubing (connecting 

the panel and cylinders) was destroyed. 
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In the report the investigator notes that the outlets attached to the cylinders did not 

contain non return valves and therefore allowed any contamination in the cylinders to 

enter back into the charging system.  They also note that a Viton ‘O’ ring on one of the 

cylinders (at outlet 1) had a section missing (not due to fire damage).  The Viton is 

judged to be a likely source of ignition, probably ignited by adiabatic compression.  

Many system and environmental details are recorded.   Photos and schematic diagrams 

enable the identification of the components involved, although a scale is not used in the 

photographs.   

2.7.2 The catastrophic failure of an oxygen system regulator 

In 1987 an oxygen incident occurred in Boston, Lincolnshire.  This was also 

investigated by the HSE.  An empty cylinder was being replaced by a new full cylinder.  

The new cylinder was opened briefly to clear the neck and then closed again.  The 

regulator was then put on to the new cylinder, and the cylinder valve was opened.  At 

this point the regulator exploded, bursting into flames.   

In the report the investigator judged the fire to have started in the high-pressure section 

of the valve however no reason is given for this.  The initial material was judged to 

have been organic.   

The missing components from inside the regulator (i.e. the components that comprised 

a significant portion of the kindling chain) were not identified, nor were the materials 

from which they were made.  It is possible that this information was not available to the 

investigator at the time.  The environmental pressure and percentage of atmospheric 

oxygen in the system are not listed.  The lack of description in relation to materials 

makes this incident practically impossible to fully analyse.  This is an example of an 

incident report that contains no, or little, technical or useful scientific information.  As 

these two summaries show, there can be a great difference between incident 

investigations.  Some are investigated fully, with all the relevant and useful information 

being recorded, whilst others provide insufficient detail to learn from the incident.  

Sections 2.2 – 2.6 have all demonstrated that the environmental conditions, component 

mass and material of construction all affect the SIT of materials and subsequently the 

kindling chain of an oxygen incident.  It therefore follows that any incident report 

should contain as much of this information as possible.   
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2.7.3 Investigation principles 

As mentioned in section 1.4 there are a number of interested parties concerned with 

oxygen incidents however there is no one way to investigate incidents.  The process can 

be confined to one organisation, for example an insurance company consultant, or 

collaborative.  The more serious the incident, the more institutions may have to be 

involved e.g. an injury or death will result in the involvement of police and, in the UK 

Health and Safety Executive (HSE) or in the USA the Occupational Safety and Health 

Administration (OSHA) or one of the organisations they oversee.  It is expected that the 

most serious of events will have substantial resources applied to them, but this may be 

too late, and there is no strict process applied.  The philosophy behind having a safety 

culture and regulations/ regulatory organisations is to identify problems before they 

happen, or before they cause serious harm (HSE “Investigating accidents and incidents” 

guide 2004).  Thus the recording of all scientific information possible for minor 

incidents as well as major should help to identify problems sooner.  This may be 

especially true if the cause of the incident is not clear.  The use of science and 

scientists’ knowledge has been invaluable in gaining greater understanding of events 

that occurred at crime scenes (forensic meaning pertaining to law), and principles 

developed to accompany its use have changed the nature of criminal investigations.  

Evidence handling, scene and activity recording, and general evidence integrity have all 

aided the knowledge gathering process (Cobb 1998).  Incorporation of these principles, 

and specifically details of materials, dimensions, atmospheric conditions and similar 

data/ information into recognised incident investigation methods, such as fault trees and 

root cause analysis, might similarly aid health and safety investigations. 

This chapter has detailed the current technology and standard status for the assessment 

of materials used in high pressure enriched oxygen systems.  It has demonstrated that 

events can be catastrophic, resulting in equipment damage, and loss of life, and that 

they are a worldwide problem.  It has demonstrated how important it is that materials 

are suitable for this highly specialised environment, and that should they fail, the 

incident is fully investigated, maximising the information obtained for both the current, 

and possible retrospective, investigations.  
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Chapter 3                                                                                                                              

The determination of non-metal spontaneous ignition temperatures under a range 

of conditions  

A scheme was devised to gather further information from experimental work (and the 

existing literature) to enable the accurate analysis of a kindling chain combustion 

reaction, with particular reference to oxygen service, i.e. incorporating data from high 

pressure environments with oxygen enrichment.   

The first stage of this process was an experimental programme to test the SIT of selected 

non-metals used in high-pressure oxygen systems.  Initially this was done using a Bomb 

apparatus, in 99.5% oxygen at pressures ranging from 3 – 40 MPa.  Further SIT tests 

were then conducted on the same or similar materials using differential scanning 

calorimetry (DSC) at ambient pressure, in air, and using pressurised differential 

scanning calorimetry (PDSC) in 99.5% oxygen at pressures ranging from ambient to 3.4 

MPa.  Secondly thermal desorption (pyrolysis) – gas chromatography has been used to 

identify the gases evolved when non-metals used for oxygen service are heated.  Using 

SIT data for these individual gas components of the volatiles it might be possible to 

estimate the SIT of the polymer from which the vapours have been released.  The results 

from these tests are to be used to derive a mathematical relationship, which will allow 

the approximate prediction of a SIT for any material, under a range of typical working 

conditions.   

3.1 Measurement of the SIT of a number of selected polymers at a range of 

pressures using the high pressure bomb test 

The high pressure bomb apparatus was used as part of the programme to identify the 

SIT of non-metals.   Tests were conducted on a large number of polymer samples.  The 

environment consisted of 99.5% oxygen and the pressure was varied from 5 to 40 MPa.  

The London South Bank University bomb is an example of the BS 4N-100-2 (1999) 

bomb test.  It improved the previous (BS 3N 100 1985) design for the bomb criteria, 

allowing test pressures up to 45 MPa and a maximum temperature of 550°C (823 K).   

The newer BS 4N-100 bomb test has a greater accuracy, repeatability, and reliability 

than its forerunner (which produced series of results with high standard deviations 

adding the need to statistically define the SIT).  It is also capable of testing materials 

over a greater range of temperatures, and pressures, and accommodates larger samples 

(see Table 3-1 below).    
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Table 3-1 Comparison of BS 3N- 100 and 4N-100 bomb tests 

 3N- 100 4N-100 

Maximum temperature 673 K 823 K 

Maximum test pressure 13.8 MPa 45 MPa 

Maximum sample mass 60±2 mg 100±2 mg 

Heating rate 

Not less than 20 K/ min 

(maintaining constant 

linear rise problematic) 

Uniform heating rates 

from 2 to 100 K/ min 

3.1.1 Description of apparatus 

The apparatus consists of a stainless steel containment vessel, which contains a thin 

walled Monel K500 combustion vessel.  The internal vessel is filled with oxygen, while 

the external vessel is filled with Nitrogen, maintaining pressure equalisation.  This 

allows the inner vessel’s Monel wall to be thinner, thus minimising the thermal inertia 

of the apparatus.  The thermal inertia of the system can be represented by: 

𝑚𝑟𝑐𝑝𝑟 + 𝑚𝑏𝑐𝑝𝑏

𝑚𝑟𝑐𝑝𝑟
 

where: 

mr = Mass of sample 

cpr  = Specific heat of sample 

mb = Mass of bomb apparatus 

cpb = Specific heat of bomb apparatus 

This apparatus allows the heater to be mounted on the external wall, so not in the 

oxygen environment (as in the earlier BS 3N 100 version) reducing the chance of an 

oxygen incident from electric arcing or short-circuits.  Three Inconel thermocouples are 

used to monitor the temperature changes and to provide information for the feedback 

control.  Two are above the sample to measure the sample temperature, and temperature 

on ignition.  A third is beneath the sample, and is buffered from minor temperature 

fluctuations by the combustion boat.  This is suitable for the heater controller feedback 

temperature.  The ideal gas law states that 

PV nRT  Eqn. 3.1 

where  

P  = Pressure 

V  = Volume 

n  = Number of gaseous moles 
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R  =  Universal gas constant 

T  =  Temperature 

As the temperature of the system is raised, so is the pressure (as it is a constant volume), 

so a buffer is used to maintain a constant system pressure via a manually operated high 

pressure vent valve.   The heater is a standard 1 Kilowatt mineral insulated band heater, 

which is contained in a nitrogen atmosphere.  The system also has a buffer vessel, into 

which vented gases can be released up to the maximum vessel pressure of 69 MPa.   

Strain gauge type pressure transducers are used to monitor gas pressures in both vessels.  

A Monel 400 high-pressure filter is fitted in line with the combustion vessel.  The vent 

line is fitted with a brass flame arrester.  The environmental oxygen content is 99.5%. 

Figure 3-1 BS 4N100 Bomb apparatus 

 

Diagram from McGuire (1993) 

3.1.2 Experimental procedure for the BS 4N 100 Bomb test 

A 100 2 mg sample was taken, and split into 20 equally sized blocks, and then cleaned 

(with an aqueous solution of ‘Today & Beyond’ Beyond-2001® in accordance with BS 

5N 100 – 7).  The samples were then inserted into the combustion boat, and the 
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combustion vessel was lowered into the containment vessel.  The combustion vessel was 

purged, and filled with oxygen, while the containment vessel was filled with nitrogen 

(maintaining the equilibrium), (See appendix A for full procedure). 

The standard test conditions use a heating rate of 10°C/min at a constant pressure of 

13.2MPa (chosen due to the large amount of results available in databanks at this 

pressure due to its historical use in BS 3N 100 1985 and BS 4N 100 1999).  Ignition 

tests were also conducted at a range of other pressures between 5 and 40 MPa. After 

completion the oxygen was vented at the same time as the nitrogen.   After the test was 

complete and all gases were removed, the containment vessel was opened and allowed 

to cool. 

3.1.3 BS 4N 100 Bomb test results 

Table 3-2 below shows Spontaneous Ignition Temperature (SIT) test results acquired in 

99.5% oxygen for a number of polymers, in a range of test pressures. 

Table 3-2 High Pressure bomb test results  

Material Pressure, 

MPa 

SIT 

K °C 

Aflas 
a
 9 609 336 

 13.2 591 318 

 15 585 312 

 25 575 302 

 29 573 300 

 33 568 295 

Bromo-Butyl Rubber 
b
 5 480 207 

13.2 464 191 

 30 457 184 

 40 449 175 

Fluorel 
a
 8 623 350 

 13.2 609 336 

 16 605 332 

 31 601 328 

 35 600 327 

 40 600 327 

Makrolon 
 b
 5 615 342 

 13.2 593 320 

 30 583 310 

 40 577 304 

Nitrile
 b
 5 563 290 

 13.2 542 268 

 30 529 256 

 40 520 247 

Noryl 
 b

 13.2 474 201 

Nylon 6,6 
a
 6 498 225 
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13.2 478 205 

15 475 202 

27 468 195 

35 463 190 

40 463 190 

PCTFE 
a
 6 728 455 

 13.2 708 435 

 19 708 435 

 27 698 425 

 35 695 422 

Polybutadiene 
a
 8 473 200 

 12 461 188 

 13.2 460 187 

 16 452 179 

 29 441 168 

Polychloroprene 
a
 10 473 200 

13.2 466 193 

25 450 177 

39 443 170 

Polyisoprene 
 b

 13.2 411 138 

Polyurethane 
a
 5 495 222 

 6 503 230 

 13.2 495 222 

 13.2 493 220 

 15 491 218 

 27 482 209 

 38 478 205 

PTFE
a
 5 773 500 

 9 768 495 

 13.2 763 490 

 22 763 490 

 35 763 490 

PVC 
 b
 13.2 475 272 

Rulon Tape 
b
 5 740 467 

  13.2 718 445 

 30 698 425 

 40 690 417 

Silicone Rubber 
a
 5 587 314 

 9 588 315 

 13.2 583 310 

 30 553 280 

 36 557 284 

 40 548 275 

Vespel SP1 
 b
 5 698 425 

 13.2 683 410 

 30 670 397 

 40 665 392 

Vespel SP21 
a
 8 691 418 

 13.2 673 400 

 17 673 400 

 25 663 390 
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a
 McGuire (1993) 

b
 Rahman and Nolan (2000). 

It should be possible to develop a relationship between these data for a given material 

i.e. devise an equation, incorporating all of the pressure and temperature variations.   It 

may also be possible to take into account the system flow, resulting in an equation that 

enables us to predict the SIT of a material under any conditions.  Predicted values will 

have to be compared to values measured under varying conditions in other apparatus.  

There may be a problem comparing polymers though. Even if the polymer is from the 

same manufacturer or has the same trade number it may not actually be the same.  

Polymer manufacturers change the chemical make-up from one batch to the next to alter 

the physical characteristics, or maintain characteristics in desired conditions (also 

depends on the chemicals’ availability).  Although this may change the outward polymer 

behaviour only a little, altering the materials composition can significantly alter the 

flammability.  For this reason within one polymer group, the SIT can vary a great deal. 

3.2 DSC – Mettler Instruments DSC12E
1
 

The Differential Scanning Calorimeter, as the name suggests, calculates the energy 

released or absorbed by a material by comparing it to an empty reference sample holder.   

The instrument heats both on a ramp, grading how much energy needs to be provided to 

each to keep them the same temperature.  The Mettler DSC12E was utilised as part of 

the experimental programme using Flynn and Wall’s (1966) method.  The detected 

exothermic onset temperature can be considered to be the ignition temperature of the 

test sample. This value has been used for comparison with SIT values at higher 

pressures (see Chapter 4).  

                                                 
1
 Mettler-Toledo Ltd., 64 Boston Road, Beaumont Leys Leicester, LE4 1AW 

 29 660 387 

 35 660 387 

 39 660 387 

Viton 
a
 6 628 355 

 12 602 329 

 13.2 598 325 

 16 596 323 

 33 584 311 

 35 573 300 

 37 573 300 

Viton A
 b
 5 607 334 

 13.2 591 318 

 30 582 309 

 40 574 301 
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3.2.1 Description of apparatus 

This apparatus compares a sample in a crucible with an empty reference crucible as heat 

flows from the furnace across the defined thermal resistance (sensor) to the sample and 

reference side.  If the heat capacity of the sample does not equal the reference it results 

in a net heat flow to or from the sample, leading to a temperature difference.  It is 

capable of heating up to a rate of 20 K/ min, with a maximum temperature of 673K.  

The Mettler system software TA89E was used for data collection and recording.  The 

Sample holders used were high-pressure gold plated (inert material), steel crucibles 

measuring 7 mm in diameter and 5.9 mm high. 

Figure 3-2 DSC sample chambers  

 

3.2.2 Experimental procedure for the Mettler DSC12E 

See appendix B for full method.  A sample material was selected and a 5 – 10mg section 

was cut, weighed, and cleaned.  This was then inserted into a Mettler high-pressure 

crucible and sealed shut using a press.  The crucible was placed into the DSC sample 

chamber, on the left plate, with an empty crucible (of the same type) on the right heating 

plate to act as a reference, for comparison.  The chamber lid and DSC lid were replaced, 

and the water supply was switched on (in order to cool the machine’s electronic 

components).  The sample was heated at a rate of 5 K/ min, from 323 K – 673 K (50 – 

400°C), with a thermogram being recorded by the Mettler TA89E software.  The 5 K/ 

min ramp rate was the optimum specified by the manufacturers for this apparatus.  Work 

by Bryan and Lowrie (1986) states that this should show essentially no variation from 

results obtained at a ramp rate 10 K/min. This is supported by results in Wharton et al 

(1989) and section 6.2.1 of BS 4N100-2.  Analysis was conducted on the thermogram to 

determine the onset temperature of the main exothermic peak, which can be equated to 

the ignition temperature. 
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3.2.3 Experimental results from the Mettler DSC12E 

Table 3-3 shows ignition temperatures for selected polymers.  A number of materials 

tested were found not to ignite below the 673K (400°C) maximum test temperature.  

These are Aflas, Makrolon, Nylon 6,6, PCTFE, Rulon, Silicon rubber 2451, Silicon 

rubber S87, Vespel SP21, and Viton A. An example thermogram can be found in 

appendix B. 

Table 3-3 Atmospheric Differential Scanning Calorimetry results  

 Ignition Temperature, 5 K/ min 

Polymer °C K 

Polychloroprene  266 539 

Noryl 306 579
 
 

Polybutadiene 315 588 

Polyisoprene 185 458 

PVC 264 537 

 

3.3 PDSC – TA Instruments 2910
2
 

The TA 2910 is a pressurized DSC.  A similar method has been employed, as with the 

atmospheric tests, but with necessary differences due to the pressurised conditions.  This 

apparatus was also utilised as part of the experimental programme using Flynn and 

Wall’s (1966) method, with the exothermic onset temperature (considered the ignition 

temperature) being recorded.  As the exothermic onset temperature can be approximated 

with a material ignition temperature the results can be compared with results obtained 

using the DSC and Bomb test apparatus (See Chapter 4) 

3.3.1 Description of apparatus 

Like the Mettler DSC, this apparatus also compares a sample in a crucible with a 

reference crucible (see 3.3.2).  These are placed in pans on a raised constantan disc.  It is 

capable of heating at up to a rate of 50K/ min, with a maximum pressure of 7 MPa and 

maximum temperature setting of 873 K (600 °C).  The pressure DSC cell (contained 

beneath a small silver lid, and cover) is enclosed in a steel pressure cylinder, capped 

with a pressure cover, to allow pressurisation.  The cell has two pressure control valves 

(inlet and outlet), a pressure gauge on the front, and a pressure relief valve at the rear.  

                                                 
2
 TA instruments Ltd., Block D, The Fleming Centre, Fleming way, Manor Royal, Crawley, W. Sussex, 

RH10 9NB 
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As the samples must be exposed to the enriched oxygen environment, the non-metal 

samples are tested in an open aluminium crucible. 

3.3.2 Experimental procedure for the TA Instruments 2910 

(See appendix C for full procedure) 

In this case a sample material was selected and a 2 – 5mg section was cut, weighed and 

cleaned (in accordance with BS 5N 100 – 7).  The sample was then placed in an 

aluminium crucible. This and the reference crucible were then inserted into the high 

pressure cell on the reference plates.  The chamber was sealed, and purged using 

Nitrogen.  The chamber was then filled with oxygen and pressurised to 3.4 MPa.  The 

chamber was then heated from ambient (well below the exothermic onset temperatures) 

to 873 K (600°C) at a ramp rate of 10 K/ min.   The pressure was maintained by 

continual ‘bleeding off’ of hot gas using the purge valve.  TA instrument’s Thermal 

analysis software was used to calculate the exothermic onset temperature of the samples.  

This process was then repeated at the same ramp rate, to assess the repeatability.  The 

method was also employed at a pressure of 2.1 MPa.  

3.3.3 Experimental results obtained using the TA Instruments 2910 

Table 3-4 Pressurised Differential Scanning Calorimetry TA Instruments 2910 

results 

Material SIT 2.1 MPa SIT 3.4 MPa 

K °C K °C 

Aflas 100S 628 355 607 334 

Polychloroprene 688 415 626 353 

Nylon 6,6 636 363 628 355 

Polybutadiene 436 163 431 158 

Silicone rubber 2451 611 338 605 332 

Silicone rubber S87 585 312 578 305 

Vespel SP21 782 509 761 488 

An example thermogram can be found in appendix C.  These data were acquired using 

the TA Instruments 2910 PDSE at Honeywell Aerospace, Yeovil. 

3.4 Thermal Desorption – Gas Chromatography (TD/GC) 

This experiment was used as part of the programme to find out whether it would be 

possible to identify, or at least simply approximate, the SIT of non-metals from the 

identification of the thermal decomposition products.   Tests were conducted on a 

selected group of polymer samples.  The materials were subjected to pyrolysis using a 
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Perkin Elmer ATD50 Thermal desorber
3
 and the resulting vapours and gases evolved 

from the evaporation of additives and polymer pyrolysis were analysed using an AMS 

Model 93 Gas chromatograph
4
.  Based on preliminary experiments it was decided to 

carry out the thermal desorption at approximately 50K below the SIT of the test sample 

material (though in some cases this value is increased due to the maximum temperature 

of the apparatus).  This was to allow easier identification of the volatiles being expelled 

by the material without the chance of ignition. 

3.4.1 Description of apparatus 

The Perkin Elmer Thermal Desorber ATD50 has a sampler section (with 50 sample 

places), a desorption oven for heating, and a secondary cold trap for the collection of 

evaporation and thermal degradation products.  The oven can be set to temperatures 

from 323K (50°C) to 523K (250°C), and can be on for between 3 and 30 minutes.   The 

secondary cold trap temperature can be set between 243K (-30°C) and 303K (30°C).  

The sample tubes are sealed at both ends, raised into position, and each sample tube 

undergoes a test sequence including carrier test, carrier purge blocked tube test, leak and 

pressure tests (to check that no products will be lost) before desorption.    The AMS 

Model 93 Gas Chromatograph was used for separation.  A 25m 1701 column was used 

with a flame ionisation detector (Figure 3-3).  

3.4.2 Experimental procedure for the use of Perkin Elmer ATD50 Thermal 

desorber and AMS Model 93 Gas Chromatograph 

(See appendix D for full procedure) 

A small sample of the chosen polymer was cut (approximately 30 – 40 mg) and placed 

in the sample holder wrapped in glass wool.  The sample was then subjected to thermal 

desorption.  The desorption temperatures were entered (see Table 3-5) with an initial 

desorption time of 10 minutes and secondary time of 30 minutes.   A cold trap 

temperature of 303 K (30°C) and a carrier gas pressure of 0.28 MPa (approximately 

90% of the column pressure) were also entered.  For the Gas Chromatography the single 

ramp program was used.  The materials were held at 323K (50°C) for one minute 

followed by a 15K/minute program to 523K (250°C), which was then held for 30 

minutes. 

                                                 
3
 Perkin Elmer Instruments, Chalfont Road, Seer Green, Bucks, HP9 2FX. 

4
 Analytical Measuring Systems, London Rd, Pampisford, Camb, CB2 4EF 
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Figure 3-3 Flame ionisation detector (from AMS 93 manual) 
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3.4.3 Experimental results obtained from the thermal desorption – Gas 

Chromatography analysis of selected polymers 

Table 3-5 Identification of degradation products of selected polymers at 

atmospheric pressure 

Butyl Rubber – Desorbed at 483 K (210 °C) 

Peak No. Time Area Conc. Kovats
 
 ID 

1 4.382 18852 54.8843 410 2 Methyl propane 

2 4.515 598 1.742 475  

3 5.118 624 1.8166 598 Hexane 

4 8.104 535 1.5575 773 3-methyl heptane 

5 9.607 355 1.0326 825 Toluene  

6 21.802 718 2.0912 1164  

7 22.956 10236 29.8008 1196 Dodecane 

TOTAL  31918 100   

 

Polychloroprene – Desorbed at 523 K (250 °C) 

Peak No. Time Area Conc. Kovats
 
 ID 

1 4.343 1044 4.7223 438  

2 4.467 242 1.0965 481 Methyl butane 

3 4.565 484 2.1895 499 Pentane 

4 5.095 428 1.9355 594 Hexane 

5 5.375 477 2.1554 621  

6 5.558 478 2.1637 636 1,1-Dichloroethene 

7 6.744 290 1.3123 716 Chloroform 

8 8.601 3784 17.1109 791 1,2 Dichloropropane 

9 9.483 1199 5.422 821 2-Pentanone 

10 11.645 651 2.943 883 1,3-Dichloropropane 

11 20.508 433 1.9563 1125  

12 22.058 956 4.325 1171 1,2,3-Trichlorobenzene 

13 23.069 2482 11.2244 1199 Dodecane 

14 23.3 1313 5.9358 1207  

15 27.163 1631 7.375 1335  

16 27.351 1994 9.0164 1342  

17 27.808 1027 4.646 1360 Xylenol  

18 29.486 2888 13.0599 1421  

 

PP – Desorbed at 523 K (250 °C) 

Peak No. Time Area Conc. Kovats
 
 ID 

1 4.34 467 5.14 437  

2 4.473 1501 16.5304 474  

3 4.563 601 6.6159 499 Pentane 

4 5.074 489 5.385 590  

5 9.366 3154 34.7388 817 Dimethyl Heptene 

6 9.583 796 8.7646 824  
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PVC – Desorbed at 523 K (250 °C) 

Peak No. Time Area Conc. Kovats  

1 4.375 4576 1.7838 410 Butane 

2 4.601 2774 1.0811 506 Pentane 

3 6.808 17220 6.7123 719 Chloroform 

4 8.272 4503 1.7645 779 Dichloropropane 

5 8.935 8789 3.4257 803 Octane 

6 21.148 196324 76.5255 1144 Trichlorobenzene 

7 21.559 5074 1.9777 1157  Benzyl chloride  
b
 

 

SBR — Desorbed at 523 K (250 °C) 

Peak No. Time Area Conc. Kovats ID 

1 4.408 718 1.2143 456  

2 4.547 980 1.658 494 Pentane 

3 4.617 644 1.0902 509  

4 5.062 951 1.6084 588  

5 5.159 2006 3.3942 602 Hexane 

6 5.245 604 1.0228 610  

7 5.434 17414 29.4668 626 Methyl cyclopentane or Propanol 

8 8.775 3969 6.7161 798 Octane or diethyl hydroxyl amine 

9 14.561 642 1.0864 963 Isopropyl benzene 

10 16.25 677 1.1456 1005 Decane 

11 16.4 1048 1.7738 1010  

12 17.85 603 1.0203 1051 Methyl branched alkane 

13 19.297 1304 2.2072 1090 Octanal or Benzaldehyde 

14 19.542 705 1.1928 1096  

15 19.954 705 1.1936 1108  

16 20.107 997 1.6872 1113  

17 20.215 817 1.3826 1116  

18 20.51 839 1.4189 1125  

19 20.733 635 1.0748 1132  

20 21.253 1020 1.7258 1148  

21 26.233 331 9.5597 1299  

22 27.608 1928 3.2616 1352  

23 27.914 6230 10.5422 1364  

24 28.008 1320 2.2341 1367  

25 29.674 2337 3.9549 1428  

26 29.753 1215 2.0564 1431  
a
 Pacakova and Feltl (1992), 

b
 Safarova et al (2004), Otherwise HSE MDHS 88 (1997) 

Only materials making at least 1% of released degradation products are shown. 

Materials constituting less than 1% have been removed as they are not deemed 

significant towards ignition. 
c 

Where Kovats are the constituent compound retention 

indices normalised against a reference standard of alkanes (C2 – C16) for comparative 

purposes. An example chromatogram can be found in appendix D. 
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Chapter 4                                                                                                          

Development of Spontaneous Ignition Temperature results and combustion models 

In an oxygen system once one material has ignited, a kindling chain is often quick to 

develop.  For this reason prediction of the ignition, and particularly the Spontaneous 

Ignition Temperature (SIT), is the most important factor when considering the 

flammability of materials in such a system.  Various factors and test methods are 

currently used to assess polymer use in oxygen systems (see section 2.2).  

Development of a model to predict the ignition of materials is a complex process due to 

the number of different parameters affecting the mechanism of ignition.  Some of the 

theoretical parameters were discussed in section 1.3.  The fire triangle demonstrates the 

three major factors in combustion; fuel, oxygen, and ignition energy.  Assuming that 

ignition energy is supplied (by one of the modes mentioned in section 1.2) the 

determinative system parameters are those that affect the levels of fuel vapour and 

oxygen available to react.  These are: 

- Environmental pressure 

- Oxygen concentration 

- Environment flow 

- Material configuration (e.g. size, shape, thickness etc.) 

A simple relatively simple model is derived here, and the data obtained in chapter 3 is 

used to demonstrate the applicability of that model, in order to calculate the SIT of a 

non-metal at a given pressure, and oxygen concentration.  The effects of flow, and scale 

are also dealt with.  Finally, further data on metals have been collected from the 

literature, due to the specialist equipment required for bulk metal SIT testing, to be 

incorporated into a model demonstrating the kindling chain. 

4.1 Variation of polymer SIT with pressure 

Due to reaction kinetics, increasing the amount of reactants available for collision 

increases the rate of the reaction.  It also means that initially the chance of collision 

between reactants and products increases, increasing the chance of ignition, with a lower 

energy input (assuming a one-step global reaction for simplicity).  Often in combustion 

reactions the major limiting factor is oxygen. Increasing the pressure of an environment 

increases the concentration of oxygen within a given volume, resulting in a lower SIT, 

as noted by Kishore and Sankaralingam (1986).   
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4.1.1 Kinetic modelling – Critical gasification of polymers 

The ignition of the thermal decomposition products of polymers has been shown to 

occur when the surface of the polymer reaches a critical temperature, at which intense 

gasification is possible.   

 

Glassman and Yetter (2008a) report hydrocarbon reactions have orders ranging between 

1.5 and 2, and thus to develop a single overarching equation assuming a reaction order 

of 2 is not unreasonable. If we assume second order reaction the rate equation states:  

−𝑟 = 𝜗𝐶𝐴𝐶𝐵 Eqn. 4.1 

Where  

-r = Rate of reaction (mol L
-1

 s
-1

) 

𝜗 = Rate constant (L mol
-1

 s
-1

)  

CA = CA0(1- ωA) (mol L
-1

) 

CB = CB0 (1- ωB) (mol L
-1

) 

CA0 = Initial concentration A (polymer) (mol L
-1

) 

CB0 = Initial concentration B (oxygen) (mol L
-1

) 

ωA = Conversion of polymer volatile reactant to product (mol L
-1

) 

ωB = Conversion of oxygen reactant to product (mol L
-1

) 

 

Thus;  

−𝑟 = 𝜗𝐶𝐴0(1 − 𝜔𝐴)𝐶𝐵0(1 − 𝜔𝐵) Eqn. 4.2 

 

The Arrhenius equation is: 

𝜗 = 𝐴𝑒−
𝐸

𝑅𝑇 
Eqn. 4.3 

Where  

A = Pre-exponential factor (L mol
-1

 s
-1

) 

E = Activation energy (J mol
-1

) 

R = Universal gas constant (J mol
-1

 K
-1

) 

T = Temperature (K) 

 

Also, using the ideal gas law the concentration of oxygen can be defined: 

𝐶𝐵 =
𝑛

𝑉
=

𝑃

𝑅𝑇
 

Eqn. 4.4 

Where 

n = Number of gaseous moles 
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V = Volume (cm
3
) 

P = Pressure (MPa) 

 

If we assume that at auto-ignition (at temperature Tig) the conversion of reactants to 

products is 0, and that CA0 is a constant (as only a small fraction gasifies prior to ignition 

and we only require the lower flammability limit to be reached) then we can use 

equations 4.2, 4.3 and 4.4; 

−𝑟 = 𝐴𝑒−
𝐸

𝑅𝑇𝐶𝐴

𝑃

𝑅𝑇𝑖𝑔
 

Eqn. 4.5 

ln ln ln ln lnA ig

ig

E
r A C P RT

RT
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Eqn. 4.6 

ln ln ln ln( r) lnig A

ig

E
P RT A C

RT
       

Eqn. 4.7 

( r)
ln ln

A

ig

ig A

RTE
P

RT C


   

Eqn. 4.8 

This can be written as 

ln
ig

a
P b

T
   

Eqn. 4.9 

McGuire (1993) comes to a similar conclusion, however he does so by replacing the 

Concentration, CB, with a pressure term.  Lewis and Von Elbe (1987) state that for many 

material explosions a number of experimental observations appear to agree with  

log
ig

a
P b

T
   

Eqn. 4.10 

Where a and b are constants (assuming the effect of Tig on b is negligible): 

a  = E

R
 Eqn. 4.11 

b = 
( r)

ln
ig

A

RT

AC


 

Eqn. 4.12 

The relationship derived in equation 4.9 might enable smaller scale test data to be used 

to predict the SIT of non-metals at far higher pressures.   

 

A major factor hindering the prediction of ignition at higher pressures can be the 

presence of flame retardant materials, such as halogens, in the chemical makeup of the 

material.  On thermal decomposition the evolved halogens form a chemical acid gas, 
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which interferes with the combustion mechanism by trapping other radicals, interrupting 

the supply of energy. 

4.1.2 Hydrocarbon activation energy 

Equations 4.8 and 4.9 show a constant a defined as the combustion reaction activation 

energy, E, divided by the universal gas constant, R.  The thermal decomposition 

products of polymers, shown in section 2.5.8, are generally the smaller alkane and 

alkene molecules.  The activation energies for the combustion of hydrocarbons are 

shown below in Table 4-1.  They have a spread from 162 to 217 kJ/mol (taken from 

Table 2-1 in section 2.2.2).  It can be expected to see values for E/R of between 

approximately 19000, and 24000 K (where R = 8.314 J/ mol. K), however given the 

large range of hydrocarbons released by polymers by the process of thermal 

decomposition this may vary significantly.  

Table 4-1 Selected hydrocarbon oxidation activation energy (see Table 2-1 for full 

details) 

Hydrocarbon E, kJ/mol 

Methane 188
a
 

Ethane 191
a
 

Propane 162
a
 

Butane 167
b
 

Pentane 217
b
 

Hexane 212
b
 

Heptane 216
a
 

Octane 167
a
 

Cyclohexane 180
a
 

a Average of a number of values from various literature sources (see Table 2-1) 

b Value from a single source only (see Table 2-1) 

 

Studies, such as that of Vandenabeele et al (1960), have shown that these values remain 

relatively unaffected (within 40 kJ/ mol) by changes in concentration of reactants, 

temperature, or pressure.   

4.1.3 Development of bomb test results 

Figure 4-1 below shows the combined data from the LSBU polymer bomb tests 

(Obtained from Rahman and Nolan 2000 and McGuire 1993).  The trend-lines on the 

graph show a clear relationship between the natural logarithm of the pressure and the 

reciprocal of the SIT for all of the materials.  The gradient of the lines is extremely 

similar supporting the hypothesis that one relationship might be used for the calculation 

of a SIT of any polymer, at any pressure.  
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Figure 4-1 Showing the relationship between the reciprocal of the SIT, and the 

natural logarithm of the environmental pressure 

  

The average gradient of all the trend lines was calculated for the combined bomb data, 

and was found to be 20934 K (similar to that predicted in section 4.1.2 based on the 

activation energy for the combustion of hydrocarbons).  It may be possible to use this 

gradient where no real value of E/R has been obtained to give an approximation.  Using 

this relationship, it should now be possible to predict the SIT of the materials at any 

pressure.   
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4.1.4 Calculation of SIT at a variety of pressures 

The relationship derived from the rate equations and bomb data (equation 4.9) can be 

applied for a polymer at any pressure.  Assuming the constant B is the same for each 

material this can be rearranged to form: 

 

1 2

1 2

ln ln
ig ig

a a
P P

T T
    

Eqn. 4.13 

Therefore:  

1 2

2 1

ln( / )1 1

ig ig

P P

T T a
   

Eqn. 4.14 

  

This equation should allow the use of 1 data set to calculate the approximate data for 

new conditions, resulting in eliminating the need for the intercept, b.  Ideally the specific 

value for E/R (a) for that polymer should be used.   

Example: 

At 3.4 MPa the lowest SIT of silicone rubber 2451 was measured as 605 K in a 

pressurised DSC.  Using this result and equation 4.14 it is possible to calculate the SIT 

for silicone rubber at a pressure of 13.2MPa (matching measurements carried out in the 

bomb test, with a value, a, of 12706).  This calculation gives an SIT value of 568 K (295 

°C).  The SIT of Silicone rubber at 13.2 MPa is listed as 583 K in BS 4N-100 bomb test 

results from McGuire (1993).   

The results in Table 4-2 and Table 4-3 compare PDSC results (see section 3.3.3), and 

calculated predicted results for 13.2 MPa using these, with Bomb test results at 13.2 

MPa (see section 3.1.3).  For both pressures, the predicted results for Aflas 100S, 

Polybutadiene and the 2 varieties of Silicone rubber are all between 15 and 63 K below 

the measured ignition temperatures.  At 2.1 MPa the calculated SIT for Vespel SP21 is 5 

K below the measured valued, while at 3.4 MPa the calculated value is 5K above the 

measured.  The results for Polychloroprene, and Nylon 6,6 are well above.  This may be 

due to a number of reasons.   
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Table 4-2 A Comparison of PDSC SIT values from 2.1 MPa Oxygen and Bomb test 

results 

Material 

SIT, at 

2.1MPa in 

Oxygen 

Calculated 

SIT,   at 

13.2 MPa 

99.5% 

Oxygen 

SIT, Bomb 

test results at 

13.2 MPa 

99.5% Oxygen 

Difference 

 K °C K °C K °C  

Aflas 100S 628 355 571 298 591 318 -20 

Polychloroprene 688 415 616 343 466 193 150 

Nylon 6,6 636 363 569 296 478 205 91 

Polybutadiene 436 163 397 124 460 187 -63 

Silicone rubber 2451 611 338 562 289 583 310 -21 

Silicone rubber S87 585 312 539 266 583 310 -44 

Vespel SP21 782 509 668 395 673 400 -5 

 

Table 4-3 A Comparison of PDSC SIT values in 3.4 MPa Oxygen and Bomb test 

results 

Material SIT, at 

3.4MPa in 

Oxygen 

Calculated 

SIT, at 13.2 

MPa  

SIT, Bomb test 

result at 13.2 

MPa   

Difference 

 K °C K °C K °C  

Aflas 100S 607 334 566 293 591 318 -25 

Polychloroprene 626 353 580 307 466 193 114 

Nylon 6,6 628 355 578 305 478 205 100 

Polybutadiene 431 158 403 130 460 187 -57 

Silicone rubber 2451 605 332 545 272 583 310 -38 

Silicone rubber S87 578 305 568 295 583 310 -15 

Vespel SP21 761 488 678 405 673 400 5 

 

The properties of polymers can vary to a large degree, from batch to batch. Additives to 

alter flame retardancy, elasticity and other physical properties can impact on the ignition 

temperature variation.  Although widely used in oxygen systems, polychloroprene 

rubber is one such example. Literature listed in the Wendell Hull & Associates Inc. 

oxygen compatibility materials database (2013) show that various samples of this 

materials tested using the ASTM G72 test at 10.8 MPa auto-ignited at temperatures 

ranging from 423K to 593K (150°C to 320°C).  Nylon is known to be capable of 
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absorbing water.  How it is stored, and how long for, can dramatically affect the SIT.  

Results can be extremely variable (e.g. Swindells et al 1988).  Variations in this data 

may also be explained by another factor affecting material’s flammability.  Swindells 

identified that the ignition temperature of Vespel decreased dramatically with increasing 

surface area, with 60mg samples being divided into 4, 8, 12 and then 16 pieces.  

Variation in surface area between different test methods might account for the figures 

being different from expected, calculated ignition temperature values. 

NASA staff has tested a large number of non-metallic materials at a variety of pressures, 

however it is not known if the materials in the different studies are exactly the same so 

are not best for comparison purposes, although they may be used to show batch 

variation.  Bryan and Lowrie (1986) tested the same materials at both 3.4, and 6.8 MPa.  

The results are shown below in Table 4-4. 

Table 4-4 The NASA Bryan and Lowrie (1986) results of the G72 test  

 SIT at 3.4MPa, K SIT at 6.8MPa, K 

Polychloroprene (Neoprene) 464 457 

Polyimide (Vespel SP-21) 625 610 

Fluorel A-2160 599 596 

Nylon 6,6 520 475 

From Bryan and Lowrie (1986) 

If we apply the relationship to these results it should be possible to see if these values 

match the calculated values. The values measured at 3.4 MPa have been used to 

calculate values at 6.8 MPa using equation 4.14.  The values for a have been taken from 

LSBU experimental testing.  These may not be exactly the same as for the materials 

tested by NASA.  The results are shown in Table 4-5. 

The calculated SIT values for all materials are similar to those measured using the 

NASA G72 apparatus.    The calculated results for Polychloroprene, Vespel and Fluorel 

are within 16 K of the measured values.  The calculated result for Nylon 6,6 is 26 K 

from the measured value.  This may be due to the fact that the ignition temperature of 

Nylon 6,6, can vary dramatically due to varying water content within the material.  If 

this relationship can be used to compare SIT at different pressures, it might also be 

possible to use them to compare data from different experimental apparatus.  



71 

Table 4-5 Comparison of Bryan and Lowrie (1986) results with calculated SIT 

values  

 a Measured SIT value 

(6.8 MPa, 99.5%  

oxygen) from Bryan 

and Lowrie (1986), 

K 

Calculated SIT for 

6.8 MPa, 99.5%  

oxygen, K 

Polychloroprene  9263 457 448 

Vespel SP-21 8415 610 594 

Fluorel E-2160 25001 596 589 

Nylon 6,6  9958 475 501 

 

4.2 Variation of polymer SIT with oxygen concentration 

All of the bomb tests were conducted in 99.5% oxygen.  It should be possible to 

calculate the SIT of the polymers in any environmental condition by calculating the 

oxygen concentration and using the partial pressure of the oxygen in that environment as 

the pressure value in the relationship.   

If we take the bomb test results for Polyisoprene as an example; 

At 13.2 MPa the bomb test result for Polyisoprene was 411 K.  This was conducted in 

99.5% oxygen, making the partial pressure of the oxygen in the bomb test environment 

13.13 MPa.  DSC tests carried out on the same material were conducted in air (21% 

oxygen) at atmospheric pressure (0.101 MPa) resulting in an ignition temperature of 458 

K, making the partial pressure of the oxygen in the atmosphere 0.0213 MPa.  Although 

the DSC used a ramp rate of 5 K/min, work by Bryan and Lowrie (1986) states that this 

should show essentially no variation from results obtained at the 10 K/min ramp rate 

used in the bomb test. Results in Wharton et al (1989) support this.   If oxygen partial 

pressures are used in place of atmospheric pressure in equation 4.14 then the SIT values 

for a range of oxygen atmospheres can be calculated.  In the case of this example Tig at a 

partial pressure of 13.13 MPa was calculated as 401 K. 9 K lower than the measured 

value.    

The results from the DSC test (see section 3.2.3) have been adapted using equation 4.14 

and the environmental partial pressures, and compared with results measured in the 

bomb test at 13.2 MPa in 99.5% oxygen (see section 3.1.3).    
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Table 4-6 Comparison of DSC SIT values and Bomb test results 

Material SIT, at 

ambient 

pressure, in 

air 

Calculated 

SIT, at 13.2 

MPa 99.5% 

Oxygen 

Bomb test  

SIT  at 13.2 MPa 

99.5% Oxygen  

Differenc

e 

 K °C K °C K °C  

Aflas 673
a
 400 488 215 591 318 -103 

Makrolon 673
 a
 400 551 278 593 320 -34 

Polychloroprene  539 266 408 135 466 193 -58 

Noryl 579
 
 306 421 147 492 219 -72 

Nylon 6,6 673
 a
 400 468 195 478 205 -10 

Polybutadiene 588 315 402 129 460 187 -58 

Polyisoprene 458 185 402 129 411 138 -9 

PCTFE 673
a
 400 578 305 708 435 -130 

PVC 537 264 461 188 475 202 -14 

Rulon 673
 a
 400 559 286 718 445 -159 

Silicon rubber 2451 673
a
 400 501 228 583 310 -82 

Silicon rubber S87 673
 a
 400 501 228 583 310 -82 

Vespel SP21 673
a
 400 443 170 673 400 -200 

Viton A 673
 a
 400 565 292 591 318 -26 

a - Difference where samples did not ignite below 673 K (400°C) under atmospheric 

conditions  

Validation of this method proved problematic as few studies involve varying the oxygen 

concentration level, while some that do (e.g.  11
th

 STP 1497 comparing 30 – 60% 

oxygen environments) are unreliable showing inconsistencies (even compared with their 

own past results), and lack of repeatability.  Some work has been done by Court (2001) 

to compare SIT results in different oxygen concentrations. 
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4.2.1 Comparison due to changes in oxygen percentages 

Research by Court (2001) compared the SIT of polymers with different ratios of oxygen 

to nitrogen at 13.2 MPa.  The results are shown in Table 4-7.   

Table 4-7 Comparison of SITs at different oxygen and nitrogen levels (Court 2001). 

Material  SIT, K, 

100% O2 

SIT, K, 

60% O2 

Calculated SIT, K, 

40% O2 

Bromo-butyl rubber 464 472 474 

Nitrile rubber 542 558 555 

Viton A 591 601 607 

Makrolon 593 602 609 

 

From the results in 100% oxygen, the SITs for 60%, and 40% oxygen were calculated, 

and compared with the measured values.  This comparison is shown in Table 4-8.  Apart 

from one result for Nitrile rubber in 60% oxygen, all of the calculated SITs are within 

3K of the experimentally measured SITs, and most are virtually identical.  These results 

are consistent with the lnP ∝ 1/Tig relationship in equation 4.14, demonstrating this can 

be applied to the data from the bomb tests and other oxygen auto-ignition test results. 

Table 4-8 Comparison of calculated and measured SITs at different oxygen 

concentrations 

Material Oxygen 

% 

SIT Calculated SIT 

K °C K °C 

Bromo-butyl 

rubber 

   

100% 464 191  

60% 472 199 469 196 

40% 474 201 474 201 

Nitrile rubber 

  

  

100% 542 269  

60% 558 285 549 276 

40% 555 282 555 282 

Viton A 

  

  

100% 591 318  

60% 601 328 600 327 

40% 607 334 607 334 

Makrolon 

  

  

100% 593 320  

60% 602 329 602 329 

40% 609 336 609 336 
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4.3 Variation of polymer SIT with oxygen flow rate 

All of the tests mentioned previously have been done in a static environment.  Although 

there will be some movement in the system due to convection, they do not test the effect 

of a flowing oxygen stream on the SIT.  An increase in oxygen flow will affect the 

reaction kinetics by constantly providing fresh oxygen for the reaction.  However it will 

also affect the reaction due to the removal of volatiles, and heat, by the passing gas 

stream.  Balendran (1999), and Wolf et al (1993) reported far higher SITs for polymers 

in oxygen at 0.12 MPa, flowing at 100 cm
3
/min, than would have been expected in static 

oxygen at the same pressure.  However the work in this area is very limited.  Given that 

the static temperature appears to be lower the static SIT still operates as a good safety 

margin. 

4.4 Effect of size (scale), and shape on polymer ignition 

Swindells et al (1988) tested the effect of mass and sample size on auto- ignition.  

Fluorel was found to be affected to a small extent (with a variation of up to 20°C).  No 

reliable pattern was identified for the other materials tested.  Wharton et al (1989) 

conducted similar tests with Polychloroprene where a 60mg sample was split into 

varying number of pieces.  Where pieces weighed between 5 and 20mg the SIT values 

did show some relationship but varies little (within 11 K of each other).  Where pieces 

were greater than 20 mg there was significant drop in the measured ignition temperature.  

4.5 Analysis of TD/GC results 

A number of polymers were analysed using thermal desorption/ gas chromatography.  

The temperature heating limitation of the TD apparatus was 250°C, thus polymers with 

relatively low SITs were analysed. The results were examined to see if the SIT of the 

decomposition products could be directly linked to the SIT of the polymer.  The 

polymers degraded to release a number of chemicals, most constituting below 5% of the 

products.  Table 4-9 below shows the materials with 1 dominant decomposition product 

detected by the GC analysis, and compares the ignition temperatures of these materials, 

with the SIT of the polymer.  Even for these 3 materials the low temperature and 

complex mechanisms involved mean that only 2 of the materials have substantial 

identified decomposition products with an SIT in air at atmospheric pressure in the 

region of the polymer SIT under similar conditions.   
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Table 4-9 Current literature decomposition results 

Polymer SIT 

K 

Main thermal 

decomposition product 

at 523 K (250°C) 

% of 

decomposition 

products 

Ignition 

temperature 

K 

Disparity 

Butyl 

rubber 

550 2 Methyl propane 54% 733
a
 183 

PP 510 Dimethyl Heptene 35% 503
b
 -7 

SBR 510 Methylcyclopentane 29% 531
c
 21 

a
 Air Liquide, 

b
 propylene trimer : 90 – 99%, 

c
 NFPA 

Also tested were Polychloroprene and Polyvinylchloride. The main chemicals emitted 

from these materials were 1,2dichloropropane, and trichlorobenzene respectively.  These 

are well known ignition inhibitors.  The results for polychloroprene and PVC were thus, 

not close (both over 100 K above) the measured SIT.    

One of the most important factors in material flammability is the degradation 

temperature.  For example, PTFE is known to decompose to release primarily C2F4, 

which has an auto ignition temperature of 513 K (240°C) in air.  However it doesn’t 

begin to degrade as a material until 623 K (350°C).  Added to this the lower 

flammability limit of the gas must then be reached, raising the polymer SIT again. 

Polychloroprene and PVC molecules release chlorine when heated.  Halogens such as 

chlorine and bromine are often added to other polymers as a flame-retardant and their 

release may be affecting the decomposition temperature, and thus, the SIT of the 

polymer.  Other additives are likely to be affecting these temperatures too.  As 

mentioned previously polymers are rarely comprised of just the material monomer.  

Although they generally have a main chemical base (of linked monomers) they will also 

have a variety of additives included in the mix to change the material’s characteristics.  

Stabilisers, plasticizers, cross-linkers, surfactants and other property modifiers might all 

be added to a material composition. Thus there is usually a range of thermal degradation 

products, beyond those of just the base molecule, which can result in a completely new 

reaction mechanism.  The new degradation products may raise the degradation 

temperature of the main polymer molecule (particularly halogens), and in turn the SIT of 

the polymer.  Alternatively they may catalyse the oxidation of other degradation 

products, lowering the SIT of the polymer.  Thus, prediction of the polymer SIT 

becomes far more complicated than understanding the release of degradation products 

from one polymer molecule. 
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4.6 Metals SIT relationship 

The main challenge for this section of the work is to construct a relatively simple model 

(e.g. able to be used quickly in real life investigation situations), which is also capable of 

calculating metal SITs to a reasonable level of accuracy.  Calculation of the SIT of 

metals has been attempted in the past with mixed results. Reynolds (1959) proposed a 

relationship: 

𝑒−1/𝑇𝑖𝑔 = (
𝑇𝑖𝑔

5

𝑋
) + 𝑌𝑇𝑖𝑔

2 
Eqn. 4.15 

Where 

Tig = SIT 

𝑋 =
𝐴∆𝐻𝑐

8𝜎𝜀𝛿𝜌𝑜𝑥𝑖𝑑𝑒𝛾𝑚𝑜
(

𝑅

𝐸
)

4

 

𝑌 =
2ℎ𝛿𝜌𝑜𝑥𝑖𝑑𝑒𝛾𝑚𝑜

𝐴∆𝐻𝑐
 (

𝐸

𝑅
) 

A = Arrhenius pre-exponential constant 

ΔHc = Heat of combustion 

σ = Stefan Boltzmann constant 

ε = Emissivity  

δ = Thickness of Oxide film 

ρoxide = Density of Metal oxide 

γmo = Ratio metal: oxide (by mass) 

R = Universal Gas constant 

E = Oxidation activation energy 

h = Heat transfer coefficient 

Metal oxidation is distinctly different from that of other materials due to the oxidation 

mechanism being highly dependent on the oxide layer formed at the metal’s surface.  It 

is also dependent upon the heat transfer coefficient.  Although the Reynolds equation is 

recognised as being capable of calculating the SIT of the metals which burn 

homogenously with accuracy, it is far less accurate when trying to apply it to the metals 

that oxidise heterogeneously, through a molten oxide layer.   The most reliable method 

of determining whether a material will burn heterogeneously or homogenously is using 

Glassman’s burn ratio (see section 2.2.3). This incorporates not only the heat of 

combustion, but also the energy required to raise the temperature of the metal to its auto-
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ignition point.  Such calculations would only be possible for pure metals due to the 

availability of data. 

In a series of studies Bolobov et al (1990, 1998, and 1999) found the SITs for a number 

of metals and alloys. They state that generally, if there is no damage to the metal 

surface, the SITs practically coincide with the temperature at which the material begins 

to melt, and that this is independent of pressure.  The findings of Abbud-Madrid et al 

(1993) matched these, but added a special case.  They state that the SIT of aluminium is 

far higher than the melting point of aluminium and is instead around the temperature at 

which aluminium oxide melts.  Bolobov (1999) found that ignition temperature of 

metals is independent of oxygen pressure, and shows that past work suggesting that it is 

dependent on oxygen pressure is down to systematic errors in measuring surface 

temperature.   
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Chapter 5                                                                                                                     

High-pressure enriched oxygen ignition mechanisms and associated models  

Incidents in high pressure oxygen enriched environments can be extremely difficult to 

understand.  The large array of components, materials and varying atmospheric 

properties, not to mention the high degree of damage that results from combustion in gas 

with a high proportion of oxygen, all contribute to the complexity.   

The illustrative incidents in section 2.1 demonstrated the great variation in the 

information collected in investigations.  Added to this, section 2.7 shows that there is no 

well-defined scientific process to assess or confirm the kindling chain followed by a fire 

within an oxygen system.  The collection of oxygen system and component information 

is essential to be able to fully understand an oxygen incident. 

Although a small catastrophic failure event, or relatively minor oxygen incident may not 

seem significant enough for a full scientific investigation at the time it occurs, the 

information on the system environment and makeup must still be collected. One reason 

for this is it is possible that subsequent to the initial investigation the event might need 

to be revisited in greater detail.  For example, if further similar incidents occur 

investigators might need to go back through past incident reports to identify if there is a 

recurring problem e.g. a particular component or material use, or if there have been 

recurring health and safety failings.  In this circumstance there might need to be 

extremely detailed analysis and therefore knowing information, such as material 

identification and thermal properties, would be absolutely necessary for thorough 

understanding.  This would be particularly important where the possibility of a crime 

having been committed, such as criminal damage or criminal negligence, is explored.  

This chapter will demonstrate why the collection and recording of this information is so 

important.  It will construct a ‘tool kit’ using knowledge of ignition modes, SITs and 

ignition/ heat transfer models to examine the past analysis of oxygen incidents,  and 

identify better ways to follow and understand a kindling chain.   

By looking at the position of each of the system components and the thermal properties 

of the materials they are made of, as well as investigator’s observations, it should be 

possible to determine a simple understanding of the kindling chain which can then be 

compared with the incident investigator’s original deductions.  The kindling chain event 

is an extraordinarily complex issue, and to completely accurately analyse it would take a 

considerable amount of computational power and time, not to mention a large body of 
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research work on the behaviour of materials in this specific environment.  However, this 

would not be suitable or feasible for every incident investigation particularly where time 

is a key issue.  Here there is a need for a simple methodology which, while less accurate, 

should provide an investigator with useful approximate path information to aid their 

investigation and to ensure the recording of detail that would enable more thorough 

investigations later.  Based upon this research into current incident investigations, the 

modes of ignition (see section 1.2), and the materials’ ignition information and test data, 

a relatively simplistic procedure has been developed to follow, and perhaps identify, the 

most probable kindling chain reactions in an oxygen system incident.   

For any system designer, and system user, the main aim related to fire safety is to 

prevent that ignition.  For oxygen incident investigators, as with all fire investigation, 

identification of the site of ignition and identifying the material first ignited can lead to 

the cause of ignition, and help to prevent similar incidents occurring in future.  The 

major modes of ignition have been discussed in section 1.2.  These are:   

- Pressure shock and rapid adiabatic compression  

- Impact by contaminant particles 

- Mechanical impact  

- Friction in valves 

- Cavity resonance 

- Electric arcing  

- Kindling chain 

Using the information discussed in section 1.2, and the information on standard 

flammability test methods discussed in section 2.5 it should be possible to define criteria 

to recognise ignition events (a key part in understanding initial, and subsequent kindling 

chain ignitions) which should aid the modelling and prediction of oxygen incidents and 

scenarios.  The most common causes of ignition of materials in oxygen systems are 

identified by Gallus and Stoltzfus (2006) as adiabatic compression and shockwave, 

particle impact, and onward kindling chain ignition.  This work will therefore 

concentrate on these. 

At the BOC group Ltd (Irani 2004) a simple method for determining material 

flammability involved using equation 2.6 (see section 2.3.2): 

pH mc T    Eqn. 2.6 
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Where ΔH is the total energy release, m is the material mass, cp is the specific heat at 

constant pressure and ΔT is the change in system temperature.  In very simplistic terms 

this relationship can also be applied to materials to calculate the energy required to raise 

a component part to its ignition temperature.  However, while this simplistic steady state 

approach might be appropriate for smaller metal components (with relatively high 

thermal conductivity), for many materials in oxygen systems, such as those made of 

polymeric materials this is not accurate enough. The extremely low thermal conductivity 

of these components means that it is very unlikely that an entire component will 

approximate to a single temperature.   

Under most ignition conditions (excluding a very gradual temperature rise of the whole 

system) these materials will have a significant temperature gradient.  It is far more likely 

therefore that at a critical point (surface temperature, critical depth, ignition time, heat 

flux) part of that material will be ignited, causing the rapid onset of a combustion 

reaction in the whole component (assuming exposure to the high pressure oxygen).  To 

fully understand the ignition, and subsequent ignitions of materials, it is therefore 

necessary to understand at what point, in time and temperature, these critical values are 

reached.  It may be possible to develop a simple system incorporating the more critical 

factors, while still enabling a relatively simplistic approach.  This would be useful, not 

only as a workable tool, but also because much of the data that might be required for a 

far more sophisticated method is not available for high pressure oxygen atmospheres.   

5.1 Ignition mechanisms in high-pressure enriched oxygen environments 

A high pressure enriched oxygen environment is defined by the EIGA safety 

information document (2008) as pressures of over 3 MPa, with a concentration of more 

than 23%.  These high pressures are understood to affect a number of the measurable 

phenomena associated with ignition (McAllister et al 2010, Swindells et al 1988).   

Under ‘normal’ circumstances, i.e. atmospheric pressure in air, the ignition mechanism 

of a solid polymer, while it may be complex, is relatively well understood.  As described 

in section 2.2.1, heating of a hydrocarbon solid causes the material to decompose (and 

possibly melt) causing the release of volatiles and gases which at a key concentration 

will mix sufficiently with oxygen to provide the right environment for ignition to occur.  

With sufficient energy added to the mix this will result in a self-perpetuating oxidation 

reaction.  This form of combustion is called homogeneous, or gas-phase, combustion.   

While extensive work has examined the combustion of simple hydrocarbons to better 
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understand the behaviour and kinetics of the reactions in this unique environment (such 

as that by Slavinskaya 2007 [air up to 6 MPa], and Healy et al 2008 [methane/ propane/ 

ethane in air up to 50 MPa]) much of the research conducted on polymers in high 

pressure enriched-oxygen has been focused on identifying materials (Swindells et al 

1988, Bryan et al 1993) that are safe to use and hazards from particular ignition 

mechanisms (Dees et al 1995, Hirsch et al 2003) in this challenging environment.  It has 

not focused on the fundamentals.  

Some attempts to understand the gas phase burning mechanisms of polymers and apply 

it mathematically to the ignition in high pressure enriched oxygen have been made by  

McAlevy et al (1960) and Hermance et al (1966) in shock tube conditions, however at 

higher pressures (above 4 MPa) the relationship starts to lose accuracy, significantly 

over-estimating time to ignition. The models are also relatively complex (Kashiwagi et 

al 1973).  At higher pressures work by Shelley et al (1993) demonstrates the propensity 

of some engineering polymers to burn at the surface, rather than burning with a 

diffusion flame.  

Research on the ignition of solid propellants for use in aeronautical and space 

applications has led to alternative ignition mechanisms being proposed (Price et al 

1966).   The propellants used in this work consist of a mixture of solid polymer (e.g. 

Polybutadiene) and a solid oxidiser embedded at their surface (e.g. Ammonium 

Perchlorate).    This mixture is extremely vulnerable to surface oxidation (Price et al 

1966), and upon addition of a strongly oxidising gas will automatically ignite, with no 

added external energy source required for a runaway chemical reaction to occur.  This 

led scientists to examine reaction mechanisms where ignition occurs without the need 

for thermal decomposition and gasification, with the oxidation reaction starting directly 

at the solid surface.   

The first attempt to understand this process was made by Hicks (1954) who proposed a 

purely solid state ignition mechanism however this was soon rejected as it did not take 

into account the variation of time to ignition with atmospheric oxygen concentration.   

Work by a number of researchers has led to another alternative to the homogenous 

ignition mechanism theory.  That is the heterogeneous ignition mechanism.  This was 

originally described by Anderson et al (1963) and applied to the hypergolic situations 

described, where ignition of materials occurs upon the addition of an oxidising gas. 

Rather than ignition occurring in a thin gas layer above the surface, the proposed 
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mechanism involves a reaction at the solid/ gas interface.  On exposure to an oxidising 

gas, as Price et al (1966) describes, the solid oxidiser starts to degrade.  This causes 

oxidation directly at the surface, which in turn causes the surface temperature, and thus 

the oxidation reaction rate, to rise, leading to runaway reaction and ignition.   

This hypergolic ignition idea has been developed by Williams (1966) and Waldman and 

Summerfield (1969) and adapted to the exposure of polymer surfaces to high pressure 

oxygen environments, under shock tube conditions, with no added external heat flux.   

The Williams (1966) model assumes diffusion of high concentration, high pressure 

oxygen (or a gaseous oxidiser) at the solid/ condensed phase surface, causing oxidation 

to occur at that interface, rather than in a gas layer above the surface.  A simple 

representation of the mechanism is shown in Figure 5.1.  The rise in the oxidation 

reaction rate causes an exponential rise in surface temperature and ignition is judged to 

occur at a critical point where the interface temperature reaches the ignition temperature.  

Using computer modelling Williams identifies an empirical formula to represent ‘most’ 

results, without the need for the ignition temperature (see equation 5.4), and finds that 

where E/RTi is greater than 30, there is less than a 20% error compared with more fully 

modelled results.   The advantage of William’s approach for oxygen environment 

analysis is that it incorporates a function dependent on the oxygen concentration.  

Williams (1966) treats the propellant as a one dimensional time dependant system, 

modelled as a semi-infinite slab.  Chemical heating is regarded as starting 

instantaneously and heat is judged to be produced only at the solid surface, being 

transferred outwards by conduction and natural convection.  The material properties are 

assumed to be temperature independent, and isobaric conditions are assumed.  As 

Harrland and Johnston (2012) note, no phase change is accounted for.   

Waldman and Summerfield (1969) develop the Williams model, rightly pointing out that 

a hot gas will cause a change in the solid/gas interface temperature.  Thus they use the 

pressure-dependent gas temperature value, and calculate a higher surface temperature 

using classical heat transfer.  This makes the model applicable to environments 

undergoing adiabatic compression.   
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Figure 5-1. Heterogeneous combustion reaction mechanism proposed by Waldman 

& Summerfield (1969) to apply to shocktube condiitons in high pressure oxygen. 

  

The Waldman and Summerfield model is inaccurate at pressures below 2 — 3 MPa (see 

section 5.2) however it does however find reasonable agreement for a number of 

polymers above this pressure (Kashiwagi et al 1973).  Shelley et al (1993) examined the 

burning behaviour of 4 polymers from high flammability. HDPE, Polyimide (PI), 

graphite-filled PI and PTFE were attached to the base of aluminium rods and ignited 

using a fuse in between 3MPa – 69MPa 100% oxygen.  Shelley et al found that the 

HDPE burned entirely with a diffusion flame, while the other less flammable polymers 

had some (or in the case of PTFE complete)  surface burning characteristics.  This 

supports the idea that in high pressure enriched oxygen environments some engineering 

polymers may burn partially, or completely, heterogeneously.  This makes the 

significance of the surface temperature even greater.   

5.2 Time to ignition models for piloted and auto-ignition  

A number of models have been developed for the analysis and calculation of time to 

ignition in air under a range of circumstances for non-metals.   

Many models have concentrated on piloted ignition (generally with an electrical spark 

igniter).  For example Mikkola and Wichman (1989) propose a relationship between 

time to ignition in seconds, tig, and the heat flux in kW/m
2
, q: 

√
1

𝑡𝑖𝑔
∝ 𝑞 

Eqn. 5.1 
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and North (1999), referred to in Babrauskas (2003), suggests a similar relationship based 

around 

𝑡𝑖𝑔 ∝
𝜌

𝑞2
 

Eqn. 5.2 

will provide an approximation of the time to piloted ignition.  However Babrauskas 

(2003) states that although typical errors are approximately 20%, errors can be as much 

as 200% with this method.  Janssens et al (2003) describe a number of the relationships 

in relation to time delay and thermal depth for materials ignited in a piloted ignition 

process, and Mowrer (2003) summarises and compares a number of commonly used 

analytical relationships (including those by Quintiere 1990, Delichtasios et al 1991, and 

Tewarson et al 2000) to numerical results for piloted ignition, finding the relationship 

proposed by Tewarson et al to be the most accurate.  Mowrer (2003) does identify some 

overestimation of times, but states this become less significant with increasing heat flux, 

and is still the most pessimistic model, which in terms of safety will be the most 

suitable.    

Shi and Chew (2013) unusually conducted experiments to measure time to ignition 

under autoignition circumstances testing 6 polymers; 3 thermosets, and 3 thermoplastics.  

Their autoignition results fit the relationship in equation 5.48 best.  This is especially 

true for samples of 20mm thickness or less, where an approximation can be made: 

𝑡𝑖𝑔 ≈ 151
𝜌

𝑞2
 

Eqn. 5.3 

Although this carries an average error of 32%, this becomes less significant with 

increasing heat flux (as ignition times decrease).  For a heat flux of 75 kW/m
2
 the 

average error is approximately 6 seconds (28%), compared with 22 seconds (36%) for 

test data for 50 kW/ m
2
.   

Although these models allow some approximation of times they do all carry inherent 

error, but there is a far more problematic issue when adapting them for oxygen systems.  

That is the very limited amount of work in enriched or high pressure oxygen 

environments, and the identification of the effect of oxygen pressure and concentration 

on time to ignition of these materials.  McAllister et al (2010) looked at the effect of 

reducing the air pressure below ambient, and compares air with Oxygen/ Nitrogen 

mixtures (21%, and 30% oxygen) up to 120 kPa (0.036 MPa partial pressure).  

Kashiwagi and Ohlemiller (1982) explored the effect of oxygen concentration (0 – 40%) 
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at 1 atm (a maximum oxygen partial pressure of 0.041MPa), and identified a distinct 

increase in mass flux at higher concentrations of oxygen, and for Polyethylene (the only 

samples to ignite) a reduction in ignition time with increasing oxygen concentration.  

However without testing in 100% oxygen, and at much higher pressures with 

comparable heat flux exposures, it is impossible to use, or apply, this accurately.   

However, the time to ignition of polymers in high pressure enriched oxygen has been 

examined under adiabatic compression/ shock conditions.  A number of researchers 

have explored the possibility of the use of solid polymers as propellants for aeronautical 

applications.  Shock tube experiments were conducted exploring the ignition of those 

materials in high pressure enriched and heated oxygen environments, both theoretically 

and experimentally. A range of relationships based around gas phase (McAlevy et al 

1960, Hermance et al 1966, Price et al 1966) and heterogeneous (Anderson et al 1963, 

Williams 1966, Waldman and Summerfield 1969, Price et al 1966) ignition modes have 

been explored mathematically.   

Kashiwagi et al (1973) conducted a serious of shock tube experiments to identify 

ignition time delay involving polymers including polyurethane and polybutadiene, both 

alone and combined with an additional oxidising agent.  The materials were tested in 

high pressure oxygen with partial pressures ranging from around 10 to 47atm, with the 

partial pressure of oxygen being controlled by both varying the concentration and the 

overall pressure.  Kashiwagi et al (1973) found general agreement between their results 

for Butarez (Polybutadiene) and both the gas-phase and heterogeneous models although 

at higher pressures (above 25 atmospheres) results were closer to the heterogeneous 

example shown by Waldman and Summerfield (1969), and the addition of an additional 

solid oxidiser at the surface has little effect.    

The Williams (1966) model (described in more detail in section 5.1) proposes that where 

a forced external heat flux q is small the ignition delay, tig, can be calculated using the 

ambient temperature of the solid mass, and current temperature of the surrounding gas, 

T0 and Tg respectively, the thermal inertia (also called the thermal effusivity) of the 

oxidising gas and fuel, Ig, and IA, respectively, and the heat produced by any oxidation 

written: 

𝑡𝑖𝑔 =
𝜋

4
(𝑇0 − 𝑇𝑔)

2
[𝐼𝑔

1
2 + 𝐼𝐴

1
2]

2

(∆𝐻𝑐 𝐴𝐶𝐵
𝑛𝑒−

𝐸
𝑅𝑇 + 𝑞) 

Eqn. 5.4 

Where 
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CB = Oxygen concentration 

n = Reaction order 

Waldman & Summerfield (1969) apply this relationship to shock tube autoignition by 

adapting the temperature rise due to adiabatic compression/ shockwave heating, Tr, 

(shown equation 5.5) as the Temperature, T.  As under shock tube conditions the rise in 

gas pressure will cause the ‘interface temperature’ to jump rapidly, basing the shift on 

classical heat conduction theory.   

𝑡𝑖𝑔 =
𝜋

4
(𝑇0 − 𝑇𝑟)2 [𝐼𝑔

1
2 + 𝐼𝐴

1
2]

2

(∆𝐻𝑐 𝐴𝐶𝐵
𝑛𝑒−

𝐸
𝑅𝑇 + 𝑞) 

Eqn. 5.5 

Data from work by Kashiwagi et al (1973) have been taken here and compared with 

results from the heterogeneous model proposed by Waldman & Summerfield (1969) at 

1800K, for Polyethylene and Polyurethane.  The graphs in figure 5.2 and 5.3 show that 

the model is relatively accurate above 3 MPa for this temperature, and a range of oxygen 

concentration.   

Figure 5-2 Time to ignition data for Polyurethane from Kashiwagi et al (1973) 

compared to the Waldman & Summerfield (1969) model 
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Figure 5-3 Time to ignition data for Polyethylene from Kashiwagi et al (1973) 

compared to the Waldman & Summerfield (1969) model 

 

It should be noted that these tests were done with Nitrogen as the diluent gas.  The effect 

of changing diluent gases has been explored by Wurmel et al (2007) and Shen et al 

(2008) who show ignition delay for Iso-Octane are shorter in oxygen/ Argon mixes, than 

Oxygen/ Nitrogen mixtures, by 20 – 40%).  Kashiwagi et al (1973) also explored the 

difference between dry and wet surface propellants (i.e. those that melt on heating, and 

those that don’t) and finds that in high pressure enriched oxygen there is no discernible 

difference in behaviour between these 2 groups.   

It might therefore be reasonable to assume we can apply this model across a range of 

polymers and circumstances, however the model does not seem produce consistent 

results at other gas temperatures.  So while the model at 1800 K might be used as a good 

guide, it is far from a useful too.  Instead a better way to estimate the minimum time to 

ignition might be to use surface temperature and heat transfer rates. 

5.3 Simple heat transfer models for application to oxygen systems 

In a system, materials will always tend towards thermal equilibrium.  Depending on the 

media within that system the transfer of heat can occur by three modes; Conduction, 

convection and radiation.  While conduction occurs within a solid, or between a series of 

adjacent solid materials, convection occurs in fluids (including gases) and radiation to a 

surface.  When analysing heat transfer in any complex system with different states of 

matter, materials, and geometries, understanding the component interaction and heat 

transfer between components is extremely important.  However, the complexity can 

result in expensive, time consuming and unworkable methods for real-life application.   
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When discussing heat transfer, items can be divided into two categories; ‘thermally 

thick’ and ‘thermally thin’ (Tewarson et al 2000).  Thermally thin materials are regarded 

as being so thin that heat will be absorbed extremely quickly, meaning there is no 

significant gradient through the material.  This classification is generally determined 

using the Biot number, Bi, a dimensionless constant which is essentially a ratio between 

convective and conductive properties.  It is calculated by, 

𝐵𝑖 =
ℎ𝐿

𝑘
 

Eqn. 5.6 

 

where h is the heat transfer coefficient (W/m
2
K), L is the characteristic length (generally 

defined as volume divided by surface area), and k is the thermal conductivity of the 

body.  As a general rule items that have a Biot number above 0.1 are regarded as 

thermally thick (Janna 1986).  Given their thermal conductivity, metal components, 

particularly smaller items, can be regarded as thermally thin as the temperature gradient 

will not be significant. Therefore for these materials a simple ‘BOC-style’ steady state 

approximation (see section 2.3.2) might be made. For polymers Tewarson et al (2000) 

demonstrated the thermally thick nature of materials with a thickness of at least 4mm or 

more, and Delichtasios (2000) states that thermally thick behaviour is generally the case 

for materials with a thickness of 1mm or more.  Given their use and hence their 

thickness, it seems unlikely that many polymeric components will behave as thermally 

thin materials.  Therefore for polymers this work will concentrate on analysis of 

thermally thick materials.  This classification is particularly important when creating a 

simple model to approximate a system because it enables identification of the heat 

transfer mode(s) that has/have the most impact.  For thermally thick materials it is 

accepted (Drysdale 2011, Mowrer 2003) that the thermal inertia governs temperature 

rise in the material.   

The following derivation is adapted from Kreyszig (1983). 

If we assume for a homogenous material that heat transfer is controlled primarily by 

conduction, we can model a simple situation where surface resistance can be considered 

to be negligible.  The temperature, T, might then be calculated at a given depth, L, into a 

material of thickness, x, and at a time, t.  If we consider a semi-infinite (thermally thick) 

solid plate of thickness 2L: 
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Fluid flow 

Figure 5-4 Illustration of heated fluid flow across a solid plane   

  

𝜕2𝑇

𝜕𝑥2
=

1

𝛼

𝜕𝑇

𝜕𝑡
 

Eqn. 5.7 

With boundary conditions (B.C.):  

 B.C.1:  x = 0  T = T1,   B.C.2:  x = 2L  T = T1 

 Initial Conditions (I.C):  t = 0  T = Ti 

and where α is the solid material thermal diffusivity. 

In order to make the equation dimensionless we define the variables:  

Θ =
𝑇 − 𝑇1

𝑇𝑖 − 𝑇1
 

Eqn. 5.8 

𝜉 =
𝑥

𝐿
 

Eqn. 5.9 

𝜏 =
𝑡

𝑡𝑟
 

Eqn. 5.10 

Thus 

𝜕2Θ

𝜕𝜉2
=

𝐿2

𝛼𝑡𝑟

𝜕Θ

𝜕𝜏
 

Eqn. 5.11 

With boundary conditions (B.C.): 

 B.C.1:  ξ= 0  Θ = 0    B.C.2:  ξ = 2  Θ = 0 

 Initial Conditions (I.C):  τ = 0  Θ = 1 

Using the separation of variables (product method) from Kreyszig (1983) section 11.3, 

p507-509 we can assume  

Θ(𝜉, 𝜏) = 𝐹(𝜉)𝐺(𝜏) Eqn. 5.12 

 

x 
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Thus 

𝜕2Θ

𝜕𝜉2
= 𝐹′′(𝜉)𝐺(𝜏)  

Eqn. 5.13 

𝜕Θ

𝜕𝜏
= 𝐹(𝜉)𝐺′(𝜏) 

Eqn. 5.14 

Hence  

𝐹′′(𝜉)𝐺(𝜏) =
1

𝜇2
. 𝐹(𝜉)𝐺′(𝜏) 

Eqn. 5.15 

where the Fourier number is represented for convenience as c
2
: 

𝜇2 =
𝛼𝑡𝑟

𝐿2
 

Eqn. 5.16 

Equation 5.15 can be rearranged, and it can be assumed that both sides are equal to a 

separation constant –λ
2 

𝐹′′(𝜉)

𝐹(𝜉)
=

1

𝑐2
 
𝐺′(𝜏)

𝐺(𝜏)
=  −𝜆2 

Eqn. 5.17 

Thus 

𝐹′′(𝜉) + 𝐹(𝜉)𝜆2 = 0 Eqn. 5.18 

and 

𝐺′(𝜏) + 𝜇2𝜆2𝐺(𝜏)  =  0 Eqn. 5.19 

Using the general solution for separated variables (Kreyszig 1983 section 11.3, p509) 

we find; 

𝐹(𝜉) = 𝐴 cos 𝜆𝜉 + 𝐵 sin 𝜆𝜉 Eqn. 5.20 

And using the general solution to homogenous first order differential equation (Kreyszig 

1983, section 1.7, p28, equations 1-3): 

𝐺(𝜏) = 𝐷𝑒−𝜇2𝜆2𝜏 Eqn. 5.21 

To satisfy BC1 

𝐹(0) = 𝐴 cos 𝜆𝜉 + 𝐵 sin 𝜆𝜉 

∴ 𝐴 = 0 

and 

𝐹(𝜉) = 𝐵 sin 𝜆𝜉 

Eqn. 5.22 

Eqn. 5.23 

 

Eqn. 5.24 

To satisfy BC2 



91 

𝐹(2) = 𝐵 sin 2𝜆 = 0 

𝐵 ≠ 0 

otherwise solution is trivial. 

∴ sin 2𝜆 = 0 

2𝜆 = 0, 𝜋, 2𝜋, …. 

𝜆 =
𝑛𝜋

2
 

Eqn. 5.25 

Eqn. 5.26 

 

Eqn. 5.27 

Eqn. 5.28 

Eqn. 5.29 

Recombine separated variable solutions, substituting equations 5.21 and 5.24 into 5.12. 

Θ(𝜉, 𝜏) =  𝐵 sin
𝑛𝜋𝜉

2
 𝐷𝑒−𝜇2𝜆2𝜏 

Eqn. 5.30 

Combination of the constants B and D into an overall constant J results: 

Θ(𝜉, 𝜏) =  𝐽 sin
𝑛𝜋𝜉

2
 𝑒−𝜇2𝜆2𝜏 

Eqn. 5.31 

For linear homogenous Partial Differential Equations (Kreyszig 1983 p58, example 1): 

Θ(𝜉, 𝜏) =  𝑁1 Θ1 +  𝑁2Θ2 Eqn. 5.32 

So 

Θ(𝜉, 𝜏) = ∑ 𝐽𝑛 sin
𝑛𝜋𝜉

2
𝑒−𝜇2𝜆2𝜏

∞

𝑛=1

 Eqn. 5.33 

At τ=0, 𝑒−𝜇2𝜆2𝜏 = 1. Thus 

Θ(𝜉, 0) = ∑ 𝐽𝑛 sin
𝑛𝜋𝜉

2

∞

𝑛=1

 Eqn. 5.34 

This can be solved using a Fourier sine series half range expansion (Kreyszig 1983 

section 10.5, p479-480). Let Θ(𝜉, 0) = 𝑓(𝜉) 
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𝑓(𝜉) = ∑ 𝐽𝑛  sin
𝑛𝜋𝜉

𝐾

∞

𝑛=1

 Eqn. 5.35 

Where the coefficient is 

𝐽𝑛 =
2

𝐾
∫ 𝑓(𝜉) sin

𝑛𝜋𝜉

𝐾

𝐾

0

𝑑𝜉  Eqn. 5.36 

And where 

0 ≤ 𝜉 ≤ 2 

Where the upper boundary limit K is equal to 2.   

𝐽𝑛 = ∫ 𝑓(𝜉) sin
𝑛𝜋𝜉

2

2

0

𝑑𝜉 
Eqn. 5.37 

At τ = 0 (initial conditions) 

f(ξ) = Θ =
𝑇𝑖 − 𝑇1

𝑇𝑖 − 𝑇1
= 1 

Eqn. 5.38 

Thus 

𝐽𝑛 = ∫ sin
𝑛𝜋𝜉

2

2

0

𝑑𝜉 
Eqn. 5.39 

Let   

𝑢 =
𝑛𝜋𝜉

2
  

Eqn. 5.40 

Thus  

𝑑𝑢

𝑑𝜉
=

𝑛𝜋

2
  

Eqn. 5.41 

Where 𝜉 = 0, 𝑢 = 0 and 𝜉 = 2, 𝑢 =  𝑛𝜋  

𝐽𝑛 = ∫
2

𝑛𝜋
sin u

𝑛𝜋

0

𝑑𝑢 =
2

𝑛𝜋
[− cos 𝑢]0

𝑛𝜋

=  
2

𝑛𝜋
[(− cos 𝑛𝜋) − (−𝑐𝑜𝑠 0)]

=
2

𝑛𝜋
[(cos 0 − cos 𝑛𝜋)] 

Eqn. 5.42 

Where 𝑛 = 1,3,5…  

𝐽𝑛 =  
2

𝑛𝜋
[(1— 1)] =

4

𝑛𝜋
 

Eqn. 5.43 

Where 𝑛 = 2,4,6…  
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𝐽𝑛 =  
2

𝑛𝜋
[(1 − 1)] = 0 

Eqn. 5.44 

Substituting 5.43 into equation 5.34 gives,  

Θ(𝜉, 0) = ∑
4

𝑛𝜋
sin

𝑛𝜋𝜉

2

∞

𝑛=1

 

Eqn. 5.45 

𝑛 = 1,3,5…  

Inserting 5.45 into equation 5.33 

Θ(𝜉, 𝜏) = ∑
4

𝑛𝜋
sin

𝑛𝜋𝜉

2
𝑒−𝜇2𝜆2𝜏

∞

𝑛=1

 

Eqn. 5.46 

𝑛 = 1,3,5…  

From equations 5.16 and 5.29  

𝜇2𝜆2 = (
𝑛𝜋

2𝐿
)2𝛼𝑡𝑟 

Eqn. 5.47 

Thus  

Θ(𝜉, 𝜏) = ∑
4

𝑛𝜋
sin

𝑛𝜋𝜉

2
𝑒−(

𝑛𝜋
2𝐿

)2𝛼𝑡𝑟𝜏

∞

𝑛=1

 

Eqn. 5.48 

𝑛 = 1,3,5…  

Using equations 5.9 and 5.10,  

𝑇 − 𝑇1

𝑇𝑖 − 𝑇1
=

4

𝜋
∑

1

𝑛
𝑒−(

𝑛𝜋
2𝐿

)2𝛼𝑡

∞

𝑛=1

 sin
𝑛𝜋𝑥

2𝐿
 

Eqn. 5.49 

𝑛 = 1,3,5…  

Where x has a value of L (i.e. the mid plane of the plate)    

𝑇(𝐿, 𝑡) − 𝑇1

𝑇𝑖 − 𝑇1
=

4

𝜋
∑

1

𝑛
𝑒−(

𝑛𝜋
2𝐿

)2𝛼𝑡 sin
𝑛𝜋

2

∞

𝑛=1

 

Eqn. 5.50 

𝑛 = 1,3,5…  

The final version of this relationship, equation 5.50, is given in Janna (1986).  Although 

very approximate, with knowledge of the materials involved and their thermal 

properties, this relationship can be used to model the temperature change within a 
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material over time and distance.  The model can be used to look at a constant surface 

temperature, for example Figure 5-5 shows the temperature profile at a specified time 

through both a Nitrile rubber plate, and a PTFE plate, with a constant surface 

temperature of 1500 K.  The dotted lines represent the SIT temperature at 13.2 MPa.  It 

would be extremely useful to look at individual components in oxygen systems to 

understand the effect the heat transfer has on the ignition point, but also how the heat 

transfer to other surfaces will affect possible ignition of other materials.   

The temperature profiles in Figure 5-5 show the temperature at a depth of 5 mm through 

two polymeric plates.  While the temperature rise in Nitrile rubber is faster than in the 

PTFE the graph shows that a far more significant factor is the much lower SIT of Nitrile 

rubber.  This is so low that the temperature profile crosses the line for the ignition 

temperature at 44.5 s, while for the PTFE material the autoignition line is not reached 

across the 60 s period.  All of this analysis is thoroughly dependent on being able to 

identify the polymeric materials used, and also knowing the thermal properties of those 

materials (as these can vary from batch to batch).  Ideally samples of any remaining 

debris or unused samples of the same type from the scene should be collected so that 

this can be ascertained as accurately as possible if required.   

Figure 5-5 Graphs showing the use of the negligible surface resistance equation to 

predict the temperature rise at 5mm depth of polymeric oxygen components with a 

surface temperature of 1500 K. 

 

The other advantage of using the simple heat transfer method over more complex 

models is that similar relationships for other geometries (e.g. cylinders) have been 

developed and are shown in Heisler charts, such as those shown by Janna (1986) 
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enabling investigators without access to complex mathematical programs to work out 

approximate temperature changes in objects.   

The model can also be used for a system where there is a rising surface temperature due 

to an applied heat flux.  This could be done either by modelling the surface temperature 

rise as a simple linear function of time, but can be done more accurately using the 

external heat flux in the relationship reported by Beaulieu (2005) using Lawson and 

Simms (1952):  

𝑇𝑠 = 𝑇0 +
2𝑞

√𝜋
√

𝑡

𝑘𝜌𝑐𝑝
 

Eqn. 5.51 

where 

T0 = Initial temperature 

q = Heat flux 

t = Time 

k = Solid material thermal conductivity 

ρ = Solid material density 

cp = Solid material specific heat 

Then Ts, found in equation 5.51, can be inserted into T1 of equation 5.50.  The Lawson 

and Simms model is recommended for use for a number of reasons (Ashe & Rew 2003) 

the primary being that while being relatively accurate, it is conservative with respect to 

the data for both long and short term heat flux exposures.  This is very similar to a 

relationship derived by Mikkola & Wichman (1989), except a net heat flux figure is 

used for q, taking into account heat loss, as opposed to the applied heat flux used by 

Lawson and Simms.  Section 5.4.3 shows an example of how this might be used to 

predict onward kindling chain ignition. 

The convective heat flux is calculated using the convective heat transfer coefficient, h (a 

constant relating to the gas medium and nature of the convection, be it free or forced), 

the surface area, SA, and the difference in gas and solid temperatures, Tg and Ts 

respectively: 

𝑞 = ℎ𝑆𝐴(𝑇𝑔 − 𝑇𝑠) Eqn. 5.52 

For example, in an environment where the gas temperature reached 12000 K (based on 

the estimations in Newton and Steinberg 2009), if we assume that the heat transfer 
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coefficient is 250 W/m
2
 K, the highest possible for a gas undergoing free convection 

(Zhu et al 1988, Lin 2007) then the surface of a PTFE component sitting at 298 K might 

be expected to reach the SIT at 13.2 MPa (approximately 760K) after only 14ms (see 

Figure 5-6 below), while a Nitrile rubber surface is calculated to reach the SIT 

(approximately 540 K at 13.2 MPa) at 3ms.  This difference would vastly affect the 

likelihood of ignition, especially under adiabatic/ shockwave ignition conditions where, 

as work by Newton (2011) has demonstrated, high temperatures are expected to remain 

for only a few milliseconds. 

Figure 5-6 Graphs showing the use of the negligible surface resistance equation to 

predict the surface temperature rise of polymeric oxygen components in a gas 

temperature of 12000 K. 

 
 

If greater accuracy is preferential, where the Biot number has been calculated exactly 

and lies between 0.1 and 40 specific Heisler charts exist for a range of Biot numbers, 

and geometries.  However it is reported (Thirumaleshwar 2006) that the use of these is 

most useful in situations where the Fourier number is greater than 0.2, where error is 

reported to be 2% at most.   

This method of approximation is pessimistic as it assumes that the conductive forces, 

not convection or radiation are the primary influence on the heat transfer through a 

material and may therefore underestimate the possible time to ignition.   

5.4 Analysis of the major ignition modes in oxygen system incidents 

According to Gallus and Stoltzfus (2006) the most common modes of initial ignition are 

judged to be adiabatic compression/ shockwave and particle impact, which appears to 

agree with the causes identified in Bradley and Baxter (2002).  This section will show 
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how, where information of system dimensions and chemicals has been collected, the 

models in chapter 4 and section 5.1 can be applied to illustrate these ignition sources in 

an investigation setting.   

5.4.1 Adiabatic compression and shockwave ignitions 

Where a fast opening valve is opened and allows a high velocity stream of oxygen to 

travel through an oxygen a shockwave may be formed. The valve opening can result in a 

series of compression waves (Newton and Steinberg 2009).  As each rise in pressure 

raises the temperature of the gas stream the speed of sound for the following wave 

increases.  As these compression waves coalesce a shockwave forms.  A shockwave is a 

very small region of gas where the density and temperature increase dramatically.  

Where the shockwave is reflected, such as in a system with a dead-ended tube, increased 

compression of the gas causes a further rapid increase in the temperature.  The resulting 

high gas temperatures may be capable of heating surrounding engineering materials.   

Newton and Steinberg (2009) calculate the possible temperature rises due to 

shockwaves and adiabatic (or to be correct isentropic) compression (shown in Figure 

5-7).  Some effort has also been made by Newton and Steinberg to calculate these more 

accurately for specific environmental starting conditions, but are not applicable across 

multiple systems.  

Figure 5-7 A graph showing the calculated system temperatures due to shockwave 

and adiabatic (isentropic) compression from Newton and Steinberg (2009) 
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This could be used in 2 ways.  Firstly, it can be used to identify if the environment has 

reached a temperature above the SIT of materials used as part of that system.  We can 

use SITs of non-metals as a bench mark of ignition likelihood.  In fact autoignition data 

represents a worst case scenario in terms of the temperature exposure of the material as 

SITs are measured at a comparably large volume, with a relatively low mass and high 

surface area to mass ratio. Also the ramp heating occurs relatively slowly.  For this 

reason the SIT can be taken as a lower safety bound for this section of the analysis.  In 

industry the SIT has been used as a lower safety boundary (BS 4N 100 – 6 1999) and a 

measure of whether ignition will occur (Stoltzfus et al 2012). This therefore this seems 

an ideal application for the calculated SITs obtained using equation 4.14, enabling fast 

calculation of a lower safety limit for a specific set of environmental conditions. 

Secondly, it can be used to calculate the effective heat flux, which can be inserted into 

the negligible surface resistance heat transfer model described in section 5.3.  It seems 

reasonable to assume a constant surface temperature i.e. negligible surface resistance 

may be applied.  This is generally defined by a Biot number of greater than 40 (Janna 

1986) however shockwave heating may well negate this requirement due to the extreme 

turbulent disruption of the boundary layer.  As the gas environment can be extremely 

hot this may be an example of forced ignition meaning higher possible heat transfer 

coefficients (Glassman and Yetter 2008b), but with no pilot flame present (no chain 

branching and lack of radicals) 

Another method that could be explored, particularly for the use of fault tree analysis (see 

section 6.1.2), is a probabilistic method.  However the difficulty of this is that to predict 

or describe this fully a very large number of tests need to be carried out which would be 

expensive and time consuming.  Hirsch et al (2003) compiled pneumatic impact test data 

for a range of engineering polymers, calculating the percentage of ignitions at different 

test pressures.  Figure 5-8 shows the 5 most complete of their datasets.  Although the 

number of different batches tested at each pressure does vary (from 4 to 51) there are no 

fewer than 54 separate tests conducted for each result, with the average number of 

samples tested at each pressure being 213.  Due to the variation it is not possible from 

this data to discern any useful pattern in relation to probabilistic prediction of ignition.  
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Figure 5-8 A graph showing data from Hirsch et al (2003) depicting the percentage 

of polymeric test samples ignited by pneumatic impact at different pressures in 

100% oxygen. 

 

5.4.2 Particle impact ignitions 

Although systems are generally designed to reduce any particulate contamination, 

particle impact still represents a significant cause of oxygen incidents.  Metal filters, and 

non-return valves (particularly from cylinders), are used to reduce the chance of particle 

impingement.  Nevertheless contamination from external areas, and particles created 

internally from part wear or shearing can still occur.  The danger is greater in faster gas 

streams.  According to Forsyth (2012) 45 m/s is required for particles to ignite, however 

Stoltzfus and Rosales (2010) state that a particle impact situation is regarded to be 

possible at gas speeds of over 30m/s where an impact point ranges from 45° to 

perpendicular to the gas stream path.  Additionally Williams et al (1988) demonstrate 

that particles themselves can ignite at far lower velocities, and these might then move 

through a system to ignite other materials in a promoted ignition combustion event. 

There are a number of factors that contribute to this mode as a source of ignition.  Firstly 

as a particle impacts on a site kinetic energy can be transferred to heat via vibration.  In 

a simplistic way where a small particle is impacting on a far larger body the maximum 

possible energy transferred can be calculated using equation 1.2, 
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E = 21

2
mv  Eqn. 1.2 

However it is also possible, particularly for organic materials, the particle itself will 

ignite.  Thus the calculation of heat release by the particle must be considered, 

calculated by:  

cH m H    Eqn. 2.5 

Added to this friction from the side walls on the particle as it is propelled through the 

system may cause the particle to be heated when it impacts, and the fast gas stream may 

cause adiabatic or shockwave heating of the surfaces, again increasing the energy at the 

point of impact and thus the likelihood of ignition.  Crofton and Petersen (2010) also 

identified substantial fragmentation of particles on impact.  This reduction of the 

materials to finer powder might make it more likely to ignite due to the increase in 

surface area to volume ratio.   

Benz et al (1986) compares the possible kinetic energy of particle to the total heat of 

combustion for aluminium and 304 stainless steel particles and shows that the maximum 

possible kinetic energy is dramatically lower than the maximum possible heat of 

combustion (for example for a 1600 µm aluminium particle the possible kinetic energy 

on impact was calculated to be 0.49 J [at approximately 409 m/s], while the heat of 

combustion is calculated to be 176 J).  Benz et al (1986) do go on to state that there was 

no evidence the stainless steel particles had actually ignited.  Thus knowing the possible 

particle material is key to fully understanding the mode of ignition. 

The approximate maximum downstream velocity, vd, that can be produced by a pressure 

differential between an upstream pressure, Pu, and a downstream pressure, Pd, with a 

downstream temperature of Td (Kelvin) can be estimated using the equation ASTM 

G88-05 (2005) (see equation 5.53 below).  However, this is only accurate below Mach 

0.7 (Perry and Chilton 1973) due to shockwave interference (under choke flow 

conditions) and is therefore primarily used to demonstrate that at relatively small 

pressure differentials the minimum gas velocity required for ignition by particle impact, 

30-45m/s (Stoltzfus and Rosales 2010, Forsyth 2012), can be attained. 

𝑣𝑑 = √[2𝑔𝑐𝛾𝑐𝑝𝑅𝑇𝑑 ((
𝑃𝑢

𝑃𝑑
)

1
𝛾𝑐𝑝

− 1)] 

Eqn. 5.53 
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where  

gc = Constant 1 kg m/N s
2
 

R = Specific gas constant 260 N m kg
-1

 K
-1

 

γcp is a constant related to the ratio of specific heats and has a value of 3.5.   

Polymers are generally more flammable than the majority of metals and alloys and tend 

to have a far lower density.  Dees et al (1995) conducted tests using a number of 

engineering polymers (Teflon, Kel-F, Vespel SP-21, and Viton A) as projectile particles 

(0.25-2 mm), fired towards a stainless steel target.  A system pressure of approximately 

27.6 MPa was used, but the target temperatures were only increased to 93°C (366 K).  

Dees et al (1995) show that under these conditions none of the particles cause the 

ignition of the stainless steel surface, however given the relatively low flammability of 

stainless steel at this temperature (Stoltzfus et al 1988) and the relatively low density 

and heat of combustion of polymers this is not surprising.  Unfortunately without data at 

higher target temperatures it impossible to quantify the risk of ignition from polymeric 

contamination.   

Forsyth et al (2000) explored polymers as the target for metal particles.  Teflon, PEEK, 

Kel-F and Vespel SP-1 are exposed to pressures up to 27.5 MPa, with 2mm Aluminium 

2017 particles being projected at them, the results of which can be seen in table 5.1.    

Forsyth et al (2000) also refer to work by Williams and Linley (1985) using particles 

made from AR-7, which Calle et al (2002) describe as an aluminium filled nitrile rubber 

matrix.   The target temperatures at ignition for the polymer/ metal blend are clearly 

lower than for the aluminium particle (although it is unclear what mass particles were 

used in this study).  The information in table 5.1 demonstrates how much changing a 

particle material can change the ease with which a target can be ignited. 

Table 5-1 A table showing the temperature at which polymer target ignited when 

impacted with particles from Forsyth et al (2000) 

Target material 2mm aluminium 2017 

particle, K 

AR-7 Aluminium filled 

Nitrile rubber, K 

Teflon 478 384 

PEEK 268 N/A 

Kel-F  423 325 

Vespel SP-1 393 N/A 
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As the size and chemical make-up of the particle, and the material at the impact site will 

influence these to a great degree the identification of these materials is extremely useful, 

or perhaps even crucial for full evaluation of a catastrophic failure situation.   

Obviously identification of the particle material may be difficult however a full system 

examination may identify areas of damage/ shearing the particle could have originated 

from, or identify other particles that may give an indication of the particle involved in 

the impact of the material.   

While it is possible to calculate, or at least approximate the energy transfer, or heat 

release involved in these ignition processes, understanding how that then translates into 

the ignition of a material is a more complex subject.  The same can be said for 

understanding subsequent kindling chain ignitions.  To follow these processes it is 

necessary to understand the heat transfer to, through and from the material involved, and 

the point at which this translates into material ignition. 

5.4.3 Kindling chain ignitions 

Following initial ignitions there may be further materials ignited, referred to as kindling 

chain ignition.  Two things must be considered when gauging the possibility of a 

kindling chain ignition.  Firstly the energy release (perhaps as adiabatic flame 

temperature, or heat flux) from the initial ignition and secondly the ignition likelihood of 

the other system components related to their flammability under those conditions and 

their position in the system.  The overall energy release, ΔH, of the material first ignited 

can be simply calculated using the material mass, m in grams, and the heat of 

combustion, ΔHc, in kJ/g, as shown in equation 2.5, 

cH m H    Eqn. 2.5 

Under high pressure enriched oxygen conditions the rate of reaction will increase, 

causing faster energy release, thus when smaller components burn it may be simplest to 

consider the overall energy release from the combustion as being instantaneous, with an 

infinite heat flux and immediate transfer to other components.  For situations where 

larger material combust, as the energy release will not occur as quickly, the adiabatic 

flame temperature might be used to estimate the heat flux other materials are exposed to.  

However there are problems associated with the adiabatic flame temperature, which is a 

maximum possible temperature, rather than a probable flame temperature (Babrauskas 

2015).  Beaulieu (2005) reports that for a number of materials, such as PMMA, the 
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adiabatic flame temperature for enriched oxygen will be approximately 100K higher 

than that in 20.9% oxygen, but was shown to be as high as 500K for a variety of 

polyoxymethylene.  Some materials have been burned in pure oxygen and where data is 

available it would be best to know the exact adiabatic flame temperature, however, in 

the absence of data in oxygen it may be necessary to assume a flame temperature of 

100K greater than that in air where the exact value is not known.  

Work relating to piloted ignition and promoted ignition combustion testing shows how 

materials might behave if exposed to burning materials in an oxygen system.  Hshieh 

and Beeson (1995) reported that the critical heat flux (minimum heat flux received at a 

material surface required for ignition) is relatively unchanged from 15% to 30% oxygen 

at 1 atmosphere, however, as with time-to-ignition calculations discussed in section 5.2, 

studies have not explored high-pressure enriched-oxygen systems in enough detail to 

provide the information to calculate time-to-ignition under piloted ignition conditions.  

However, in terms of assessing onward kindling chain this might be a useful measure in 

the absence of more information, particularly where the melting of metals is concerned.   

McIlroy et al (1988) use a system of promoted ignition that provides approximately 42 

kJ.  The result for these tests, and similar can be seen in Table 2-6.  The test reveals the 

exemption pressure of the metal tested, i.e. the pressure at which the ignition system 

failed to ignite test samples.  Although this test does give a good indication of safe 

working pressures, they are specific to the ignition energy, and sample configuration 

(generally a 0.32 cm diameter rod) used.  It is possible that a higher energy source could 

cause the ignition of materials at a lower pressure (or equally a lower energy source at a 

higher pressure).  Also a higher surface area to mass ratio can affect the exemption 

pressure (see section 5.4.4).   

However, by estimating the heat flux produced by the first material in a kindling chain 

and using equations 5.50 and 5.51 it would be possible to estimate the time that the 

surface would take to reach the SIT of that material under those circumstances, and thus 

give an indication of time to ignition.  Thus the simple heat transfer method in section 

5.3 can be used to give greater detail about the possible kindling chain. 

5.4.4 Other factors involved in the ignition of materials in oxygen systems 

There are a number of factors that seriously affect the likelihood of ignition that must be 

kept in mind while trying to assess the initial cause of ignition in an oxygen system.   
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Firstly the presence of any foreign material lining or caught in parts of the system may 

increase the chance of an ignition.  This is particularly true if the system is contaminated 

with even very small amounts of non-oxygen use greases.  Under investigation 

circumstances greases might be detected in other, undamaged, areas of the system.  

Additionally the burn residue may indicate a foreign substance, however, this relies on 

swab or other samples being collected.   

Secondly the presence of filters, particularly the sintered variety, although present to 

reduce ignition problems by preventing particles from entering a system, may cause an 

increased probability of ignition.  By their very nature they lie directly in the gas stream, 

and are designed to catch flammable material.  They are therefore vulnerable to particle 

impact ignition.  Added to this it has been shown by Schadler and Stoltzfus (1993) that 

sintered materials can have a far lower extinguishing pressure than the bulk metals 

variety, e.g. a sintered Monel 400 filter has an extinguishing pressure of 0.69 MPa, 

compared with over 68.9 MPa for the bulk metal.  Metal powder is well known to have 

far lower ignition temperatures than bulk metals, due to the increased surface area to 

mass ratio (Gordon et al 1968, Schadler and Stoltzfus 1993).  Sintered filters are made 

by melting powders together in an inert atmosphere to form a solid matrix.  However it 

is not known how this phenomena affects all sintered metals.  Little work has been done 

to assess the flammability of these materials beyond identifying material affected the 

least by the change in configuration (tin-bronze according to work by Schadler and 

Stoltzfus (1993) comparing it to Monel and stainless steel 316).  Thus ignition at a 

sintered filter, as the first system material to be ignited, should not be automatically 

ruled out just because the component is made of metal. 

Thirdly there may be a combination of factors involved, for example the temperature 

caused by a shockwave may not be great enough to cause ignition of a polymeric or 

metallic component, but by raising the surface temperature the probability of ignition by 

other causes, such as impacting particles is increased (see section 5.4.2).   

5.4.5 Use of road maps for the investigation of oxygen incidents 

The use of a structure, such as road maps or checklists can significantly improve task 

success.  Van Klei et al (2012) reported the introduction of checklists for use in surgical 

operating theatres has resulted in a significant drop in mortality.  A road map is a 

structured process to achieve a prescribed goal, or decide on a course.  Road maps have 

been used for a number of years to detail strategies or paths to achieve goals in technical 
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areas such as nuclear safety engineering (Kempsell et al 2001).  Stephenson (2003) 

reports road maps have also been employed to combine computer technology with 

traditional investigative methods to investigate digital incidents/ crimes and Mansi 

(2012) proposed their use to guide general fire investigators at scenes. Mansi (2012) 

produced over 200 Fire Investigation Road Maps (FIRMs) to enable a structured way to 

assess each scene, and to make sure that no possible fire cause could be missed.  They 

take the form of flow diagrams containing boxes that represent actions, decisions to be 

made, and conclusions that can be drawn.   

While excellent for training purposes it seems unrealistic that every fire investigator 

attending a scene very soon after the fire, generally with extremely little information on 

the nature of the fire, would be carrying a 150 page volume (although the use of 

technology in future e.g. an app on a tablet computer makes this more feasible).  

However, in insurance or Health & Safety Executive investigations it is far more likely 

that more specific information on the fire/ explosion would have been given, e.g. an 

oxygen cylinder has exploded during charging.  Under these circumstances having a few 

road maps to analyse the likelihood of each possible ignition source is a far more 

realistic strategy.  They provide a series of logical steps, each assessing the factors that 

might contribute to ignition. These are ideal for ignition assessment of oxygen incidents 

to quickly focus investigation to relevant areas, and therefore reduce time and resource 

use. 

Having established a series of tools that can be used to analyse an oxygen incident the 

following chapter will demonstrate the use of this ‘tool kit’ to gain the maximum 

information following such an event. 
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Chapter 6                                                                                                                 

Application of data and models to ‘real world’ situations and the development of 

an oxygen incident investigation ‘toolkit’ 

This section will be looking at ‘real life’ incidents, i.e. actual configurations of materials 

in oxygen systems that have ignited in the past and how relationships, data and 

knowledge discussed in this thesis on SITs, heat transfer, and collection of information 

can be effectively incorporated into oxygen system incident investigation.    

Although some level of assumption or educated guesswork might still be necessary in 

the absence of all necessary information, these processes should aid in turning the 

incident investigation into one based more in scientific reasoning, and to make certain 

that relevant information is collected should even greater depth investigation be required 

at a later date.  It should also provide greater insight into possible incidents of the future, 

the importance of material selection, and why knowledge of the physical and thermal 

properties of the materials involved is also so important.  

6.1.1 Investigation aims and objectives 

Internationally these are subjective.  Occupational health and safety organisations 

around the world define their aims in different ways (UK HSE hsg245 2004, US 

department Occupational Health and Safety Administration accident/ incident 

investigation 1989, Canadian centre for occupational health and safety accident 

investigation 2006), however, they do share the primary aims.  The main aims of any 

incident investigation will be to: 

1) Identify the reasons for an incident, both immediate and underlying 

2) Identify the remedies  

While blame, cost (or compensation) or compliance with regulations and the law may 

also be involved, these are the 2 main purposes of an investigation.  By looking at a 

number of investigations into oxygen incidents from public and private organisations, a 

number of objectives have been formulated in this work to enable effective information 

collection and analysis. 

The objectives identified in this work to aid the scientific analysis of oxygen system 

incidents: 

1) Examination and documentation of the system.  This should include system 

schematic and detailed descriptions of individual components including as much 

information as possible, such as dimensions, masses, and materials, as well as the 



107 

environmental conditions like oxygen concentration and pressure.  Ideally photos or 

diagrams with scale should also be present. 

2) Determination of the SIT of component parts.  The SIT of each of the non-metal 

components can be calculated based upon material, oxygen concentration, and 

environmental pressure (see Chapter 4).  For metal components the melting 

temperature may be used, as described in section 4.5, excepting Aluminium 

materials where the melting temperature of aluminium oxide is used. 

3) Identification of possible ignition modes using information on the system layout and 

components, the damage, and the flow direction (appreciating back flow may have 

occurred in some circumstances).  A road map approach may aid in this (see section 

5.4.5) 

4) Identification of the possible or most likely seat(s) of ignition, i.e. First item in 

kindling chain by understanding the possible ignition modes and examination of the 

damage from the incident. 

5) Calculate energy release of first material in chain, and determine subsequent 

possible ignition points.   

6) Construct a likely kindling chain order, and determine the events leading to the fire 

or catastrophic failure incident. 

7) Determine the immediate and underlying causes for the event, such as use of 

inappropriate materials or components, poor instructions of use, poor cleaning or 

maintenance, etc.  A fault tree is one method to identify events that lead to a 

catastrophic failure event (see section 6.1.2) 

8)  Make recommendations to prevent the incident happening again. 

6.1.2 Use of fault trees for the investigation of oxygen incidents 

The use of fault tree analysis and similar techniques has been a staple of the incident 

investigation in the process industry for a number of decades (Mannan 2005) and are 

recommended for use by and by the NFPA 921 (2014) for investigation of fire incidents.  

They show events (including decisions made) that must occur for a top incident 

(generally in investigative terms an undesirable incident) to result using a series of 

‘And’ and ‘Or’ gates (BS EN 61025 2007). It is qualitative, but can also be quantitative 

if the probability of an event occurring is known or can be identified.  The advantage 

with oxygen incidents, as in most cases, is to represent all the stages of an incident, and 

to break down each stage into the contributory factors.  NFPA 921 (2014) states that 

knowledge of the system components, their relationship to each other and understanding 

the validity of any data is necessary to carry out this form of analysis.  This is therefore 
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an ideal way to check that all possibilities are being considered, and that information is 

fully recorded should the incident, however minor, need to be revisited.  For example, if 

on identification that a particular component was the first to ignite, identifying all the 

factors that contributed to its ignition would be a useful way to fully assess all of the 

issues or errors that might have been taken into account or might in future be improved 

upon, e.g. was the material being used in an area that was too hot (i.e. above its SIT), or 

was it in a position in the system that contributed to the ignition source.  While Fault 

Tree Analysis has been applied to oxygen systems (Santay 1989), the focus has been 

mechanical, while detailing of the thermal and chemical processes, as well as the human 

decision making, and the recording of all this information in a fault tree (especially in 

combination with a checklist) allows a full analysis resulting in a better understanding of 

the event, and a firm record of all the necessary information for future review or 

analysis.  

6.1.3 Examples of an application to a real world situation 

The following section will demonstrate the use of the relationships established in 

Chapter 4 and sections 5.1and 5.4 and investigation tools for the purposes of deeper 

understanding of an incident, and recording of all necessary information.  The following 

information on an incident has been obtained from an in-depth incident component 

examination report carried out by the Health and Safety Laboratory (Geary 2007a).  The 

in-depth investigation was requested as this was the fourth in a series of similar 

incidents to occur.  Where information has not been provided a likely value has been 

assigned, and is labelled as such. 

Incident Introduction 

In February 2007 a PTFE lined oxygen supply hose attached to a cylinder ignited and 

failed during recharging at Mansfield Mines Rescue Service.  There was extensive 

damage to the hose, as well as evidence of heat damage and fusion to the internal 

components of an attached bleed valve.        

Several cylinders needed recharging.  Following the successful filling of three cylinders, 

the process of filling a fourth cylinder, a 2 litre BG4 cylinder, was begun.  Following the 

opening of the output stop valve, but prior to the opening of the recharge cylinder valve 

the operator noticed that the flexible hose between the two was glowing.  This was very 

quickly followed by the hose rupturing.  The oxygen supply was isolated, and the fire 

extinguished. 
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Although a series of pressure step rises are written into the charging procedure the step 

rises were only implemented for the first cylinder being charged.  Thus the hose and 

other components supplying oxygen to any subsequent cylinders were exposed to the 

full charging pressure, 20.7 MPa. 

System  

The system was located in Mansfield Mines Rescue Service, and is for recharging high 

oxygen cylinders at high pressure.  The system is capable of recharging using a 2000 psi 

loop (13.8 MPa) and a 3000 psi loop (20.7 MPa).  The layout of the full system is shown 

in Figure 6-1.  Although the whole system was examined, the region of most interest, 

where the catastrophic failure occurred, is the area between the 3000 psi circuit isolating 

valve and the recharge cylinder. 

Figure 6-1 System schematic showing the components and oxygen flow during 

recharging of a cylinder which resulted in catastrophic failure 

 

Filling procedure 

- Open oxygen supply cylinder valve 

- Switch on compressor 

- Open 3000 psi isolating valve 
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- Connect recharging cylinder 

- Open output stop valve 

- Open recharge cylinder valve 

- Allow booster to operate and maximum pressure to be generated (by opening 

compressed air shut off) 

- Allow recharge cylinder to fill 

- Close cylinder valve 

- Close output valve 

- Close air supply shutoff valve 

- Bleed off hose at bleed valve 

- Disconnect recharge cylinder 

(If further cylinders require refilling return to “connect recharging cylinder” step and 

repeat steps from there.  If no further cylinders require filling, continue with points 

below.) 

- Attach cylinder hose to docking point 

- Switch off compressor and open drain valve 

- Close oxygen supply valves 

- Close compressor drain valves, bleed valves and isolating valves. 

This filling procedure had previously been identified by Geary (2006) as good practice 

due to the gradual rise in pressure in the system, however, investigators ascertained that 

in reality the full three-stage pressurisation process (with the full 3000 psi (20.7 MPa) 

booster pressure being applied after the cylinder pressures) was only followed by 

operators for the first cylinder being filled. For subsequent cylinders the hose could go 

from ambient pressure (having been bled) to being subjected to the full booster pressure 

of 20.7 MPa. 

System components 

All of the system components were examined by investigators, however, most did not 

display anything unusual or any indications they may have contributed to the incident, 

other than by providing the high pressure oxygen.  This report section will therefore 

primarily concentrate on the components between the system output valve and the 

cylinder valve, as these display damage or soot depositions (see Figure 6-2) and are 

judged to have been directly involved in the incident.  



111 

Figure 6-2 3000 psi cylinder charging bleed valve and connector arrangement 

 

Component C1 represents the output stop valve in Figure 6-2.  This valve is capable of 

fast opening and allows the 20.7 MPa filling. It consists of a cube shaped chamber with 

2 ports made from a copper alloy.  C2 is a connector piece.  These were in good 

condition following the incident with no damage or soot. 

Components C3 and C4 (see Figure 6-3) are the metallic ends of the flexible PTFE lined 

hose which burst in the incident, each with some of the hose still attached (180mm and 

10mm respectively). 

Figure 6-3 The hose connection and crimped end that failed in the oxygen incident 
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The hose ends were made of leaded 60/40 brass, while the outer braid sheathing 

(external diameter, 11 mm) and ferrules connecting the hose to the end piece were made 

from 314 stainless steel.  The inner lining of the hose was made of PTFE (external 

diameter, 8.42-8.51 mm, thickness, 0.957-0.999 mm).  At the system pressure of 20.7 

MPa the SIT of PTFE has been calculated to be approximately 760 K, while the 

stainless steel and brass materials have melting points (used as a likely SIT value) of 

1783K and 1173K respectively, but extinguishing pressures of 6.9 and 68.9MPa 

respectively.  The original hose was approximately 630mm including the fittings.  

The hose showed evidence of 2 failure events.  Firstly the hose tube liner and braiding 

had split and broken off approximately 10 mm from the hose connector piece at the 

bleed valve end.  The lack of combustion evidence suggests this was an overpressure 

issue.  Further along the tube there were a number of areas that showed evidence of 

melting and incomplete combustion of the stainless steel braiding.  A significant amount 

of the PTFE had burned away.  Where the tube liner was still in place, the liner showed 

evidence of internal thinning to an average thickness of 0.43 mm.  

C5 is the oxygen supply hose bleed valve unit.  A diagram of this component, including 

the internal parts, can be seen in Figure 6-4.  There is a central bore running through the 

main valve body, in which there is a small ball bearing (which acts a check valve, 

preventing gas from the cylinder moving past this point), a sintered filter to prevent 

particles from travelling into the system, and a retaining screw with a hollow bore 

through the centre.    

Figure 6-4 Aluminium bronze bleed valve diagram (perpendicular to bleed valve 

shaft) 
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The main valve body is made of aluminium bronze.  Although the likely ignition 

temperature of the bulk material is over 2000K (over the melting temperature of 

Aluminium Oxide) this is not regarded as being suitable for high pressure enriched 

oxygen service as ignition occurs at pressure as low as 3.5 MPa.  The internal 

component parts in the direct gas stream are made of bronze (most likely tin bronze 

from debris analysis). Tin Bronze has a melting temperature of approximately 1127 K 

and an extinguishing pressure of at least 68.9 MPa, although small components have a 

higher surface area to mass ratio making the materials more prone to ignition (Tin 

bronze sintered filters have been shown in limited test runs by Schadler and Stoltzfus 

(1993) to ignite at 37.9 MPa).  

There is also a bore at right angles with the main central bore.  This contains a metal 

shaft which can be screwed in and out using the wheel at the top.  At the base of the 

shaft is another ball bearing.  This section of the component acts as the bleed valve for 

the charging hose.     

Table 6-1 The component parts of a bleed valve involved in a catastrophic failure 

event in 2007 

Component part Dimensions Mass Approx. SIT 

Valve body 

(Al Bronze) 

5.7mm long 

(4.3mm body) 

Approx. 200-

250g 

2072 

Retaining screw  

(314 Stainless steel) 

7mm diameter 

Approx. 5mm 

length 

Approx. 5g 1783 

Sintered filter 

(Tin bronze) 

Approx. 4.4 mm Approx. 1g 1127 

(powdered bronze 

SIT = 655K) 

Check valve ball bearing 

(Tin bronze) 

3.2 mm diameter Approx. 1g 1127 

Bleed valve shaft 

(314 Stainless steel) 

Approx. 5mm 

diameter 

Approx. 4g 1783 

Bleed valve ball bearing 

(Tin bronze) 

3.2 mm Approx. 1g 1127 

    

The damage in the bleed valve was contained in the main central bore.  The retaining 

screw was undamaged however the sintered filter had broken into pieces and showed 

signs of oxidation.  There was some of the check valve ball bearing left behind, although 
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the mass of debris has not been defined.  The shaft and ball bearing in the bleed valve 

mechanism had not been damaged, but were covered in soot. 

Components C6 to C9 are various detachable connector pieces which allow the valve to 

be connected to the cylinder valve.  It is not clear why so many connector pieces were 

required.  Reports by Geary (2006) and Geary (2007b) suggest the same arrangement 

was not being used in systems in similar facilities.  It is possible they were used to 

convert different threads.  They are undamaged by the fire, however soot deposits in the 

tubes reveal that gas flowed in the direction of the cylinder from the bleed valve. 

Ignition modes  

The lack of electrical, fast moving parts or rubbing parts next to the areas of damage 

means that electrical, mechanical impact and frictional heating can be dismissed as 

probable cause of ignition. For cavity resonance to occur the main requirement is an 

area of stagnation (such as a dead ended off shoot from the system) where contaminants 

might accumulate.  Although the system does contain a T junction with such a 

stagnation point, this is beyond the region that was pressurised (i.e. the wrong side of the 

cylinder valve) and does not show any evidence of heat damage or soot. Thus cavity 

resonance can also be dismissed as a likely possible cause of ignition.  This leaves the 

most common cause of oxygen incidents, adiabatic heating and shockwave ignition, and 

particle impact ignition. 

Particle Impact 

Based on information throughout this thesis Figure 6-5 has been developed to show the 

steps that need to be confirmed for particle impact to be considered as a possible cause 

of ignition.  Using Figure 6-5 the following facts have been compiled: 

 The pressure the system was exposed to has been identified by investigators as 

20.7 MPa pure oxygen which is well in excess of the 23.5% and 3 MPa 

requirements for the system to be regarded as high pressure enriched oxygen. 

 The output stop valve has been identified as being fast opening (hence the 

immediate exposure to the gas pressurised to 20.7 MPa).  Assuming the pressure 

in the hose was 0.101 MPa the possible gas velocity can be estimated, using 

equation 5.53 from ASTM G88-05 (2005), as being over 1300 m/s (assuming 

isentropic flow). Although this is speed is well above the maximum speed of 
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Mach 0.7, the criteria for applicability of this equation (Perry and Chilton 1973), 

it is a good indication that the flow speed would be very fast, and well above the 

45m/s required for particle impact ignition.  Both of these points show that fast 

fluid flow was possible. 

 Some hydrocarbon contamination on the outside of the hose was identified by 

investigators but there was no organic contamination inside the pipe.  Only a 

very small amount of inorganic dirt was identified using swabs in the output 

valve.   The presence of a check valve and sintered filter to prevent 

contamination by larger particles from recharging cylinders suggests that this 

type of contamination, though not impossible, would be unlikely. 

 The hose used for recharging was flexible meaning it is possible for the hose to 

have presented a face to the onward flow for a particle impact situation to be 

possible.  Also the check valve ball bearing was directly in the main gas stream 

with the sintered filter immediately behind it.  All three of these items showed a 

significant level of damage.   

Although it is not possible to completely rule it out the lack of serious particulate 

contamination identified in the system makes particle impact unlikely. 

Adiabatic heating/ pressure shock 

Based on information throughout this thesis Figure 6-6 has been developed.  This road 

map itemises, in a step-by-step way, the necessary conditions for shock/ adiabatic 

compression to be considered as a possible cause of ignition.  

By following Figure 6-6  the following points have been identified:  

 A system pressure of 20.7 MPa pure oxygen has been identified by investigators, 

which is well in excess of the 23.5% and 3 MPa requirements for the system to 

be regarded as high pressure enriched oxygen. 

 The ‘output stop valve’ had been opened while the recharge cylinder valve at the 

end of the supply hose had not been opened making the tube dead-ended. 
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Figure 6-5 Road map to assess the likelihood of particle impact as a possible ignition source  
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 As mentioned previously in this chapter the fast opening valve (hence the 

immediate exposure to a pressure of 20.7 MPa) and possible rapid pressure rise 

from 0.101 MPa to 20.7 MPa.  The possible gas velocity can be estimated, using 

equation 5.53 as being well over the 30-45 m/s threshold for possible particle 

impact ignition.  Fast fluid flow was, therefore, possible. 

 Some hydrocarbon contamination on the outside of the hose was identified by 

investigators but did not identify any particulate beyond that produced by the fire 

in the incident.  The presence of a check valve and sintered filter to prevent 

contamination from recharging cylinders suggests that this type of 

contamination, though not impossible, would be unlikely. 

 In the area of ignition the only polymeric material is the PTFE liner of the filling 

hose.  Using equation 4.14 the SIT of PTFE can be estimated to be 

approximately 763 K.  gain assuming atmospheric pressure in the system before 

pressurisation, and using information in Newton and Steinberg (2009), the 

temperature of an ideal gas can be estimated as being between 1339 K (due to 

isentropic compression) and 11568 K (due to shock factors).  Although these 

temperatures would be momentary they are well above the SIT of the PTFE 

component.  

 There is a bronze filter directly in the gas stream.  Although bronze generally has 

good oxygen service properties (e.g. Melting point of 1127 and EP of 68.9 MPa 

for tin bronze) the high surface area to mass ratio may lessen the resistance to 

ignition. Powdered tin bronze will ignite at 655 K. 

 The bleed valve body has been identified as being made from Aluminium 

bronze.  Any components made of aluminium or similar light metals are more 

susceptible to ignition than heavier iron or copper based materials.  

All of the requirements for an adiabatic compression/ shockwave ignition are present 

making this the most likely source of ignition.  Road maps for other causes of ignition in 

oxygen systems can be found in Appendix E. 
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Figure 6-6 Road map to assess the likelihood of pressure shock as a possible ignition source 
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Possible seats of ignition 

Using the process in Figure 6-6 three areas have been identified as a possible seat of 

ignition, i.e. the region the initial ignition took place.   

 Aluminium bronze bleed valve body.  This did not show any specific damage as 

a result of combustion. It is unlikely that this was the site of ignition. 

 Sintered bronze filter.  This lies directly in the dead–end valve section and 

appeared to have completely burned away.  There were signs of combustion 

(discolouration).  The location of un-combusted the check valve ball bearing, and 

direction of the soot suggests smoke (and therefore heat) travel would have been 

predominantly towards the cylinder valve making the ignition of the PTFE from 

this section of the valve unlikely. 

 PTFE hose liner.  This material has an SIT of approximately 760 K in these 

conditions which is far lower than the metallic items.  The end of this tube would 

very likely have been exposed to extremely high temperatures being directly next 

to the dead-end formed by the closed bleed valve.  The inner 0.5 mm of the tube 

in some places had burned away, and the tube had burned and burst in some 

areas.  It seems most likely the fire began at the bleed valve end of this hose.  

Using the Heisler chart method we can calculate the time for different depths of PTFE to 

reach the SIT temperature assuming a surface temperature of 11568K (due to pressure 

shock) and negligible surface resistance.  Using equation 4.14 and data from section 3.13 

the SIT of PTFE has been calculated as 763 K.  We know, 

Θ =
𝑇 − 𝑇1

𝑇𝑖 − 𝑇1
=

763𝐾 − 11568𝐾

298𝐾 − 11568𝐾
= 0.959 

Eqn. 5.8 

Where Θ is a function of the Fourier number. This can be used on a Heisler chart (see 

figure 6-7) and gives a corresponding Fourier number of 0.094.   
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Figure 6-7 A Heisler chart showing the relationship between the Fourier number 

and the system temperature ratio for a plate 

 

The time that the SIT can now be calculated using equation 5.16: 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝛼𝑡𝑟

𝐿2
 

Eqn. 5.16 

Thus where L is 0.5mm, t can be calculated 

𝑡𝑟 =
0.094(0.00052)

8.74 ∗ 10−8
= 0.27𝑠 

The thickness of an undamaged hose liner involved in the incident is on average 0.92 

mm, while burning inside the hose reduced this by approximately of 0.5 mm.  This gives 

an indication that a high temperature environment could raise the temperature of the 

burned section of the tube thickness to the SIT in just over a quarter of a second.  

Equation 5.50 can be used to provide a range of answers across time and space (within 

the material).  For example Figure 6-8 below, showing 2 views of the same 3-

dimensional graph, demonstrates the effect that different external surface temperatures 

would have on the heat flow through a slab of PTFE.  These have been calculated 

assuming a constant surface temperature and negligible surface resistance under the 

shockwave conditions.  Arrays a, b and c show heat transfer for external surface 

temperatures of 1339K, 6454K, and 11568K respectively, over 1 second and 1 mm.   
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Figure 6-9, showing the same graph from 2 different angles, shows the speed at which a 

0.5mm layer might be heated to the ignition temperature of PTFE in 20.7 MPa oxygen if 

exposed to the maximum temperature of 11568 K at the surface.  PTFE is one of the 

most ignition resistant polymers.  Figure 6-10 demonstrates a Nitrile rubber layer under 

the same conditions.  The SIT is clearly reached sooner.  Very few polymeric materials 

would have resisted ignition better. 

Figure 6-8 A comparison of the heat flow through a layer of PTFE when exposed to 

different external temperatures, assuming negligible surface resistance 

 
Curves for constant external surface temperatures of a) 1339K; b) 6454K; c) 11568K. 

Layer d) is at 760 K, the SIT of PTFE.  Initial temperature of 298 K. 

Figure 6-9 Heat flow through a layer of PTFE when exposed to an external 

temperature of 11568 K, assuming negligible surface resistance 

a)  Curve for constant external surface temperatures of 11568K. b) 760 K, the SIT of 

PTFE. Initial temperature of 298 K. 
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Figure 6-10 Estimation of the heat flow through a Nitrile rubber layer when 

exposed to an external temperature of 11568 K, assuming negligible surface 

resistance 

 
a) Curve for constant external surface temperatures of 11568K. b) 545 K, the SIT of 

Nitrile rubber. Initial temperature of 298 K. 

Alternatively we can calculate the surface temperature rise by calculating the convective 

heat flux from a fluid at 11568K, and applying that mathematically to the PTFE surface.  

Using,  

𝑞/𝑆𝐴 =  ℎ(𝑇𝑔 − 𝑇𝑠) Eqn. 5.52 

and assuming the highest natural convection heat transfer coefficient of 250 W/m
2
 K and 

a surface area of 1m
2
, we can calculate the convective heat flux per unit area to be 2.8 

MW/m
2
. Incorporated into the relationship from Lawson and Simms (1952) in equations 

5.51 and 5.50 the graphs in Figure 6-11 have been produced.  The first, a), shows the rise 

in surface temperature under these conditions.  It shows under the high heat flux the 

surface could reach the SIT in a small fraction of a second.  Graph b) of Figure 6-11 

shows the length of time taken for the PTFE to reach the required 763K at a depth of 

0.5mm under the same conditions.  
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Figure 6-11 Graphs  showing the rise in surface temperature and internal 

temperature at a depth of 0.5mm in a PTFE component exposed to a gas 

temperature of 11568K in 20.7 MPa.  

 

 
 

Kindling chain ignition following polymer ignition 

The evidence suggests the ignition started with the PTFE tube liner, which in turn 

ignited other components including the surrounding stainless steel braid, which would 

also have had reduced mechanical strength due to increases in temperatures..   

Based on the description of the system after the failure it is clear most of the PTFE 

tubing was burned away.  Given the dimensions of the missing and damaged tube an 

estimate of the volume of PTFE that burned away has been calculated as 10.5 cm
3
, 

equating to a mass of approximately 26g and a total heat of combustion of 154 kJ.  As 

the PTFE burned directly next to the stainless steel braid this can be compared to 

promoted ignition tests where an igniter burns against a rod shaped sample.  The total 

energy release from the burned PTFE is well above the energy used by McIlroy et al 

(1988) (42 kJ) to ignite similar materials in the promoted combustion test.   

The combustion of the stainless steel was limited to small regions, and the mechanical 

failure was the major cause of the pipe failure.  Although the bronze sintered filter was 

ignited, the damage surrounding it, and soot deposition, suggest it was damaged after the 

filling tube.  The event can be shown using a fault tree, demonstrating the main path of 

the fire, and reasons for the catastrophic failure. 

a)      b) 
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Figure 6-12 A fault tree showing the paths of a fire in an incident in Mansfield, in 

2007  

 

Engineering solution and recommendations 

The fault tree demonstrates the 2 main causes of the incident.  One is operator error, 

where the full charging process is not followed by those using the system.  Thus, where 

the charging panel should be completely discharged to atmospheric pressure, the system 
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remains at a high pressure of 20.7 MPa.  Clear instructions, training and regular checks 

should be made to make sure the correct filling procedure is always followed. 

Secondly, the poor system design allows this incident to occur.  The output valve is 

capable of fast opening, and the end section of the tube to the bleed valve is made of a 

polymer.  Adding a slow opening valve would prevent possibility of a shockwave from 

developing.  Putting in a section of metallic tube immediately before the cylinder valve 

would reduce the chance of ignition due to adiabatic compression/ shockwave heating. 

6.2 Analysis of existing oxygen components 

BS 5N 100 – 5: (2006) reported an incident involving a valve (described as valve 

MK10A by Scanlan 2008).  The operator “cracked open” the outlet valve momentarily 

to check its contents and function.  The valve burst into flames causing severe injuries to 

the operator.  Examination afterwards showed considerable damage to the components.   

The first item ignited was judged to be the valve, and the cause was believed to be 

adiabatic compression/ shockwave heating.  The main faults with the valve, identified by 

investigators were: 

- The body was manufactured from aluminium, one of the more flammable metals 

when fresh metal exposure occurs.  

- The PTFE seat was directly in the oxygen stream, making it prone to impact and 

heating. 

- The PTFE seat had sharp edges allowing shearing to occur as it was re-inserted into 

the body. 

The report therefore advised that a more suitable material, such as brass, be used for the 

body, and that the PTFE seal should be attached to a floating spindle to prevent shearing.  

The valve was replaced by a GA 3030.   

The same system that has been developed to examine past incidents can be used to 

predict the behaviour of components currently used in oxygen systems.  In section 6.2.1 

this process is applied to the replacement valve GA3030. 

6.2.1 GA3030 Oxygen valve 

The design for GA 3030 employed some of the recommended changes.  It had a brass 

connector added on the high pressure side of the valve, and the new rounded PTFE seal 

was moved to be contained in a stainless steel surround.  A brass disc was placed at the 
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top of the spindle (protecting the adjusting knob).  However the main body of the valve, 

and some internal components were still made of aluminium. 

Examination of the valve has led to the most likely causes being identified, and some 

being dismissed. An incident caused by mechanical impact is extremely unlikely due to 

the limited movement of parts. A cause of frictional heating would also be unlikely for 

the same reason, and due to the low friction coefficient of the PTFE seal.  The 

component does not appear to contain any dead-end tubes that might result in the energy 

from resonance.  This leaves electric arc/spark, adiabatic compression and particle 

impact as the most likely possible causes of an incident in this part.   

Electric arc/spark – The possible energy levels could be massive if there was an 

unexpected arcing from an adjacent system. In this case any materials might be expected 

to ignite. This would depend upon a number of external design factors, not upon the 

design of the valve, or the materials used. 

Adiabatic compression – It might be possible for the small internal components to be 

heated by the adiabatic compression within the system, but that would mean that other 

components in the system enabled this to occur.  The position of the PTFE ‘O’ ring 

makes it unlikely that it could be combusted easily in this situation due to the fact that it 

is covered by aluminium or stainless steel on all sides when the valve is closed.  The 

stainless steel has a melting point (and therefore SIT) of 1783 K.  Under these 

circumstances ignition by adiabatic compression is extremely unlikely.  

Particle impact – Visual inspection of the valve shows that there is an obvious possible 

impingement site directly in the path of the gas stream.  In the event of the fast opening 

of a valve (should particles be in the system) a particle might travel through the brass 

connector, and impact directly on to the surface of the valve body.  In the case of 

aluminium this is a problem. The relatively high IT of aluminium is attributed to the 

thick layer of aluminium oxide that covers its surface. However, should this layer be 

breached, and fresh pure metal be exposed to both heat and high pressure oxygen, the IT 

might be reduced to as little as 933 K (the melting point of aluminium).  The heat of 

combustion of aluminium is so high (30 kJ/g) that any aluminium oxidation would result 

in a further self-sustaining oxidation reaction. 
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Figure 6-13 Valve GA3030 anodised aluminium body and brass inlet 

 

Figure 6-14 Side view of GA3030 aluminium body and brass inlet showing the flat 

impingement site directly ahead of the inlet tube 

 

Based on equation 2.6 the maximum possible temperature of the valve body can be 

calculated: 

pH mc T    Eqn. 2.6 

It would take from between 25.8 kJ – 37.7 kJ to raise the temperature of all 44g of 

aluminium to 955 K (depending on any heat loss to the surrounding environment).  If the 

same component were made of brass it would be approximately 137g and would require 

between 45.7 kJ – 46.5 kJ to raise the temperature to the SIT of the brass.  Brass would 

clearly be a safer option, as it would take more energy to ignite it than the same 

component made of aluminium, and has a far higher threshold pressure. 

6.2.2 Use of ‘tool kit’ for prediction and system analysis 

Some of the tools used to analyse existing systems and catastrophic oxygen incidents 

could be used to aid in the selection of correct materials, and to predict possible 

configurational issues.   

Possible 

impingement 

site 
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The use of the SIT relationship, in equation 4.9, would enable prediction of polymer 

behaviour at different pressures.  This would mean that a designer could use existing 

data for material they have used at one pressure, and extrapolate the flammability of the 

same materials at different pressures and oxygen concentrations, without the need for 

large scale, complex, and expensive extra testing.  Alternatively if no data is available 

the use of smaller scale apparatus like PDSCs would be extremely useful in place of the 

far less accessible bomb-test.   

The road maps, developed to identify possible system weaknesses, and probable causes 

of ignition following an event could also be used as a predictive analysis tool.  They 

would allow a designer, or end user of system components, a quick and easy way to 

assess the safety of their components or system set up, in order to minimize the risk of 

an incident, or catastrophic failure event. 
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Chapter 7                                                                                                                     

Conclusions and Future work 

This work has collected a large amount of information, and formed methodologies to 

model and apply that information to real-life oxygen system components and 

configurations. While the aims have been met, there have been some obstacles, and areas 

of difficulty highlighted by this work, where further scientific investigation is required.  

This section will relate conclusions directly back to the original aims and objectives 

stated at the start of this work.  It will also offer a critique of this work, identifying the 

successes and limitations.   

The primary aims of this work have been to develop a model predict the spontaneous 

ignition temperature (SIT) of materials used in oxygen systems using known data, to 

enable the use of alternative, cheaper, smaller scale and more accessible test apparatus to 

assess the flammability of materials for use in those systems, and to develop a scientific 

methodology in order to record, and understand oxygen incidents with particular 

reference to kindling chain events.  A number of objectives were identified to achieve 

these aims, and these are discussed in the following sections. 

7.1 Initial literature survey 

The initial aims of this work were to review the literature on the oxidation of materials in 

high pressure enhanced/ pure oxygen atmospheres, to review the results of current 

ignition and flammability tests and to combine data bases relating to both metals and 

non-metals.   

Chapter 2 includes a lot of detailed information identifying the current state of 

knowledge in relation to oxygen incidents, and the flammability of both metals and non-

metals, including test methods used to assess their flammability.  Having carried out this 

research it is clear that there is a lack of information on the fundamentals associated with 

combustion in high-pressure enriched-oxygen, and this may be hampering advances in 

this field.  Although initially a great deal of work on the flammability of metals and 

polymers in high pressure oxygen was identified, the effect of configuration change, and 

behaviour in different positions, was far less well explored.  A body of work has been 

built up on materials and their fire behaviour, but upon approaching analysis of systems, 

it became clear that fundamental information on the behaviour of the materials in this 

specialised environment is missing.  The lack of fire engineering fundamentals like time 

to ignition, critical heat flux, and chemistry fundamentals like knowledge of kinetics 
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makes reliable analysis problematic.  Unfortunately the ability to measure this 

information depends on a range of different, often purpose built apparatus, often made of 

expensive materials, and requiring a high level of safety consideration. With unlimited 

time and resources the development of a high pressure oxygen cone calorimeter, or 

similar controlled-environment and heat flux ignition system, would be extremely 

useful, although by no means easy to make (where material selection, ignition-source 

type, and a number of other engineering problems would require significant thought).  

However, such an apparatus could provide extremely useful information for this 

challenging atmosphere.   

7.2 Experimental work and modelling 

This work has shown a number of relationships which allow test data, measured at a 

range of pressures and under different conditions to be compared, and to be applied to 

other circumstances.  The model derived in chapter 4 enables the calculation of the SIT 

of a non-metal at any pressure, and oxygen concentration.  This calculation cannot be 

done without some data on that material, so some form of SIT test must be done, but it 

does allow test results measured in 2 or 3 MPa to be extrapolated to, for example, 15 or 

20 MPa with reasonable accuracy for a number of materials.  Some form of safety buffer 

should be incorporated for its use, as with any calculation method, to allow safe use.  

This has been shown to work for most materials tested, and means that more accessible 

options can be used to determine materials suitability for high pressure oxygen.  With 

more time and access to the PDSC apparatus, and hind sight, more materials might have 

been tested, and a series of measurements at 5 MPa could have been taken for direct 

comparison with the lower temperature measurements taken in the bomb test.   

Further work is needed to increase this data base to establish ignition test data and 

thermodynamic constants to allow for the direct comparison.  More data, particularly for 

other materials, should be acquired for a range of flammability and calorific test 

procedures. As well as including the PDSC and Bomb apparatuses used in this study, 

other methods such as Accelerating Rate Calorimetry should also be explored to identify 

the relationships or variation between data produced.  A range of apparatus and 

conditions should also be investigated to expand the knowledge on the use of materials 

in flowing oxygen atmospheres, and to establish the relationship between SITs in static 

and flowing environments.   
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The investigation of polymer use in oxygen systems has highlighted two areas of 

interest.  Firstly the number of types of polymers employed, and secondly the variation 

of properties that can occur within each polymer type.  A large number of materials can, 

and are, used in oxygen service.  This is not inherently a bad thing, but polymers with 

the same base molecule can have vastly different properties depending on the chemicals 

added to the base mix, such as plasticisers or retardant materials.  Polymer 

manufacturers provide materials with particular mechanical properties (guaranteed to lie 

within a stated range).  The ignition or flammability characteristics of materials are not 

generally specified.  This means that manufacturers can vary the chemistry of a material 

from batch to batch, keeping to their specified characteristics, while varying ignition and 

other properties substantially.  This work suggests that materials like polychloroprene 

and Nylon 6,6, can vary significantly between batches.  There are also indications that 

the flammability properties can change over time.  The use of materials with such 

variation in oxygen systems should be examined to identify if there is any risk.  It might 

be useful if the ignition properties of polymers used in oxygen systems were specified by 

manufacturers, or for the types of additives to be kept to a tighter recipe.  This would 

reduce the amount of testing required by engineers, and the cost of using oxygen 

systems. 

Another area requiring further research is the unusual behaviour of materials containing 

chlorine.  Polymers with a molecular structure which contains chlorine atoms are well 

known to display an increased level of fire-retardancy compared with similar, non-

chlorinated materials.  The data in this work seems to suggest that the flammability 

behaviour of these materials does not adhere to the relationships described in chapter 4, 

relating to pressure and SIT.  Work should be carried out to explain and define this 

effect, and to explore the role of other halogens and halogen-containing materials in 

high-pressure oxygen-enriched atmospheres. 

The attempt to identify a simple method of SIT estimation based on thermal desorption 

and pyrolysis products was largely unsuccessful.  The complexity of the polymer 

degradation products made this process difficult.  Added to this, access to the apparatus 

used in this process, and resources, were extremely limited.  The Thermal desorber 

maximum temperature of 250°C made proper analysis of the higher specification 

engineering polymers, like PTFE, impossible.  Had there been access, use of a much 

higher temperature Pyrolysis system would have been more suitable for this work, or 

possibly even evolved gas analysis mass spectrometry.  Also, although identification of 



 

132 

many peaks was possible with the GC 1701 column, the more complex larger molecules 

might have been easier to identify with a less polar column, with a more extensive 

library, like an Equity-1.  The use and behaviour of metals has been explored extensively 

by others.  The majority of metals and many alloys have been tested to assess ignition 

behaviour and Highest No-Burn Pressures to identify the most suitable for different 

applications (See ASTM G94-05).  However work by Schadler and Stoltzfus (1993) and 

Zabrenski et al (1989), and incident reports from real-life incidents have exposed an area 

where there is a hole in our knowledge.  The configuration of metals (i.e. the shape, 

surface area etc.) appears to alter the ‘rank order’ of these materials.  Further research 

should examine the effect of the change on trends, and identify why altering the 

geometry of a mass of metal can also alter how it burns in relation to other metals.  

Modelling such changes should also be explored for prediction purposes. 

One particular area that should be explored is the use of sintered filters.  It is well known 

that powders burn more easily and ferociously than bulk metals, and Schadler and 

Stoltzfus (1993) show that changing materials to sintered configuration can have a huge 

impact on the flammability of a metal.  However the full impact of this has not been 

explored.  Studies to identify the trend or shift in flammability and ignition 

characteristics as surface area increases would enable engineers to identify where the use 

of components with a high surface area to mass ratio, such as sintered items, is safe, and 

to find the reasons for this change in properties.  It may be that incidents involving 

sintered filters are caused by the ignition of materials accumulated in their matrix.   

Testing could identify this, explore what materials accumulate, and result in 

recommendations as to how often they should be changed.  Again the further exploration 

of materials in high pressure oxygen consists of significant challenges, and the 

limitations of time, equipment, and budget involved in this work prevented further 

exploration of this subject. 

7.3 Oxygen incident investigation ‘tool kit’ and methodology  

A number of tools have been developed to improve the quality of data recording, ease of 

investigation, and more fully analyse oxygen incidents.  The aim in this has been to form 

more structured and robust methodology for the investigation of oxygen incidents.  

Information collection and analysis follow a systematic procedure, ensuring full data 

capture, and better understanding and prediction of sequential ignitions and kindling 

chain path. 
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As well as general observations on lack of consistent and thorough recording in incident 

investigation reports this section of the work concentrated on four areas; 

- converting knowledge of ignition modes into investigation road maps,  

- the use of SITs in material selection and incident investigation, 

- the use of negligible surface resistance heat transfer models to understand heat 

transfer in oxygen components and predict ignition, 

- and using fault trees to record the kindling chain and details on items involved.   

The ‘tool kit’ has been applied in chapter 5 to enable a clear, scientific methodology.  

The road maps are an excellent way to ensure no ignition source is missed, and that all 

the factors involved in the chance of ignition are taken into account.  The ability to 

check probably SITs of materials without having to test those materials under different, 

possible hazardous, conditions is extremely valuable from an investigative perspective.  

It not only saves time and money, but allows a greater array of conditions to be modelled 

than might be tested given the resources available to some investigations, particularly 

small scale events.  The use of heat transfer calculations to analyse possible ignition 

sources, and to indicate time to ignition is another way to gain further insight to these 

events.  While it is difficult to validate this work without information on critical heat 

flux, and time to ignition data it does provide a conservative method to predict the time 

to ignition under external heat flux, and adiabatic compression/ shockwave ignition 

situations.  Finally the use of fault tree analysis is not a new investigative technique, but 

the use of such a device to record a kindling chain event proves a very useful and unique 

way of tying together investigation, analysis and component properties to ensure full and 

proper collection of data and recording of information.  It is hard to know the full 

implication of this work but better analysis and recording of information must enable 

better understanding of oxygen incidents, and inform designers of the future in helping 

to identify hereto unknown problems. 

As stated in section 6.2.2 it is possible that the new SIT information and ignition source 

road maps could be used to aid material selection, giving an indication of likely ignition 

sources, and the materials most prone to these issues.  It would enable a faster, and less 

expensive way to check a system is safe and fit for purpose. 

7.4 Incorporation of new knowledge into BS 5N100 

The knowledge gathered in this work, and the further work noted in this chapter should 

be incorporated into new sections of BS 5N 100.  This should include the updated 
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combustion model, the use of a range of ignition tests, and the ability to convert/ 

compare the results, as well as ignition source road maps for easy identification of the 

causes of oxygen incidents.  The relationship, and any further information, on materials 

behaviour in flowing oxygen environment should also be included.  There should also be 

further recommendations on the use of polymers with unspecified, or a range of, 

flammability properties.   
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Appendices 

Appendix A. Bomb test full operating procedure    

- Solid sample preparation 

A 100 2 mg sample is taken, and split into 20 equally sized blocks, and the samples are 

then cleaned.  A diagram of the system layout is in figure A-1 (including all the 

components described in the following procedure).  

 

- Purging and filling 

The sample is inserted into the combustion boat, and the head and combustion boat are 

lowered into the containment vessel.   

All valves must be checked before proceeding. 

Open both oxygen and nitrogen bottles.   

Open valves V1N, V2N and V3N inlet. 

Open V4 outlet and containment vessel vent valve.  Close V3N and V1N. 

Open N bottom vent (venting Nitrogen from lines).  Close N bottom vent and V2N. 

Open valves V1Ox, V2Ox, and V3Ox inlet. 

Close V3Ox inlet and open Ox bleed valve.  Then close Ox bleed valve and open V3Ox 

inlet.   

Repeat this cycle four times clear the air from the combustion vessel. 

Close V3Ox inlet and V1Ox. 

Open Ox bottom vent (venting oxygen from the lines).  

Close Ox bottom vent and V2Ox. 

 

- Pressurizing gas booster 

Check all valves are closed 

Open valves on the Oxygen and Nitrogen bottles (if extra Nitrogen is required open V1N 

and V2N). 

Initiate the gas booster and open V3N when the pressure is the same as that already in 

the containment vessel.   

Close valve V3N, turn off gas booster, and close V1N. 

Open N bottom vent to discharge residual nitrogen from the lines.   

Close N bottom vent and V2N. (If extra oxygen is required, open valves V1Ox and 

V2Ox, then open V1 to purge residual nitrogen from the gas booster using oxygen.  

Close V1 

Initiate gas booster and Open V3Ox inlet when the pressure is the same as that already in 

the combustion vessel.   

Close valves V1Ox and V3Ox inlet. 

Open Ox bottom vent (discharging residual oxygen pressure from the lines) 

Close Ox bottom vent and V2Ox (If elevated pressures are required repeat the above 

procedure) 

Achieve pressure equalisation. 

Once test pressure and equalisation is reached, close all valves after the lines have 

vented.  Vent Nitrogen last so there is no oxygen in the lines. 

 

- Conducting the test 

The test should be controlled by providing the heating rate required by the test protocol. 

For standard test conditions use a heating rate of 10K/min at a constant pressure of 

13.2MPa.  

 

- Venting 

After testing is complete vent the oxygen at the same time as the nitrogen depending on 

the pressures involved. 
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Open Ox bleed valve (to vent oxygen). 

Open V4 outlet and containment vent valve (venting Nitrogen). 

Vent lines by opening V2Ox and Ox bottom vent and/or V2N and N bottom 

respectively. 

Alternatively open V1 along with V3Ox and V3N to vent the system from the rig 

directly, for safety, should anything go wrong.  

 

After the test is complete and all gases are removed the containment vessel should be 

opened and allowed to cool (a fan may be used to assist).  The apparatus can be 

dismantled when it goes below 313K (40°C).  Finally close bottle bank valves and vent 

all lines. 

 

 
Figure A-1. High Pressure bomb system design 
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Appendix B. Differential Scanning Calorimetry full operating procedure 

Open Mettler TA89E software.   

 

Setting up a program 

On the program menu select “New”.   

 

 
 

Title program e.g. polymer 2 

Select the Heating/ cooling choice 

 
 

Enter 323K (50°C) for the start temperature and 673K (400°C) for the End temperature.  

The rate should be 2°C /min 

There should be just 1 step selected, and the Store data box should be ticked 

Click OK and save the program as Polymer 2 

Once a program has been set up in the Mettler software the same program can be used 

for a number of different samples 

 

Starting a test run 

Cut one small sample of the polymer (between 5 and 10 mg) 

Place it in a sample holder with the small plate, and lid on top and seal closed using a 

press. 

Open the correct saved program (e.g. Polymer 2).   

On the Control menu select “Start” 
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Enter the run title (e.g. NBR2), the sample name, and weight.  The other two are 

optional 

The software then asks if sample is inserted.  Insert the sample, and the empty sample 

holder for comparison and click “Yes”.   

To view graph of the data as the test is being run open the “View” menu and select 

“Running”. 

 

- Example thermogram from Mettler DSC 12E 
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Appendix C. Pressurised Differential Scanning Calorimetry full operating procedure 

Loading a sample 

• Close IN control valve 

• Open pressure release valve and leave open 

• Unscrew the three thumb screws. If difficult then possibility of some pressure in cell, 

Check the valves and repeat. 

• Remove top plate, cell cover and silver lid. Caution of heat if cell has been used. 

• Load sample and reference as normal. 

• Replace silver lid, cell cover and top plate 

• Uniformly finger tighten the three thumb screws. 

 

Replacing Gas in PDSC Cell 

• By Evacuation 

1. Close the IN control valve. 

2. Close the OUT control valve. 

3. Set the PURGE/FILL valve to fill. 

4. Set the output regulator on the source gas cylinder to the maximum initial pressure of 

the experiment. If the cell is to be operated at constant volume, do not exceed 7 MPa 

(1000 psi). 

5. Slowly open the IN control valve, and allow gas to fill the cell to about 2 MPa (300 

psi). 

6. Close the IN control valve, then open the pressure-release valve and allow the 

pressure to return to ambient. 

7. Close the pressure-release valve. 

8. Repeat steps 5 through 7 two times. 

9. Open the IN valve, and allow the pressure to build to the desired level. 

 

PDSC pressure by Constant volume 

• Cell is sealed – pressure will increase with temperature 

• After replacing the gas, check that all three cell valves are closed, that the cell is at 

some positive pressure, and the PURGE/FILL valve is set to purge. Use the cell pressure 

shown on the instrument display to determine the internal pressure of the cell. If the cell 

pressure is lower than the desired starting pressure, use the IN valve to raise it. 

• If the cell pressure is too high, use the OUT valve to lower it. However, use the IN and 

OUT valves conservatively; there is a lag in the reading of any pressure gauge, and if the 

valves are opened too rapidly or too far, the final pressure will overshoot or undershoot 

the desired starting pressure.  

• The maximum permissible starting pressure for constant volume operation is 7 MPa 

(1000psi) at room temperature. DO NOT exceed this value. 
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Example Thermogram produced of results from TA 2910 PDSC
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Appendix D. TD/ GC full operating procedure 

Sample preparation 

a) Cut a small section of the polymer chosen for analysis (30 – 40 mg) 

b) Cut a small amount of glass wool (≈ 5cm) 

c) Wrap the polymer sample in the glass wool and place it inside the thermal desorption 

sample tube. 

 

Two-stage thermal desorption 

In two-stage desorption, the personal monitoring tube is first thermally desorbed into a 

cold trap. The trap is then heated rapidly at more than 1200 K/min to introduce the 

sample as a narrow band into the chromatograph column. 

 

a) Press the GEN key; the GEN key, the METHOD key and the METHOD legend will 

all light. 

b) Select the method number (e.g. 1) by pressing the numeric key 2 then the ENTER 

key; the MODE key will light. 

c) Select mode 2 to obtain two-stage desorption by pressing the numeric key 2 and then 

the ENTER key; the OVEN key will light,  

d) Similarly enter the required temperature for primary desorption (e.g. 353K, 80°C); the 

DESORB key will light. 

e) Enter the primary desorption time (e.g. 10 minutes); the BOX key will light. 

f) Enter the valve BOX temperature (e.g. 353K, 80°C); the CTL key will light. 

g) Enter the cold trap minimum temperature (e.g. 300K, 30°C); the CTH key will light. 

h) Enter the maximum temperature for secondary desorption (e.g. 573K, 300°C); the 

ANAL key will light. 

j) Enter the time required for G.C. analysis (e.g. 30 minutes.); the FIRST key will light. 

k) Enter the first tube position (e.g. 1); the LAST key will light. 

i) Enter the last tube position number (e.g. 1); the PRESS key will light. 

m) Enter the minimum carrier pressure value e.g. 0.28 MPa (approximately 90% of the 

column pressure.) The last operation of the ENTER key enters the total method into 

memory and extinguishes all keys and displays. 

 

Gas Chromatography 

Single ramp program 323K (50°C) for one minute followed by 15°C/minute program to 

523K (250°C), which is then held for 30 minutes. 

 

a) Set the oven temperature to the required initial temperature (323K, 50°C). 

b) Set d 1 to zero  

c) Set rl to any value. 

d) Set l1 to 50°C    

e) Set d2 to 1 minute  

f) Set r2 to 15°C/minute. 

g) Set l2 to 250°C. 

h) Set d3 to 30 minutes. 
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Example chromatogram from AMS Model 93 Gas chromatograph 
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Appendix E. Road map approach to oxygen incident ignition causes. 

Figure E-1. Road map to assess the likelihood of pressure shock as a possible ignition source 
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Figure E-2. Road map to assess the likelihood of mechanical impact as a possible ignition source 

 

Mechanical

impact

High pressure

enriched Oxygen?
YES

NO

Are there 2 or more

fast striking bodies?
YES

NO

Evidence of

contamination?

Possibly ignition

source

Any non-metals

with SIT low enough

to reach being

impacted?

NO

NO

YES

YES

Unlikely to be

ignition source

Any light metals

used to make dead-

end section?

NO

YES

Either by external particles,

grease, or pieces of sheared/

damaged components

The EIGA safety info 15/08/E 
document provides specialist 

instructions for 23.5% oxygen by 
volume and a pressure above 3 MPa 

E.g. Aluminium, Titanium 
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Figure E-3. Road map to assess the likelihood of frictional heating as a possible ignition source 

 

The EIGA safety info 15/08/E 
document provides specialist 

instructions for 23.5% oxygen by 
volume and a pressure above 3 MPa 

E.g. Aluminium, Titanium 

ASTM G94-05 standard evaluates 
materials using the product of these 2 
factors, finding ignition occurred above 

values of between 0.061 and 3.96 

W/m
2
 x 10

-8
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Figure E-4. Road map to assess the likelihood of particle impact as a possible ignition source 

 

Particle 

impact 

NO 

YES Evidence of particle 
contamination? 

Possibly ignition 

source 

Any possible 
impingement sites 

displaying fire 
damage? 

NO 

YES 

Unlikely to be 

ignition source 

Either by external particles or 
pieces of sheared/ damaged 

components 

High pressure 
enriched Oxygen? 

Is high fluid 
velocity possible? 

e.g. a fast running system or 
possibility of fast-opening 

valve 

YES 

NO 

YES 

NO 

The EIGA safety info 15/08/E 
document provides specialist 

instructions for 23.5% oxygen by 
volume and a pressure above 3 MPa 
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 Figure E-5. Road map to assess the likelihood of cavity resonance as a possible ignition source 

 

Cavity 
resonance 

High pressure 
enriched Oxygen? YES 

NO 

Is there a dead- 
end tube showing 

damage? 
YES 

Are there the 
correct harmonic 

conditions? 
YES 

Resonant frequency calculated as a function 
of opening diameter, cavity volume and tube 

length. 

NO NO 

Evidence of 
contamination? 

Possibly ignition 

source 

Any non-metals 
with SIT low enough 
to reach in dead-end 

section? 

NO 

Any sintered/ 
thin bulk metal 

components in dead- 
end section? 

NO 

YES 

YES 

YES 

Unlikely to be 

ignition source 

NO 

Either by external particles, 
grease, or pieces of sheared/ 

damaged components 
The EIGA safety info 15/08/E 
document provides specialist 

instructions for 23.5% oxygen by 
volume and a pressure above 3 MPa 
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 Figure E-6. Road map to assess the likelihood of electric arcing/ sparking as a possible ignition source 

  
 

Electric arc/

spark

High pressure

enriched Oxygen?
YES

NO

Ungrounded/

short-circuited power

source

YES

High power

systems adjacent to

oxygen system?

YES

Several hundred

Amperes

NO NO

Evidence of

contamination?

Possibly ignition

source

Any non-metals

with SIT low enough

to reach?

NO

Any sintered/

thin bulk metal

components?

NO

YES

YES

YES
Unlikely to be

ignition source

NO

Either by external particles,

grease, or pieces of sheared/

damaged components

NO

Any light bulk

metals?
YES

e.g. Aluminium

The EIGA safety info 15/08/E 
document provides specialist 

instructions for 23.5% oxygen by 

volume and a pressure above 3 MPa 


