Pancyclicity when each cycle must pass exactly k Hamilton cycle chords

Fatima Affif Chaouche, Carrie Rutherford ${ }^{\dagger}$ Robin Whitty ${ }^{*}$

April 15, 2014

Abstract

It is known that $\Theta(\log n)$ chords must be added to an n-cycle to produce a pancyclic graph; for vertex pancyclicity, where every vertex belongs to a cycle of every length, $\Theta(n)$ chords are required. A possibly 'intermediate' variation is the following: given $k, 1 \leq k \leq n$, how many chords must be added to ensure that there exist cycles of every possible length each of which passes exactly k chords? For fixed k, we establish a lower bound of $\Omega\left(n^{1 / k}\right)$ on the growth rate.

Keywords: extremal graph theory, pancyclic graph, Hamilton cycle.
A simple graph G on n vertices is pancyclic if it has cycles of every length $l, 3 \leq l \leq n$. The study of these graphs was initiated by Bondy's observation [1, 2] that, for non-bipartite graphs, sufficient conditions for hamiltonicity can also be sufficient for pancyclicity. In general, we may distinguish, in a pancyclic graph G, a Hamilton cycle C; then the remaining edges of G form chords of C. We can then ask, given $k \leq l \leq n$ if, relative to C, a cycle of length l exists which uses exactly k chords. This suggests a k-chord analog of pancyclicity: do all possible cycle lengths occur when cycles must use exactly k-chords of a suitably chosen Hamilton cycle?
We accordingly define a function $c(n, k), n \geq 6, k \geq 1$, to be the smallest number of chords which must be added to an n-cycle in order that cycles of all possible lengths may be found, each passing exactly k chords. No Hamilton cycle can use exactly one chord of another Hamilton cycle, so that when $k=1$ cycle lengths must lie between k and $n-1$. The function is undefined for $k>n$. We define the function for $n \geq 6$ because $n=4,5$ are too restrictive to be of interest to us.

Our aim in this paper is to investigate the growth of the function $c(n, k)$ as n increases, for fixed k.

Example 1 Label the vertices around the cycle C_{6}, in order, as v_{1}, \ldots, v_{6}. Add chords $v_{1} v_{3}$ and $v_{1} v_{4}$; the result is a pancyclic graph. It also has cycles of all lengths ≤ 5 each passing exactly one of the chords. If $v_{2} v_{6}$ is added then cycles exist of all lengths ≥ 3, each passing two chords. If two further chords, $v_{2} v_{4}$ and $v_{4} v_{6}$, are added then cycles exist of all lengths ≥ 3, each passing three chords. For 4-chord cycles we require six chords to be added, i.e. $C(6,4)=6$. Six suitably chosen chords are also sufficient for 5 - chord and 6 - chord cycles: $C(6,5)=C(6,6)=6$.

Lemma 2 (1) $c(n, 1)=\left\lfloor\frac{n-3}{2}\right\rfloor$.

[^0](2) $c(n, k) \geq k$, with equality if and only if $k=n$.
(3) $c(n, n-1)=n$.

Proof. (1) follows from the observation that a chord in C_{n} forming a 1-chord cycle of length k automatically forms a 1 -chord cycle of length $n+2-k$.
(2) is immediate from the definition of $c(n, k)$.
(3) Let G consist of an $(n-1)$-cycle, together with an $(n-1)$-chord cycle on the same vertices.

Choose vertex v : let the chords at v be $x v$ and $y v$ and its adjacent cycle edges be $u v$ and $v w$, with u, v, w, x, y appearing in clockwise order around the cycle. Replace v and its incident edges with two vertices v_{u} and v_{w}, with edges $v_{u} v_{w}, u v_{u}, v_{w} w, x v_{w}$ and $y v_{u}$. The ($n-1$)-chord cycle in G becomes an $(n-1)$-chord n-cycle. Add an n-th chord $x v_{u}$ to give an $(n-1)$-chord ($n-1$)-cycle.
Table 1 supplies some small values/bounds for $c(n, k)$. The lower bounds are supplied by Corollary 7 (see below); except for those values covered by Lemma 2, exact values and upper bounds were found by computer search.

		\boldsymbol{k}										
\boldsymbol{n}	$\mathbf{6}$	2	3	5	6	6	6					
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
$\mathbf{7}$	2	3	5	6	6	7	7					
	$\mathbf{8}$	3	4	5	6	6	7	8	8			
	$\mathbf{9}$	3	4	5	6	7	8	8	9	9		
$\mathbf{1 0}$	4	4	5	6	≥ 6	≥ 7	≥ 8	≥ 9	10	10		
$\mathbf{1 1}$	4	4	≥ 5	≥ 6	≥ 7	≥ 7	≥ 8	≥ 9	≥ 10	11	11	
$\mathbf{1 2}$	5	4	≥ 5	≥ 6	≥ 7	≥ 7	≥ 8	≥ 9	≥ 10	≥ 11	12	
$\mathbf{1 3}$	5	4	≥ 5	≥ 6	≥ 7	≥ 8	≥ 8	≥ 9	≥ 10	≥ 11	≥ 12	

Table 1. Values of $c(n, k)$ for $6 \leq n \leq 13$ and $1 \leq k \leq 11$.
Our aim is to compare $c(n, k)$ with the number of chords required for pancyclicity and for vertex pancyclicity, in which each vertex must lie on a cycle of every length.

The following lower bound is stated without proof in [1]:

Theorem 3 In a pancyclic graph G on n vertices the number of edges is not less than $n-1+$ $\log _{2}(n-1)$.

For the sake of completeness we observe that theorem 3 follows immediately from the following lemma:

Lemma 4 Suppose p chords are added to $C_{n}, n \geq 3$. Then the number $N(n, p)$ of cycles in the resulting graph satisfies

$$
\binom{p+2}{2} \leq N(n, p) \leq 2^{p+1}-1
$$

Proof. Embed C_{n} convexly in the plane. Suppose the chords added to C_{n} are, in order of inclusion, $e_{1}, e_{2}, \ldots, e_{p}$. Say that e_{i} intersects e_{j} if these edges cross each other when added to
the embedding of C_{n}. Let n_{i} be the number of new cycles obtained with e_{i} is added. Then n_{i} satisfies:

1. $n_{i} \geq i+1$, the minimum occurring if and only if the e_{j} are pairwise non-intersecting for $j \leq i$;
2. $n_{i} \leq 2^{i}$, the maximum occurring if and only if e_{i} intersects with e_{j} for all $j<i$, giving $n_{i}=\sum_{j=0}^{i}\binom{i}{j}$.

Now $1+\sum_{i=1}^{p}(i+1) \leq 1+\sum_{i=1}^{p} n_{i} \leq 1+\sum_{i=1}^{p} 2^{i}$ and the result follows.
The exact value of the minimum number of edges in an n-vertex pancyclic graph has been calculated for small n by George et al [5] and Griffin [6]. For $3 \leq n \leq 14$ the lower bound in theorem 3 is exact; however, it can be seen that, for $n=15,16$, we must add four chords to C_{n} to achieve pancyclicity while the argument in the proof of lemma 4 can only account for three.

As regards an upper bound on the number of chords required for pancyclicity, [1] again asserts $O(\log n)$, again without a proof. A $\log n$ construction has been given by Sridharan [7]. Together with theorem 3 this gives an 'exact' growth rate for pancyclicity: it is achieved by adding $\Theta(\log n)$ chords to C_{n}.
In contrast, vertex pancyclicity, in which every vertex lies in a cycle of every length has been shown by Broersma [3] to require $\Theta(n)$ edges to be added to C_{n}. Our question is: where between $\log n$ and n does $c(n, k)$ lie? For fixed k, we find a lower bound strictly between the two: $\Omega\left(n^{1 / k}\right)$.
Let us for the moment restrict to $k \geq 3$. Suppose we add p chords to $C_{n}, 3 \leq k \leq p \leq\binom{ n}{2}-n$.
Suppose that these p added chords include a k-cycle. We will use $K(k, p)$, defined for $k \geq 3$, to denote the maximum number of k-chord cycles that can be created in the resulting graph. Then $1 \leq K(k, p)$ by definition and $K(k, p) \leq 2^{p+1}-1$ by lemma 4 , By lowering this upper bound we can increase the lower bound on $\mathrm{C}(\mathrm{n}, \mathrm{k})$.

Theorem $5 K(k, p) \leq\binom{ p}{k}+k\binom{p-k}{k-1}+\binom{p-k}{k}$.
We will use the following Lemma to prove theorem 5 .
Lemma 6 Suppose that a set X of chords is added to C_{n}. In the resulting graph the maximum number of cycles passing all edges in X is

$$
\begin{cases}1 & \text { if } X \text { contains adjacent chords } \\ 2 & \text { if no two chords of } X \text { are adjacent }\end{cases}
$$

Proof. Let G be the graph resulting from adding the chords of X to C_{n}. We may assume without loss of generality that G has no vertices of degree 2 , since such vertices may be contracted out. For a given cycle in G passing all chords of X, let H denote the intersection of this cycle with the C_{n}. Then H consists of isolated vertices and disjoint edges, and H is completely determined once any of these vertices or edges is fixed. If two chords are adjacent this fixes an isolated vertex of H; if no two chords are adjacent then there is a maximum of two ways in which a single edge of H may be fixed.

Proof of theorem[5, By definition of $K(k, p)$ we must use a set, say S, of k chords to create a k cycle. We add new chords to S, one by one. On adding the r-th additional chord, $1 \leq r \leq p-k$, we ask how many k-chord cycles use this chord. For any such a cycle the previous $r-1$ chords will be split between S and non- S chords: with i chords from S being used, $0 \leq i \leq k-1$, this can happen in

$$
\binom{k}{i}\binom{r-1}{k-i-1}
$$

ways. Since $i>1$ forces two adjacent chords in S to be used, summing over i, according to lemma6, and then over r gives

$$
K(k, p) \leq 1+\sum_{r=1}^{p-k}\left(2 \sum_{i=0}^{1}\binom{k}{i}\binom{r-1}{k-i-1}+\sum_{i=2}^{k-1}\binom{k}{i}\binom{r-1}{k-i-1}\right) .
$$

This simplifies (e.g. using symbolic algebra software such as Maple) to give the result.

Corollary 7 For given positive integers k and n, with $3 \leq k \leq n$ and $n \geq 6$, the value of $c(n, k)$ is not less than the largest root of the following polynomial in p :

$$
\Pi(p ; n, k)=\binom{p}{k}+k\binom{p-k}{k-1}+\binom{p-k}{k}-n+k-1
$$

We finally extend our analysis to include the cases $k=1,2$:
Corollary 8 Let $n \geq 6$ be a positive integer. Then for $k \geq 1$ fixed, $c(n, k)$ is of order $\Omega\left(n^{1 / k}\right)$.

Proof. For $k=1$ the required linear bound was provided in lemma2,
For $k=2$ an analysis similar to that used in the proof of theorem 5 shows that the number of 2 -chord cycles which may be created by adding p chords to C_{n} is at most $p^{2}-p-1$. So to have 2 -chord cycles of all lengths from 3 to n we require $p^{2}-p-1 \geq n-2$. In this case we can solve explicitly to get the bound $p \geq \frac{1}{2}(1+\sqrt{4 n-3})$.

Now suppose $k \geq 3$. In order to have all k-chord cycles of all lengths between k and n we must have

$$
n-k+1 \leq\binom{ p}{k}+k\binom{p-k}{k-1}+\binom{p-k}{k} \leq f(k) p^{k},
$$

for some function $f(k)$. Therefore $p^{k} \geq(n-k+1) / f(k)$ so, for k fixed, $p=\Omega\left(n^{1 / k}\right)$.

Remarks 9 1. We are suggesting that the value of $c(n, k)$ may be 'intermediate' between pancyclicity and vertex pancyclicity in the sense that the number of chords it requires to be added to C_{n} may lie between $\log n$ and n. Thus far we have only a lower bound in support of our suggestion. Moreover, a comparison of the growth orders, $\Omega(\log n)$ as opposed to $\Omega\left(n^{1 / k}\right)$, suggests that this is very much a 'for large n' type result. The equation $\ln n=n^{1 / k}$ has two positive real solutions for $k \geq 3$, given in terms of the two real branches of the Lambert W function [4]. In particular $\ln n$ exceeds $n^{1 / k}$ for $n>e^{-k W_{-1}(-1 / k)}$, and this bound grows very fast with k : at least two orders of magnitude per unit increase! To give a specific example, $k=10$, the \log bound exceeds the 10-th root bound until the number of vertices exceeds about 3.4×10^{15}. Until then, so far as our analysis goes, we might expect 'most' pancyclic graphs to be 10 -chord pancyclic. However we suggest that, in the long term, a guarantee of this implication, analogous to hamiltonicity guaranteeing pancyclicity, will not be found.
2. We would like to know if $c(n, k)$ is monotonically increasing in n. However, it is still open even whether pancyclicity is monotonic in the number of chords requiring to be added to C_{n} (the question is investigated in [6]). We believe that $c(n, k)$ it is not increasing in k and $c(n, 1)>c(n, 2)$ for $n=12,13$ confirms this in a limited sense. Our $n^{1 / k}$ lower bound instead suggests the possibility that $c(n, k)$ is convex for fixed n, as a function of k.
3. We observe that, unlike pancyclicity, the property of having cycles of all lengths each passing k chords is not an invariant of a graph: it depends on the initial choice of a Hamilton cycle. For example, in figure 1, there are cycles of all lengths ≤ 9 each passing exactly one of the $c(10,1)=4$ chords of the outer cycle but there is no 4-cycle passing exactly one chord of the bold-edge Hamilton cycle.

Figure 1: No 4-cycle uses exactly 1 chord of the bold-edge Hamilton cycle.

References

[1] Bondy, J.A., "Pancyclic graphs I", J. Combinatorial Theory B, 11 (1), 1971, 80-84.
[2] Bondy, J.A., "Pancyclic graphs: recent results, infinite and finite sets", in : Colloq. Math. Soc. János Bolyai, Keszthely, Hungary, 1973, 181187.
[3] Broersma, H.J., "A note on the minimum size of a vertex pancyclic graph", Discrete Math., 164, 1997, 29-32.
[4] Corless, R., Gonnet, G., Hare, D., Jeffrey, D. and Knuth, D., "On the Lambert W function", Advances in Computational Mathematics, 5, 1996, 329-359.
[5] George, J.C., Marr, A. and Wallis, W., "Minimal pancyclic graphs", J. Combinat. Math. and Combinat. Comput., 86, 2013, 125-133.
[6] Griffin, S., "Minimal pancyclicity", preprint, arxiv.org/abs/1312.0274, 2013.
[7] Sridharan, M. R., On an extremal problem concerning pancyclic graphs, J. Math. Phys. Sci., 12, 1978, 297-306.

[^0]: *University of Sciences and Technology Houari Boumediene, Algiers
 ${ }^{\dagger}$ London South Bank University
 ${ }^{\ddagger}$ Queen Mary University of London

