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Pancyclicity when each cycle must pass exaktly
Hamilton cycle chords

Fatima Afif ChaouchéCarrie RutherforfiRobin Whitty*

April 15, 2014

Abstract It is known that®(logn) chords must be added to arcycle to produce a pancyclic
graph; for vertex pancyclicity, where every vertex belotms cycle of every length®(n) chords
are required. A possibly ‘intermediate’ variation is thddwing: givenk, 1 < k < n, how many
chords must be added to ensure that there exist cycles of pussible length each of which passes
exactlyk chords? For fixedt, we establish a lower bound 6fn/%) on the growth rate.

Keywords: extremal graph theory, pancyclic graph, Hamilton cycle.

A simple graphG on n vertices ispancyclicif it has cycles of every length 3 < | < n. The
study of these graphs was initiated by Bondy’s observafigg]that, for non-bipartite graphs,
suficient conditions for hamiltonicity can also befcient for pancyclicity. In general, we
may distinguish, in a pancyclic grajgh a Hamilton cycleC; then the remaining edges Gf
form chords ofC. We can then ask, givdn< | < nif, relative toC, a cycle of length exists
which uses exactlk chords. This suggestskachord analog of pancyclicity: do all possible
cycle lengths occur when cycles must use exaktthords of a suitably chosen Hamilton
cycle?

We accordingly define a functiog(n, k), n > 6, k > 1, to be the smallest number of chords
which must be added to ancycle in order that cycles of all possible lengths may benthu
each passing exactkchords. No Hamilton cycle can use exactly one chord of amdiaenil-
ton cycle, so that whek = 1 cycle lengths must lie betwednandn — 1. The function is
undefined fok > n. We define the function fan > 6 becaus@ = 4,5 are too restrictive to be
of interest to us.

Our aim in this paper is to investigate the growth of the fiorct(n, k) asn increases, for
fixed k.
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Example 1 Label the vertices around the cycle,Gn order, as v, ...,Vs. Add chords ws
and Vg, the result is a pancyclic graph. It also has cycles of allgérs < 5 each passing
exactly one of the chords. 15w is added then cycles exist of all lengths3, each passing
two chords. If two further chords,,v, and wvs, are added then cycles exist of all lengths
> 3, each passing three chords. For 4-chord cycles we requxecisords to be added, i.e.
C(6,4) = 6. Six suitably chosen chords are alsgfaient for5 — chord andé — chord cycles:
C(6,5) = C(6,6) = 6.
Lemma2 (1) on,1)= {%ﬂ
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(2) dn, k) > k, with equality if and only if k= n.
(3) dn,n-1) =n.

Proof. (1) follows from the observation that a chord@j forming a 1-chord cycle of lengtk
automatically forms a 1-chord cycle of lengih 2 — k.

(2) is immediate from the definition a{n, k).

(3) LetG consist of antf— 1)-cycle, together with am(- 1)-chord cycle on the same vertices.
Choose vertex: let the chords at be xv andyv and its adjacent cycle edges breandvw,
with u, v, w, X,y appearing in clockwise order around the cycle. Replaead its incident
edges with two verticeg, andv,,, with edges/,w,, uv,, v,Ww, xv, andyv,. The (- 1)-chord
cycle inG becomes ann(— 1)-chordn-cycle. Add am-th chordxy, to give an fi— 1)-chord
(n-1)-cycle. O

Table 1 supplies some small valyesunds forc(n, k). The lower bounds are supplied by
Corollary(7 (see below); except for those values covereddmmd 2, exact values and upper
bounds were found by computer search.

l; 2 3 4 5 6 7 8 9 10 11
n 6| 2 3 5 6 6 6
7\ 2 3 5 6 6 7 7
8| 3 4 5 6 6 7 8 8
9| 3 4 5 6 7 8 8 9 9
10| 4 4 5 6 >6 >7 =8 =9 10 10
1| 4 4 =5 >6 =>7 >7 =28 >9 >10 11 11
12 5 4 >5 >6 =27 =7 =8 =9 >10 =>11 12
3/ 5 4 >5 >6 =>7 =28 =8 >9 >10 >11 =>12

Table 1. Values o€é(n,k) for6 < n< 13 and 1< k < 11.

Our aim is to compare(n, k) with the number of chords required for pancyclicity and for
vertex pancyclicityin which each vertex must lie on a cycle of every length.

The following lower bound is stated without proof in [1]:

Theorem 3 In a pancyclic graph G on n vertices the number of edges isasstthan - 1 +
logz(n — 1). O

For the sake of completeness we observe that theldrem 3 fitomediately from the follow-
ing lemma:

Lemma4 Suppose p chords are added tg @ > 3. Then the number (4, p) of cycles in the
resulting graph satisfies

(p; 2) <N(n,p) < 2P - 1.

Proof. EmbedC, convexly in the plane. Suppose the chords adde@,tare, in order of
inclusion,e;, &, ..., €, Say thak intersects; if these edges cross each other when added to
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the embedding of,. Let n; be the number of new cycles obtained wahs added. Them,;
satisfies:

1. n > i+ 1, the minimum occurring if and only if the are pairwise non-intersecting for
j<i

2. n; < 2, the maximum occurring if and only & intersects withe; for all j < i, giving

=)

P P P
Now 1+ Z(i +1)<1+ Z n<1l+ Z 2" and the result follows. O

i=1 i=1 i=1
The exact value of the minimum number of edges imarertex pancyclic graph has been
calculated for smalh by George et al [5] and Giin [6]. For 3< n < 14 the lower bound in
theoreniB is exact; however, it can be seen thatnfer15, 16, we must add four chords to
C, to achieve pancyclicity while the argument in the proof ehieal4 can only account for
three.

As regards an upper bound on the number of chords requirgaafuryclicity, [1] again as-
sertsO(logn), again without a proof. A log construction has been given by Sridharan [7].
Together with theorerl 3 this gives an ‘exact’ growth rategancyclicity: it is achieved by
adding®(logn) chords taC,.

In contrastyertex pancyclicityin which every vertex lies in a cycle of every length has been
shown by Broersmé [3] to requi®(n) edges to be added 18,. Our question is: where
between logn andn doesc(n, k) lie? For fixedk, we find a lower bound strictly between the
two: Q(n'/¥).

: n
Let us for the moment restrict o> 3. Suppose we adplchords toC,, 3< k< p < N n.

Suppose that thegeadded chords includelacycle. We will useK(k, p), defined fork > 3,

to denote the maximum number loichord cycles that can be created in the resulting graph.
Then 1< K(k, p) by definition andK (k, p) < 2! — 1 by lemmd#. By lowering this upper
bound we can increase the lower bound on C(n,k).

Theorem 5 K(k, p) < (E) + k(E: il() + (p; k).

We will use the following Lemma to prove theoréin 5:

Lemma 6 Suppose that a set X of chords is added {0l€ the resulting graph the maximum
number of cycles passing all edges in X is

1 if X contains adjacent chords
2 if notwo chords of X are adjacent

Proof. Let G be the graph resulting from adding the chordsXofo C,. We may assume
without loss of generality tha® has no vertices of degree 2, since such vertices may be
contracted out. For a given cycle @ passing all chords aoX, let H denote the intersection

of this cycle with theC,. ThenH consists of isolated vertices and disjoint edges, ldnd
completely determined once any of these vertices or edde®ds If two chords are adjacent
this fixes an isolated vertex of; if no two chords are adjacent then there is a maximum of
two ways in which a single edge &f may be fixed. O
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Proof of theorem[5. By definition ofK(k, p) we must use a set, s&y of k chords to create la
cycle. We add new chords & one by one. On adding teth additional chord, X r < p-k,
we ask how many-chord cycles use this chord. For any such a cycle the previet chords
will be split betweers and nonS chords: withi chords fromS being used, & i < k-1, this

can happenin
kK\( r-1
ifNk-i-1

ways. Sincea > 1 forces two adjacent chords $1to be used, summing overaccording to

lemmd®, and then overgives
K\( r—-1 Sk r-1
({52 20 )

p-k 1

K(k,p) <1+ Z(ZZ

r=1 i=0

This simplifies (e.g. using symbolic algebra software siecMaple) to give the result. O

Corollary 7 For given positive integers k and n, wigh< k < n and n> 6, the value of (, k)
is not less than the largest root of the following polynonmap:

H(p;n,k)=(E)+k(£:ll()+(p;k)—n+k—l.

We finally extend our analysis to include the cakesl, 2:
Corollary 8 Let n> 6 be a positive integer. Then fork 1 fixed, €n, k) is of orderQ(n/%).

Proof. Fork = 1 the required linear bound was provided in lenitha 2.

Fork = 2 an analysis similar to that used in the proof of thedrém %vshtbat the number of
2-chord cycles which may be created by addmghords toC, is at mostp? — p— 1. So to
have 2-chord cycles of all lengths from 3riave requirep? — p— 1 > n— 2. In this case we

- 1
can solve explicitly to get the bourml> > (1 + Vin - 3).

Now supposd > 3. In order to have ak-chord cycles of all lengths betwe&mandn we must

have c c
B p\ . [P-K| (p- ’
n k+1§(k)+k(k_l)+( K )sf(k)p,
for some functionf (k). Thereforep® > (n -k + 1)/ f (k) so, fork fixed, p = Q(n*/¥). O

Remarks9 1. We are suggesting that the value ¢f,&) may be ‘intermediate’ between
pancyclicity and vertex pancyclicity in the sense that taeber of chords it requires
to be added to ¢may lie betweetogn and n. Thus far we have only a lower bound
in support of our suggestion. Moreover, a comparison of ttwvgh orders,Q(logn)
as opposed t&(n'/%), suggests that this is very much a ‘for large n’ type resuhe T
equationinn = n' has two positive real solutions for k 3, given in terms of the
two real branches of the Lambert W function [4]. In particulan exceeds ¥ for
n> e *a(-/K and this bound grows very fast with k: at least two orders afjnitude
per unit increase! To give a specific examples KO, thelog bound exceeds the 10-th
root bound until the number of vertices exceeds al3otik 10*°. Until then, so far as
our analysis goes, we might expect ‘most’ pancyclic graphset 10-chord pancyclic.
However we suggest that, in the long term, a guarantee ofrtijpéication, analogous
to hamiltonicity guaranteeing pancyclicity, will not beufed.
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2. We would like to know if(o, k) is monotonically increasing in n. However, it is still open
even whether pancyclicity is monotonic in the number of @hoequiring to be added
to C, (the question is investigated ihl[6]). We believe th@t, &) it is not increasing
ink and ¢n, 1) > c¢(n, 2) for n = 12 13 confirms this in a limited sense. Out'fhlower
bound instead suggests the possibility tHat k) is convex for fixed n, as a function of k.

3. We observe that, unlike pancyclicity, the property ofilgycles of all lengths each
passing k chords is not an invariant of a graph: it depends loa ihitial choice of
a Hamilton cycle. For example, in figure 1, there are cycleslbfengths< 9 each
passing exactly one of th€l®, 1) = 4 chords of the outer cycle but there is no 4-cycle
passing exactly one chord of the bold-edge Hamilton cycle.

Figure 1: No 4-cycle uses exactly 1 chord of the bold-edge iHancycle.
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