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ABSTRACT 

An energy efficient thermo-siphon method of defrosting the air coils on a commercial half glass door 

(HGD)/well retail display cabinet has been developed (FrigescoTM) and the performance compared with the 

existing electric defrost system under EN ISO 23953 test room conditions. 

 

Previous work by (Foster et al, 2013) used a passive thermo-siphon to defrost the top evaporator inside the 

top (glass door) section and a pump assisted thermo-siphon to defrost the well section.  This was due to the 

head being too low to adequately defrost the well evaporator with a passive thermo-siphon. 

 

This work describes a passive thermo-siphon with no pump.  To enable the thermo-siphon to operate 

efficiently the design of the evaporator was optimised.  The thermo-siphon heated quicker and melted water 

faster than the electric defrost.  The thermo-siphon used less electrical heat and had an added benefit of free 

sub-cooling. 

1. INTRODUCTION 

To maintain food at acceptable temperatures, both frozen and chilled refrigerated cabinets run their 

evaporative coils at temperatures less than 0°C.  Because of this they need to defrost at regular intervals to 

remove any ice build-up.  With chilled cabinets this can usually be achieved with an off-cycle (or passive) 

defrost, where the refrigerant flow is stopped and the evaporator allowed to warm naturally to above 0°C, 

melting the ice.  With frozen cabinets this is not possible, as it would be extremely slow and cause the food 

to defrost.   

 

The two most common defrost methods used in supermarket applications for defrosting frozen cabinets are:    

1. Resistive electric heater imbedded in or at the edges of the evaporator. 

2. Hot refrigerant gas from the compressor or receiver is diverted into the evaporator. 

 

Electric defrost heaters use a significant amount of energy.  Due to the inefficiency of getting heat from the 

defrost rods to all of the iced fins, much of this energy goes into the cabinet (overhead), rather than into 

melting the ice.  Lawrence and Evans (2008) found the overhead to be around 85% of the energy for a 2.5 m 

frozen food well display cabinet at climate class 3 (temperature of 25 °C and relative humidity of 60%).  

This extra heat warms the product and needs to be removed by the refrigeration system.  Therefore, the 

defrost has direct electrical energy from the resistive heaters plus an indirect refrigeration energy required to 

remove the extra heat. The cabinet often has to run at a reduced set point to allow for the increase in product 

temperature during the defrost, increasing refrigeration energy consumption. 

 

Fricke and Sharma (2011) estimated the total electrical energy consumption for the electric defrost of a low 

temperature glass doored reach-in case to be 176 kWh/(year ft) or 577 kWh.m
-1

 p.a.  This energy 

consumption includes both the direct energy associated with operating the defrost heater and the energy 

consumed by the compressor to remove the excess defrost heat from the display case. 

 

Gas defrosts have the advantage that they are heating the refrigerant pipes directly, evenly and the maximum 

temperatures are more limited than electric defrosts.  During a hot gas defrost, refrigerant gas is taken from 
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the compressor and passed through the evaporator.  In both cases the gas condenses in the evaporator giving 

up heat to melt the ice.  The advantage with this system is that the defrosts are fast and efficient.  The low 

temperature of the heat, compared to electric defrosts results in less steaming.  However, certain problems 

are associated with hot/cool gas defrosts.  These include extra piping and valving, thermal shocks caused by 

rapid temperature changes which can cause pipes to leak and the need for head pressures to be high to force 

the gas through the pipes to the evaporator.  

 

The Kramer-Trenton Company patented a heat bank defrost (Thermobank method), where the discharge of 

the compressor heats a water store  (Dossat).  During a defrost the heat from the water bank is used to re-

evaporate the refrigerant condensed in the defrosting evaporator. 

 

Previous work by (Foster et al, 2013) used a passive thermo-siphon to defrost the top evaporator inside the 

top (glass door) section and a pump assisted thermo-siphon to defrost the well section.  This was due to the 

head being too low to adequately defrost the well evaporator with a passive thermo-siphon.  The same 

system has been employed on a walk in freezer (Campbell et al, 2014). 

 

This paper describes a novel phase change material (PCM) thermo-siphon defrost system (Frigesco™) which 

is attached directly to the suction and liquid pipes of a refrigerated display cabinet and does not require the 

compressor or a pump to run during the defrost.  It uses the exchange of heat from the liquid line to the 

evaporator during a defrost to sub-cool the liquid line, allowing a reduction in refrigeration energy from the 

defrosts, as opposed to an increase, with other defrost systems. 

2. EXPERIMETAL METHOD 

2.1.  Cabinet 

The cabinet tested was an Epta XE0046 2.5 m long remote half glass door (HGD) and well frozen cabinet.  

The cabinet had a single refrigeration system for both the HGD and well.  The evaporator lay in the base of 

the well, air was ducted up the rear of the cabinet and discharged into the HGD section at the top front.  Air 

was returned at the bottom front and into the well section at the top rear.  This air was returned back to the 

evaporator at the top front of the well.  The evaporator was fed with R404A refrigerant from a remote 

refrigeration compressor.  The expansion device was a thermostatic expansion valve (TEV).  Two fans at the 

front (upstream) of the evaporator forced air through the evaporator and around the cabinet. 

 

The cabinet had an electric defrost system which consisted of 3 resistance heater elements, one at the front 

(upstream) and two at the rear (downstream) of the evaporator.  Fans were off during the defrost. 

 

The supermarket settings for the cabinet were 2 defrosts per day (every 12 hours) with a minimum and 

maximum defrost time of 20 and 45 minutes respectively and a termination temperature of 5ºC.  However, 

for the electric defrosts tests the termination temperature was increased to 10 ºC as 5ºC was not high enough 

to clear all the ice. 

 

2.2.  Thermo-siphon defrost 

The novel defrost consisted of a heat exchanger (HE) placed within a stainless steel tank containing a phase 

change material (PCM) (Puretemp 15, Entropy Solution Inc.) with a melting point of 15ºC and a heat storage 

capacity of 182 kJ.kg
-1

.  The PCM was designated as 100% Bio-based (composed of agricultural, forestry or 

marine ingredients) by the US Department of Agriculture (USDA).   During normal running, liquid 

refrigerant from the condenser passed though the HE and melted the PCM, sub-cooling the refrigerant before 

it passed into the cabinet evaporator (Figure 1a).  During a defrost, valves were actuated such that the cold 

evaporator and the HE formed a closed loop (Figure 1b).  To instigate an effective thermo-siphon an 

appropriate sequence and duration of valve opening and closing was determined.  The evaporator was now 

fed by refrigerant gas from the HE.  This hot gas condensed in the evaporator, heating it.  The liquid from the 

evaporator drained naturally (due to the higher height of the evaporator) to the HE, solidifying the PCM.  

The thermal capacity of the PCM was such that a temperature gradient was formed between the HE and the 

evaporator allowing a thermo-siphon to exchange heat between the two.   

 



When the ice on the evaporator was melted and the PCM was solidified, the valves returned the system to 

normal operation.  Refrigerant was pulsed back to the suction of the compressor at a rate which avoided 

liquid/compressor issues.  The PCM now started to melt again, and when melting was complete a defrost 

could again be activated. 

 

The PCM HE was placed underneath the cabinet, with a height of 190 mm between the top of the PCM and 

the bottom of the evaporator. 

 

The length of the defrost cycle was adjusted to allow the PCM to fully solidify and thus exchange all its 

latent heat with the evaporator during the defrost.  The number of defrosts per day were increased to 6, to 

make best use of this sub-cooling effect.  The defrosts were terminated by time, with a 35 minute duration. 

 

As there was less overall heat during the defrost, it was necessary to heat the base plate to a temperature 

above 0ºC.  To do this a temperature controlled heater mat (0.5 kW) was fitted to the base plate and a heater 

tape (0.2 kW) run along the drain channel and the return grille.  These heaters were activated only during the 

defrost period. 

 

                          

Figure 1a.  Schematic of system on charge.     Figure 1b.  Schematic of system during defrost. 

 

2.3.  Evaporator 

The original evaporator was of dimensions 2.06 x 0.144 x 0.4 m.  It was 8 tubes (5/8 inch) deep and 3 tubes 

high with 3 circuits.  Fin spacing was 7.5 mm.  The evaporator sat on the base of the cabinet which was at 

angle of 5º, such that water from defrosts drains to the front of the cabinet and out of the drain hole (Figure 

2).  

 

Figure 2.  Vertical section of original evaporator layout.  

During thermo-siphon, the refrigerant gas entered the front of the evaporator (fan end) and liquid exited at 

the rear.  Due to the angle of the base (5º), the exit was higher than the entrance.  It was necessary to slope 

the evaporator upwards by 10º by raising the front to allow the liquid refrigerant to flow downwards during 

thermo-siphon (Figure 3).  A baffle was placed underneath the evaporator to stop air by–passing the 

evaporator and a new fan baffle was made which angled the fans more to the vertical than previously. 

Liquid Line
Solenoid Valve

TEV

Evaporator
Suction Header

Liquid Header

Check
Valve

Suction Line
Solenoid Valve

Defrost Vapour
Valve

Heat Store
Module

Solenoid Valve

Liquid Line
Solenoid Valve

Expansion
Valve

Evaporator
Suction Header

Liquid Header

Defrost Liquid
Valve

Suction Line
Solenoid Valve

Defrost Vapour
Valve

Heat Store
Module

Evaporator 

Drain channel 

Air flow 

5º 

Fan baffle 



 

Figure 3.  Vertical section of evaporator after tilting upwards. 

The thermo-siphon was slower than hoped, due to a perceived large pressure drop caused by the distributor 

pipes, restricting the mass flow of the thermo-siphon.  A gas defrost header (GDH) was added to the 

evaporator.  This system is used in hot gas defrost systems to increase the rate of defrost and stopping 

condensed refrigerant logging in the coil, preventing even defrosting.  A schematic of a GDH evaporator is 

shown in Figure 4 with flow direction as during a thermo-siphon defrost.  The returning liquid by-passes the 

distributor and flows to the PCM/HE through the check valve. 

 

Figure 4.  Schematic diagram of evaporator with gas defrost header (GDH)  Arrows show direction of flow 

during a defrost. 

 

2.4. Instrumentation 

Weighing scales were positioned under the defrost drain pipe.  The weighing scales contained a pump and 

controller/timer, such that the water was pumped out of the weighing scales 1 hour after the defrost had 

finished.  The mass of water was logged every 20 s. 

  

Temperatures of the evaporator and liquid refrigerant into and out of the PCM/HE were measured to an 

accuracy of ±0.5°C using calibrated ‘t’ type thermocouples.  Thermocouples were strapped tightly to the 

ends of the evaporator and the pipes into and out of the PCM/HE and recorded every 1 minute 

 

A power meter (Northern Design, MultiCube) was connected with the stabilised mains electrical supply (230 

V) to monitor and record electrical power consumption of all parts of the cabinet except the remote 

refrigeration system (lights, trim heaters, defrost heaters, controllers, solenoid valves, tray heaters).   

 

The mass flow rate of refrigerant was measured using a calibrated Coriolis mass flow meter (Krohne 

Optimass) with an accuracy of ±0.1%.  This was on the liquid line (sub-cooled) upstream of the cabinet.   

 

2.5. Test 
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The half glass door section of the cabinet was loaded with Tylose test packs and loaded according to 

EN23953:2005.   

Tests with both the traditional (electric) and thermos-siphon defrost system were carried out in a test room 

conforming to EN23953:2005 standards.  During the test, the room conditions were maintained within 

climate class 3 (25°C and 60% RH). 

The condensing pressure was controlled using a condensing pressure regulator.  The liquid temperature was 

maintained to approximately 25ºC to adequately melt the PCM between defrosts.   

3. RESULTS 

Figure 4 shows mass of water during both electric and thermo-siphon defrost.  Water exits the drain pipe 7.6 

minutes earlier for the thermo-siphon compared to the electric defrost.  The thermo-siphon in this experiment 

removes slightly more water than the electric; however, this is due to experimental irreproducibility. 

 

Figure 4 also shows the electrical power during the defrost.  There was a base power of 1000 W which 

included trim heaters and lights.  During both defrosts (for a time of 23 minutes), the heater mat was 

activated.  For the length of the entire defrost the heater tape was activated.  For the electric defrost there was 

an extra power of 3.65 kW for a period of 23 minutes.  The thermo-siphon used 1.3 kWh during a defrost. 

 

 
Figure 4.  Mass of water exiting the defrost pipe for both the thermo-siphon and electric defrost.  
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Figure 5 shows temperatures at the end of the evaporator at the fastest and slowest positions to heat up 

during a thermo-siphon defrost.  The fastest position was the top front of the evaporator and the slowest was 

the bottom rear.  The front was the entry of the thermos-siphon and the rear the exit. 

 

Temperatures started to rise sooner for the thermo-siphon than the electric defrost, reaching 0ºC, 10.5 

minutes quicker at the front and 8 minutes earlier at the rear.  The front of the coil reached 0ºC, 6.5 minutes 

quicker than the rear for the thermos-siphon defrost.  The temperature during electric defrosts continued 

rising higher in the electric defrosts, reaching a maximum of 22.5ºC during electric compared to 11.1ºC for 

the thermo-siphon, both at the front. 

 

 

 
Figure 5.  Temperatures at the end of the evaporator at the fastest and slowest positions to heat up during a 

thermo-siphon defrost. 

 

Figure 6 shows the temperature of the liquid refrigerant into and out of the heat store, the subsequent level of 

sub-cooling and the mass flow.  Based on an average mass flow rate of 14.4 g.s
-1

, sub-cooling of 6.2 K and a 

specific heat capacity of liquid R404A of 1.5 kJ.kg
-1

.K
-1

over the period between defrosts, we can calculate an 

average reduction in cooling duty of 134 W between defrosts, which equates to 0.446 kW.h
-1

 per defrost.  At 

6 defrosts per day, this would equate to 2.68 kW.h
-1

. 
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Figure 6 Temperature of the liquid refrigerant into and out of the heat store, the subsequent level of sub-

cooling and the mass flow. 

4. CONCLUSIONS 

A novel thermo-siphon defrost has been shown to be able to defrost a refrigerated display cabinet using heat 

stored from the liquid line passing through a heat exchanger immersed in a PCM.   

 

Faster heating of the evaporator resulted in water melting more quickly.  

 

The benefits of the thermos-siphon are;  

 

 it does not require electric defrost heaters (particular benefit with hydrocarbon refrigerants) 

 uses less electrical energy 

 uses less refrigeration energy due to sub-cooling 

 higher duty (due to sub-cooling) directly after defrost allows a quicker reduction in product 

temperature. 

 

Further work is required to test the overall energy savings of the system.  It is expected than an extra saving 

on refrigeration energy is produced due to the more efficient defrost. 

 

A positive consequence of the inefficient high temperature electric defrost is that more heat is available to 

melt ice away from the evaporator.  With the thermo-siphon defrost, methods need to be employed to make 

sure all ice is removed from the cabinet between defrosts. 

 

The work needs to be repeated with other refrigerants which have a longer life regarding the F-gas 

regulations (EU, 2014), e.g.  R407.  Parallel studies on a cold store have shown good results with R407F. 
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