
ar
X

iv
:1

41
1.

48
13

v1
  [

cs
.C

R
] 

 1
8 

N
ov

 2
01

4

On the Security of Fully Homomorphic

Encryption and Encrypted Computing

Is Division Safe?

Peter T. Breuer and Jonathan P. Bowen⋆

School of Computing, Telecommunications and Networks, Birmingham City
University, UK

Peter.T.Breuer@gmail.com, jonathan.bowen@bcu.ac.uk

Abstract. Since fully homomorphic encryption and homomorphically

encrypted computing preserve algebraic identities such as 2 ∗ 2 = 2 + 2,
a natural question is whether this extremely utilitarian feature also sets

up cryptographic attacks that use the encrypted arithmetic operators to

generate or identify the encryptions of known constants. In particular,

software or hardware might use encrypted addition and multiplication to

do encrypted division and deliver the encryption of x/x = 1. That can

then be used to generate 1 + 1 = 2, etc, until a complete codebook is

obtained.

This paper shows that there is no formula or computation using 32-

bit multiplication x ∗ y and three-input addition x + y + z that yields a

known constant from unknown inputs. We characterise what operations

are similarly ‘safe’ alone or in company, and show that 32-bit division is

not safe in this sense, but there are trivial modifications that make it so.

1 Introduction and Background

Cryptographers have been looking for fully homomorphic encryptions since cryp-
tography became a modern science - Rivest (of RSA public/private key cryp-
tography fame) was the first to give the idea a name [9] and to point out that
it would make it possible to carry out any kind of operation on encrypted data
without ever revealing what lies underneath. RSA cryptography itself is par-
tially homomorphic in that RSA(x,m) ∗ RSA(y,m) = RSA(x ∗ y,m) mod m
for encryption RSA with modulus m, and that enables some features of the
digital economy today, such as being able to give change offline from digitally
encrypted money.

Thus Gentry’s 2009 construction for the first time of a fully homomorphic
encryption (FHE) [6] – that is, one in which E(x+ y) = E(x) +E(y) as well as
E(x ∗ y) = E(x) ∗E(y) – was very significant, and since then IBM in particular
have devoted considerable resources towards making the original scheme more
practical. Gentry’s encryption scheme is a realisation of Rivest’s vision, in that

⋆ Jonathan Bowen acknowledges the support of Museophile Limited.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/227104452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1411.4813v1


2 P. T. Breuer and J. P. Bowen

it works with very large integers, around the million-bit mark. So far, the teams
working on it have got the time taken for doing a single bit operation down to
the order of a second or even less, on very powerful vector hardware [7], and
others are employing more off-the-shelf components (GPUs) in efforts to further
commoditize the idea [10], while improved schemes that may be more practicable
than the original have been proposed [5]. If bank accounts were encoded in a
fully homomorphic encryption uniquely known to the bank customer, then the
bank could add and subtract amounts, and add interest to the account, without
the bank ever learning what amount lies in the account.

Numerical alchemy. The magic mentioned above is a reflection of the fact
that logical AND and (exclusive) OR are just multiplication and addition in
modulo 2 arithmetic, so an entire logic circuit can run encrypted under a homo-
morphic encryption, such as the one in an electronic calculator that computes
sums and cumulative interest. Anything a logic circuit can do to unencrypted
data, that can also be done by combining plus and times on the encrypted
data. That includes running a different encryption’s entire decryption circuit
encrypted, which results in one being able to change the homomorphic encryp-
tion on a piece of data without doing any decryption or encryption.

Nevertheless, in practice, the operations on encrypted numbers that imple-
ment a fully homomorphic encryption scheme are not quite as simple as plain
multiplication and addition – even in the (partially homomorphic) RSA case the
remainder after dividing by m has to be taken, and fast division by a 4096 bit
number is not within easy reach of consumer electronics. Frequent ‘renormal-
izations’ like that are required under Gentry’s and all other fully homomorphic
encryption schemes known so far (otherwise the numbers grow too big in the
intermediate calculations), and the outcome is that doing addition and multipli-
cation on encrypted numbers is not yet very practical.

The ‘homomorphically encrypted computing’ alternative. The present
authors showed in [1] that it is possible to design an entire processor in such a
way that it works encrypted, provided only that its arithmetic logic unit (ALU)
satisfies certain algebraic identities that boil down to requiring that the ALU
electronics supplies operations on encrypted numbers that correspond to plus
and times, etc, on unencrypted numbers. The data passing through memory,
registers and buses is always in encrypted form. There are certain restrictions on
the kind of programs that can run encrypted, because multiple encryptions of the
same values lead to hardware aliasing [2] and because encrypted data addresses
and unencrypted program addresses must be kept apart [4], but that is all. This
kind of setup may be called homomorphically encrypted computing (HEC), and
the encrypted processor that works in this way may be called a general purpose
crypto-processor unit (KPU).

If the encryption in a KPU were a fully homomorphic encryption, then the
ALU would just implement ordinary but very long word-length computer plus
and times, with renormalizations. But there is no need to use a fully homo-
morphic encryption – any one of block-size comparable to the processor word-
size will do in principle. The ALU electronics is designed instead to implement



Is Division Safe? 3

whatever operations +′ and ∗′ are required to give E(x + y) = E(x) +′ E(y)
and E(x ∗ y) = E(x) ∗′ E(y) with respect to the encryption E (note that these
equations are prescriptive for +′ and ∗′). The word-size is typically close to the
conventional word-size, and there is no real need for +′ and ∗′ to be as simple
as ordinary plus and times. Indeed, some secrets of the encryption may be em-
bedded in the hardware, because SmartCard-like techniques [8] can be used in
the processor in order to protect that data and the processes that manipulate it
from physical probes.

In contrast, the arithmetic operators (plus and times, etc) in a fully homo-
morphic encryption are implemented in software, thus open (in principle) to
scrutiny, and so they may not embed within any secret of the encryption.

A common attack mode. Whatever their relative merits, both software
(FHE) and hardware (HEC) approaches are subject to identical attacks via the
natural algebra of arithmetic. Everyone knows that 2 + 2 = 2 ∗ 2, so what if a
malicious observer sees the encrypted arithmetic produce both 53 = 42+42 and
53 = 42 ∗ 42? They should conclude that 42 is the encryption of the number 2,
and 53 is the encryption of the number 4.

In practice, an observation like that will be rare (but not never, and once
is enough). Real encryptions use padding under the encryption that makes it
unlikely, because that induces many different encodings of each unencrypted
number, so the encryption for 4 from 2 + 2 will not be the same as the encryp-
tion for 4 from 2 ∗ 2. The design for a KPU at sf.net/projects/kpu uses 32
bits of padding for 32 bits of data in 64 physical bits, and IBM’s million-bit
implementation of 1-bit logic must have an effective 999999 bits of padding. One
should expect 4(232)3232 = 2130 computations of 2+2 and 2∗2 in a KPU, under
the same encryption, before 2+2 = 2∗2 can be recognised. Still, there are many
arithmetic identities to look out for, and each step of a computation that an
attacker can observe is one more opportunity.

The odds tilt towards an attacker, however, when the attacker can choose
the computations. If the attacker can try x+ x and x ∗ x for many (encrypted)
values x, x + x = x ∗ x may be found allowing the attacker to deduce what x
the encryption of 2 is (the situation is more complicated if an ‘ABC typing’ [3]
is embedded in the ALU, which causes x op x to always give a nonsense result,
for any arithmetic operation, at the cost of trebling the size of the cipher-space).
An attacker can choose the computation in fully homomorphic encryption, be-
cause the arithmetic operations are precisely what are handed out in order that
computations on encrypted data may be carried out without decryption, so an
attacker can combine them into any formula that suits. And an attacker can also
choose the sequence of instructions to be carried out if they physically possess a
KPU. (One proviso here is that the KPU may use security modules that reliably
boot a secure kernel that in turn only permits ‘officially sanctioned’ codes to run,
but physical possession permits many degrees of interference with even such a
setup). What if an attacker has a clever formula or computer program that uses
the operations on encrypted numbers to deliver the encryption of a known con-



4 P. T. Breuer and J. P. Bowen

stant, like 1, or 2, or 4? With physical possession comes the presumption that
they can do that.

Indeed, if encrypted subtraction is one of the operations available, then x−x
delivers the encryption of 0 straight away, whatever value x is chosen. If multi-
plication is available, then, in 32-bit arithmetic, multiplying x by itself 32 times
gives x2

32

= 1 or 0, depending as the x chosen is odd or even. And of course, if
division is available, then x/x = 1 so long as the x chosen is non-zero. All these
options allow an attacker to produce the encryption of 1, then 2 = 1 + 1, then
3 = 2 + 1, until an entire codebook of the encryption is prepared. At the very
least that allows an attacker to modify data in a controlled way, and may allow
for the decryption of data that is already encrypted, if it lies in that codebook.

So the situation is quite confused as to whether fully homomorphic encryption
and homomorphically encrypted computing are perhaps much more vulnerable
to cryptographic attack than might naively be expected. This paper is aimed
at clarifying the status. It shows that multiplication and three-input addition
can never be used to construct a known constant from unknown inputs, and
characterises those operations that share that property with them. These oper-
ations may in a certain sense be ‘safely’ distributed with a fully homomorphic
encryption or set physically into a KPU’s ALU.

2 A formal safety criterion and guarantee

. In the first place, we will show that if one only supplies multiplication x∗y and
addition-with-carry-in x + y + z (also known as three-input addition, or double-
addition) as available operations on the encrypted data, then there is no formula
(indeed, no computation) using these operations alone that constructs a known
constant from unknown inputs.

That implies that a script-kiddie cannot plug in some arbitrary encrypted
values he/she has seen passing by into a a pre-supplied formula, execute it in
encrypted form using the FHE operations or the KPU, and have the encryption
of a known constant pop out as a result. The attacker can then use the constant
to construct a codebook. In other words, multiplication and three-input addition
on encrypted data are not advantageous to a script-kiddie.

Restricting to just these two is not a perfect panacea, because as remarked
above, repeated self-multiplication reliably eventually constructs either 1 or 0
(however, embedding a typing scheme in the arithmetic like the ABC scheme of
[3] sabotages that particular attack). So the result should be seen as a formal
guarantee on which other guarantees may be founded.

Note that there is no harm to functionality in electing to use three-input
addition instead of the conventional two-input addition, because three-input
addition is the form implemented within a standard processor’s ALU and so
using it does not restrict the possible computations.



Is Division Safe? 5

Definition 1. An operation or set of operations is said to be safe in this context
if there is no formula or computation using it or them alone that yields a known
constant from unknown inputs.

Multiplication and three-input-addition are ‘safe’ in this sense.

3 A characterisation

.

We can characterise precisely which other arithmetic operations play safe in
the sense of Defn. 1 together with multiplication and three-input addition on
32 bits, and thus may be deemed suitable candidates to be distributed along
with fully homomorphically encrypted data, or implemented in a KPU’s ALU.
It turns out that they are those operations that

i. produce zero from inputs that are all zero;
ii. produce an odd-number output from inputs that are all odd numbers.

If those conditions are violated then there is a way of constructing a known
constant in combination with multiplication and three-input addition. If those
conditions hold, then the operations are formally safe as per Defn. 1, both indi-
vidually and in concert with other operations that satisfy the same conditions,
including multiplication and three-input addition.

Deciding on the safety of an operator, or fixing it to be safe. In
consequence, it is easy to decide if an operation f(x, y) is safe, or to alter it so
it becomes safe. Given that it is zero at zero, it suffices to change the output by
1 at the (x, y) points where x and y are both odd, but f(x, y) is even.

In particular one can say that division, if present in the classical form x/x = 1
for nonzero x, and 0/0 = 0 say, is not safe by virtue of 1/3 = 0. That is the
answer to the question in the title of this paper.

One can fix it by letting it produce the classical output x/y almost always,
but 1 + x/y when x and y are odd but x/y is even. Multiplying the quotient by
the divisor allows a program to check whether the correction has been applied
according to whether it is in the range (x − y, x] or not. It is ‘safe’ to perform
that check because . . .

Arbitrary patchworks of safe operations are safe. Curiously, a choice
between two ‘safe’ operations based on any condition at all, whether the test is
itself safe or not, is safe. That is, (f(x, y) 6= 0)?g(x, y) : h(x, y) is safe if g and
h are themselves safe operations, whether or not the test f is safe. That follows
from the characterisation.

That implies that a KPU may run instructions that implement safe arith-
metic operations during linear segments of the program, but branch between
them based on arbitrary and possibly unsafe test conditions. The program will
still implement a safe operation from the program inputs to the program out-
puts, overall. We conclude that it is ‘safe’ for a KPU design to offer any of the



6 P. T. Breuer and J. P. Bowen

standard branch tests to a programmer, such as comparisons x < y, x = y, etc,
without regard to whether or not the individual tests are safe in the sense of
Defn. 1. That is very significant in terms of the KPU’s instruction set design, and
at first sight almost unbelievable, because the less-than operation, for example,
allows the largest integer to be identified as that (encrypted) x which does not
satisfy (encrypted) x < y for any (encrypted) y.

The correct intuition is that the test result itself is not exposed, just the
result of computation down one branch as opposed to another. Can an attacker
see the branch? Yes, but in a KPU the instruction opcode is encoded with
respect to the standard, so the attacker does not know which branch denotes
which result of the comparison, or indeed which comparison was made. At any
rate, the formal conclusion is that whatever program an attacker may run in a
KPU whose linear instructions access only ‘safe’ arithmetic and whose branches
are based on arbitrary tests, it is not guaranteed to deliver a known constant
from unknown inputs.

Despite that formal conclusion, however, one is still a long way from a com-
fortable position here, because a formula that delivers say 0 half the times and
1 the other half of the times may be formally ‘safe’, but statistically 50% of
the attacks based on the assumption that the answer is 1 succeed. Indeed, self-
multiplying a random input 232 times gives just that pattern. So this notion
of ‘safe’ is not sufficient on its own; it is just a minimal formal guarantee that
things are not so very extremely bad that an attacker can be absolutely sure
they have walked away with the right result.

One might think that entropy-based measures of safety would be more in line
with the statistical view of attack and defence, but if one considers the standard
two-input addition table on 1-bit of data (this is binary XOR), then entropy
measures say that there is one bit of variation in the output, while the canny
attacker will observe that it suffices to provide identical inputs x and y in order
to guarantee that the output is always zero, with no variation at all.

Restricting to just multiplication and three-input addition as the operations
that it is safe to use, however, brings us to a question of coverage that we do not
presently know the answer to: what operations may be implemented using just
these two?

Experiments show that in 2-bit arithmetic, just 1282 operations are available
of the 4096 that might be formed using multiplication and two-input addition.1

Complementarily, we also do not know precisely which extra ‘safe’ operations
must be added to the set in order to be able to form via combinations the full set
of all the ‘safe’ operators that satisfy (i), and (ii) (there are 24411 = 226 = 64M

1 The combinations of 2-bit multiplication and (two-input) addition are characterised
by (i), (ii) above and also (iii) even inputs produce an even result, and (iv) the
parity of f(x, y), f(x+2, y), f(x, y+2), f(x+2, y+2) is always the same, stepping
a distance 2 up or down or left or right in the x-y table of the operator’s arithmetic,
and (v) the differences along opposite edges of a 2x2 square in the operator table
are always the same, in that f(x, y +2)− f(x, y) = f(x+2, y+2)− f(x+2, y) and
f(x+ 2, y)− f(x, y) = f(x+ 2, y + 2)− f(x, y + 2).



Is Division Safe? 7

of these), or some characterisable subset such as those which also satisfy (iii)
even inputs produce an even output (there are 242447 = 222 = 4M of these).
The answers to these questions also bear on the design of an encrypted ALU in
a KPU, or on which operations should be made available in public to users of a
fully homomorphic encryption.

4 An easy argument in mod 2 arithmetic

We will start on backing up the technical claims with an argument that shows:

Proposition 1. Multiplication and three-input addition on 32-bit arithmetic are
jointly safe in the sense of Defn. 1.

That is, there is no formula in these operations that delivers a constant from
unknown inputs, such as x/x = 1 might produce.

We do calculation in mod 2 arithmetic because if 32-bit multiplication and
addition can be combined into a formula that gives a 32-bit constant, then
looking at everything mod 2, the same formula in the same operations mod 2
gives the value 1 (if the constant is odd) or 0 (if the constant is even). Either
way, the result is a constant mod 2.

So, if it is proved that it is impossible to produce a constant from these oper-
ations mod 2, which is 1-bit arithmetic, it has been proved that it is impossible
to produce a constant in 32-bit arithmetic, which is what is wanted. But the
argument in mod 2 arithmetic is very easy:

1. Multiplication takes odd numbers to odd numbers. Similarly, adding up three
odd numbers gives an odd number.

2. So any formula using only multiplication and three-input addition takes all
odd inputs to odd outputs. I.e., set all the inputs to 1 mod 2, and the output
is 1 mod 2.

3. So the supposed constant, if it exists, must be 1 mod 2.
4. But multiplication also takes inputs that are all even (i.e. 0 mod 2) to an

even output (i.e., 0 mod 2), and so does addition.
5. So the formula that supposedly produces a constant takes inputs that are

all 0 mod 2 to 0 mod 2.
6. That means the constant must be 0 mod 2.
7. That is a contradiction (between 3 and 6), so the formula cannot exist.

Three-input addition is essential in that argument, because it preserves odd
parity. Two-input addition does not do that: an odd number plus an odd number
is even.

5 A general argument

The following elements allow the argument in the previous section to succeed.
Operations must



8 P. T. Breuer and J. P. Bowen

i. produce zero from inputs that are zero;
ii. produce an odd-number output from inputs that are odd numbers.

That means that there are two (disjoint) sets, {0} and {odd numbers}, that
are stable under these operations. Any other operation that also stabilises those
sets will combine arbitrarily with other such operators, possibly multiplication
and three-input addition, to produce another operator with the same properties.
Because odd numbers are all different from zero, the formula that results gives
different values on the two sets, and in consequence is not constant.

That is a sufficiency argument for (i) and (ii). There is also a fairly simple
argument that shows that any operator that violates condition (i) can be used as
part of a formula that manufactures a constant with the help of multiplication
and three-input addition, and we will elaborate it to apply to condition (ii) too,
showing that the conditions are both necessary. Here is the argument for the
necessity of condition (i):

1. Say that f(0, 0) = k0 for some k0 6= 0;
2. let g(x) be the function that results from repeated self-multiplication, g(x) =

x2
32

. Then g(x) is 0 for even x and 1 for odd x;
3. compose h(x) = f(g(x), g(x)), which has the property that h applied to even

numbers is the k0 6= 0, and h applied to odd numbers is some k1 = f(1, 1)
that one may as well take to be different from k0, or one has produced a
constant h(x) = k0 = k1 already;

4. if both k0, k1 are odd (we can calculate the value offline from this proof),
consider applying g to them, producing the constant 1 = g(h(x));

5. if at least one of k0, k1 are even (but we do not know which), multiply
together all the values of h(x) obtained as x varies through all possible
values, and apply g to the result, which must be even as k0k1 is a factor,
producing the constant 0.

For the necessity of condition (ii), consider the action of operators f(x, y) on
functions p(x) by substitution: p 7→ q where q(x) = f(p(x), p(x)). The idea of
the proof is to show first that f must take a function that takes odd numbers
to odd numbers to another function that takes odd numbers to odd numbers, or
else one can construct a constant. Then one can deduce fairly immediately that
the operator f must itself take odd numbers to odd numbers.

Here is the first part of the argument, showing that f must stabilise the odd-
preserving functions if one cannot construct a known constant from unknown
inputs using it:

1. Suppose for contradiction that f(p(x), p(x)) = q(x) where p preserves odd
numbers but q does not. Then q(x1) = x0, where x1 is odd and x0 is even;

2. once again, apply the function g(x) = x2
3
2 to x0, producing 0 = g(q(x1));

3. since the constant x1 is odd, one can produce the function h(x) = x1 ∗ x
by repeated three-input self-addition ((x+ x+ x) + x+ x) + x+ x . . . , and
h(1) = x1. Applying h first, 0 = g(q(h(1))) and g(q(h(x))) is a function that
turns 1 into 0;



Is Division Safe? 9

4. precede g(q(h(x))) by g(x) = x2
32

, which turns odd numbers into 1 and even
numbers into 0, and so g(q(h(g(x)))) turns odd numbers into 0;

5. it also turns even numbers into some constant g(k0) where k0 = q(0) =
f(p(0), p(0)), since g applied to an even number is 0 and h(0) is 0. If k0 is
even, g(k0) = 0 and g(q(h(g(x)))) is a constant function with result 0. If k0
is odd, then g(k0) = 1 and g(q(h(g(x)))) turns odd numbers into 0 and even
numbers (including 0) into 1;

6. in the latter case multiply by g(x) = x2
32

to produce g(q(h(g(x))))∗g(x) = 0,
whatever the input x;

7. by contradiction, then, if one cannot make a constant from unknown in-
puts using the operator f (in company with multiplication and three-input
addition), it must preserve the odd-preserving functions.

Now for the second part of the argument: preserving odd numbers is the same
as preserving the odd-preserving functions.

In one direction, if an operator f(x, y) preserves odd numbers, then it takes
p(x) that turns odd numbers to odd numbers to q(x) = f(p(x), p(x)) that also
turns odd numbers into odd numbers, substituting through with odd x.

For the converse direction, if an operator preserves the odd-preserving func-
tions, does it necessarily preserve odd numbers? Suppose for contradiction that
f(x1, y1) = z0 with x1, y1 odd and z0 even, and let n be the odd number such
that y1 = nx1 mod 232. Then p2(x) = nx can be implemented using (n − 1)/2
three-input additions ((x + x + x) + x + x) + x + x . . . and p2(x1) = y1 and
p2 is an odd-preserving function. Apply f to p1(x) = x and p2 and one gets
g(x) = f(p1(x), p2(x)) = f(x, nx) which is by hypothesis a function that takes
odd numbers to odd numbers, since p1 and p2 both take odd numbers to odd
numbers. Then g(x1) = f(x1, x2) = z0, but x1 is odd and z0 is even, not odd. So
g is not an odd-preserving function after all, in contradiction to the hypothesis.
So, yes, f preserves odd numbers. Thus, as claimed earlier:

Proposition 2. An operator is safe in the sense of Defn. 1 in conjunction with
multiplication and three-input addition iff it (i) takes zero inputs to zero, and
(ii) takes odd inputs to an odd output.

That allows decisions as to which operators may distributed along with a fully
homomorphic encryption and which operations may be implemented in the ALU
of a KPU or how they ought to be modified, to be taken in a technical framework.

6 Conclusion

We have defined a formal notion of safety for operations made available as part
of a fully homomorphic encryption, or supplied by the ALU within the KPU in
a homomorphically encrypted computing context. Conforming implementations
do not permit a script-kiddie to walk away with the encryption of a known
constant from applying a formulaic combination of the operators to arbitrary
unknown encrypted values that have been observed.



10 P. T. Breuer and J. P. Bowen

We have characterised the operations that are safe in combination with mul-
tiplication and three-input addition on 32-bit arithmetic as those which take
zero to zero and odds to odds. Every operation is at most 1 away in uniform
norm from a safe variant, and the characterisation tells one how to change it to
be safe (division x/y is not safe, but there is a safe variant, to which a check can
safely be applied to tell if the correction has been made).

References

[1] P. T. Breuer and J. P. Bowen. “A Fully Homomorphic Crypto-Processor
Design: Correctness of a Secret Computer”. In: Proc. International Sym-
posium on Engineering Secure Software and Systems (ESSoS ’13). LNCS
7781. Paris, FR: Springer Berlin/Heidelberg, Feb. 2013, pp. 123–138.

[2] P. T. Breuer and J. P. Bowen. “Certifying Machine Code Safe from Hard-
ware Aliasing: RISC is not necessarily risky”. In: Proc. SEFM 2013 Col-
located Workshops (OpenCert 2013). Ed. by S. Counsell and M. Núñez.
LNCS 8368. Madrid, Spain: Springer, 2014. Chap. 27, pp. 1–18. doi: 10.
1007/978-3-319-05032-4_27.

[3] P. T. Breuer and J. P. Bowen. “Towards a Working Fully Homomorphic
Crypto-Processor: Practice and the Secret Computer”. In: Intl. Symp. on
Engineering Secure Software and Systems (ESSoS 2014). LNCS. Munich,
GE: Springer, Feb. 2014.

[4] P. T. Breuer and J. P. Bowen. “Typed Assembler for a RISC Crypto-
Processor”. In: Proc. ESSOS’12: International Symposium on Engineering
Secure Software and Systems. LNCS. Eindhoven, NL: Springer, Feb. 2012.

[5] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. “Public key
compression and modulus switching for fully homomorphic encryption over
the integers”. In: Advances in Cryptology–EUROCRYPT 2012. Springer,
2012, pp. 446–464.

[6] C. Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In:
Proc. 41st ACM Symposium on Theory of Computing (STOC). ACM,
2009, pp. 169–178. isbn: 978-1-60558-506-2. doi: 10 . 1145 / 1536414 .

1536440.
[7] C. Gentry and S. Halevi. “Implementing Gentry’s fully-homomorphic en-

cryption scheme”. In: Proc. Advances in Cryptology (EUROCRYPT 2011).
2011, pp. 129–148.

[8] Oliver Kömmerling and Markus G. Kuhn. “Design principles for Tamper-
Resistant Smartcard Processors”. In: Smartcard ’99, Chicago, Illinois, USA,
May 10-11, 1999. Illinois, USA, May 1999, pp. 9–20.

[9] R. L. Rivest, L. Adleman, and M. L. Dertouzos. “On data banks and
privacy homomorphisms”. In: Foundations of Secure Computation 32.4
(1978), pp. 169–180.

[10] Wei Wang et al. “Accelerating Fully Homomorphic Encryption on GPUs”.
In: Proc. IEEE High Performance Extreme Computing Conference. 2012.


