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Abstract—Scholarly impact may be metricized using an au-
thor’s total number of citations as a stand-in for real worth, but
this measure varies in applicability between disciplines. The detail
of the number of citations per publication is nowadays mapped
in much more detail on the Web, exposing certain empirical
patterns. This paper explores those patterns, using the citation
data from Google Scholar for a number of authors.

I. BACKGROUND

The speed of transmission and the quantity of knowledge
available to researchers has accelerated dramatically in recent
decades with the advent of the Internet and the World Wide
Web. Whereas, previously, academic papers were really pub-
lished only on paper, in journals and books, now they can
be and often are communicated ‘online’. That has led to this
body of information on academic activity becoming ever more
comprehensively indexed.

Google, as well as ubiquitously indexing all of the Web,
provides an index of academic publications in particular
through its Google Scholar website (http://scholar.google.com)
and also provides access to books though the Google Books
facility (http://books.google.com). It thus has a very complete
and continuously updated collection of academic data avail-
able, and is arguably currently the leading facility of that
kind. Microsoft Academic Search (http://academic.research.
microsoft.com) provides a competing database of academic
publications online, started at Microsoft’s Beijing research
laboratory. While it is not as complete or up to date as Google
Scholar, it does provide better visualization facilities.

Google Scholar furnishes individual authors with a per-
sonalizable page that presents a list of their own publications
and links to the publications that cite them, with counts of
the number of citations per publication. The page is generated
automatically, but it must be corrected by hand by the author
in order to obtain an accurate record. Google’s automated
scanning of online publications works well for popularly cited
works, because multiple examples in different texts enable
Google’s automata to learn to recognize the citation despite
differences in spelling and presentation.

For most productive academic authors, however, there is a
‘long tail’ in the automatically generated data that consists of
those publications with few or no citations, for which Google’s
data can be inaccurate and may well need correction. Authors
with common names may find publications by other authors
with the same or similar names wrongly assigned to their page,
for example. Google Scholar also confuses publications that
have the superficial appearance of papers (e.g., programme
committee information for conferences) with real papers, and

such entries need to be pruned. Conversely, publications that
are not represented on the Web at all will not be located by
Google, and must be added in by hand. Those publications that
have appeared on the Web in slightly different forms ought
also to be merged into a single base entry on the author’s
page. An author’s corrections are not cross-checked before
appearing online in Google Scholar, while corrections made in
Microsoft Academic Search are checked before incorporation,
with a delay until the submitted updates appear.

In spite of the more problematic aspects, a Google Scholar
page provides a comprehensive opportunity for administrators
to garner raw statistics on an academic’s output, which may
affect prospects for promotion and tenure, and it is therefore
likely that a good proportion of academics are aware of their
own page’s existence and have paid some attention to ensuring
that it is reasonably accurate, as well as monitoring it to see
how the numbers grow with time. The authors of this paper
are among them; we have wondered why the data on our pages
looks the way it does and if there is some underlying pattern
to it that we should be seeing. This paper points out some of
the patterns we have empirically observed and puts forward a
theory as to their causes.

II. CITATION METRICS

There are a number of metrics in use that have the common
aim of measuring the stature of an academic researcher in their
field. The simplest is an author’s total citation count, but it has
a number of drawbacks. Authors often have a large number of
publications with relatively low numbers of citations that have
had comparatively little influence on their field, so why account
them? Most researchers of influence have only a small set of
key publications that have been highly cited by their peers.
For example, Alan Turing [2] had three key publications with
thousands of citations, each of which have led to the foundation
of important areas of computer science, whereas some of his
works have never been cited (and we will resist the temptation
to skew the statistics by citing them here; the reader should
check Alan Turing’s Google Scholar page). Normally, it is
the leading papers by an author that are accepted as being
significant, and the total citations count obscures the nature of
their contribution. The more highly regarded metrics weigh the
‘top end’ of of an author’s output more heavily. The maximal
citation count alone is better than the total for that purpose, but
Alan Turing would have his second and third counts, which
are only insignificantly different from the first, not taken into
consideration by that method.

Google Scholar derives the author’s h-index [7] and i10-
index, which are popular indications of respectively the depth
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and breadth of an author’s impact, especially in the field of
computer science. The i10-index counts the number of the
author’s works that have received at least 10 citations. Looking
at the graph of citation counts per publication arranged in
decreasing order left-to-right, it is the distance out from the
left hand side at which the graph falls below 10 in height.
All other things being equal, the higher the total number of
citations in the graph, the greater will be the i10-index – that
is, assuming that all researcher’s graphs have roughly the same
shape. But are they the same shape for different researchers?

The h-index is that value of n in the in number that
approximately satisfies in = n. It is the length of the side
of the biggest square that can be placed under the graph of
citation counts per publication arranged in decreasing order
left-to-right. So it measures how ‘fat’ the graph is near the mid-
point, in a direction out at 45o to the axes from the origin. How
might this be expected to change with respect to total number
of citations, for example?

These measures need to be treated with caution, since
different fields have significant variation in their patterns of
publication [12]. For example, computer scientists tend to have
a much lower number of co-authors than physicists, whose co-
authors may play a very small role in a highly cited paper.
Radicchi et al in [10] suggest that all citation counts ought to
be normalised with respect to the average citation count per
article in their field, and they note that such normalized counts
seem to follow the same distribution independent of field.
Nevertheless, the individual numbers for an author’s output
are interesting, and we can observe certain empirical relations
between them, which we will elaborate below.

III. PATTERNS IN CITATIONS

Is there a pattern to the graph of citation numbers per article
for a given author? On the default Google Scholar page, the
author’s articles are listed with the citation numbers decreasing
down the page. Evidently, there are more entries with, say, 4
citations than there are with 40, but if one erases the numbers
and replaces them with a plain graph, can one tell how far
down the page one is by the way the graph looks?

The answer is a qualified no – the graph of citation counts
in decreasing order for a given author in Google Scholar
appears to be ‘scale invariant’: one part of the graph looks
just the same as another part, scaled up or down by a factor.

Evidence of that comes from the result of a test of
Benford’s law [1] on scale-invariant distributions. Benford’s
law says that the number of individual article citation counts
that start with the digit 1 should be greater than the number that
start with 2, and so on. The violation of that law for published
Iranian election counts was taken as an indication that the
results had been tampered with [11]. For the two authors of
this paper, the frequencies for the first digits of the citation
numbers of their articles as listed in Google Scholar are shown
in Table I. They are consistent with the expectation for scale-
invariant distributions – a decrease in the observed frequencies
from the smaller digits to the larger digits, ideally down from
about 30% of the total for digit 1 to about 5% of the total for
digit 9.

With that evidence for scale-invariance to hand, the ques-
tion is what kind of scale-invariant distribution is it. We believe
that the Google Scholar citation counts for articles, laid out in

decreasing order from the article with highest citation count to
the lowest approximately follows an exponential power-law:

cn ≈ c0 e−P
√
n (1)

where cn is the citation count of the nth article in decreasing
order of citation count, and c0 is the citation count of the
most cited article. The factor c0 in (1) is chosen so that the
approximation becomes exact at n = 0.

A. Estimating the multiplier

Achieving insight into the Google Scholar data for an
author entails getting a good estimate for the multiplier P
in (1). Below we suggest four increasingly fit-for-purpose
calculations for P . First, putting n = 1 in (1) gives:

P ≈ − ln(c1/c0) (2)

This is the natural logarithm of the ratio of the citation counts
of the most cited two articles. This calculation emphasises that
P is related to the initial slope of the graph. Bigger P means
a steeper initial slope and the ‘punchier’ is the author’s best
compared to the rest. Whether that is good or bad shall be left
to the reader to decide.

Another estimate comes from putting n = i1 in (1), where
i1 is the number of cited articles, the least n such +that cn = 0:

i1
∆
= #{n | cn ≥ 1}
= 1 + max{n | cn ≥ 1}
= min{n | cn = 0}

and thus 1 ≈ c0e−P
√
i1 , giving rise to

P ≈ ln c0√
i1

(3)

This can be interpreted as the ‘sharpness’ of the roughly
triangular shape formed by the graph of the ln cn against

√
n. If

an author has a highly cited article, this estimate is larger. But if
an author has many hardly-cited articles, the estimate is lower.
An author can trade off a few ‘duds’ against an increment in
the order of magnitude of the most cited article. Completely
uncited works do not impact this measure at all.

For the first author of this paper, a good value of P is
empirically about 0.5. The citations data and the approximating
curve (1) for P = 0.5 are shown together in the left hand
diagram in Table II. The correspondence is visually excellent.

There is further evidence for the quality of the approxima-
tion (1) in the right hand diagram of Table II, which shows
the same plot in log-log format, with ln(− ln cn

c0
) being plotted

against lnn. The approximating curve is transformed by the
logarithmic scaling into the straight line lnP + 0.5 lnn, and
lnP is where the line crosses the y-axis, near −0.7= ln 0.497.

The estimate (2) is P = 0.4 (0.401), and (3) gives P = 0.5
(0.497).

Finally, here is a holistic estimate for P that takes into
account input from all the data points and which lies between
(2) and (3). It is based on

∞∑
n=0

cn ≈ 2
c0
P 2



TABLE I. FREQUENCIES (y-AXIS) OF FIRST DIGITS (x-AXIS) IN THE TWO AUTHORS GOOGLE SCHOLAR ARTICLE CITATIONS NUMBERS.

TABLE II. LEFT: GOOGLE SCHOLAR CITATION COUNTS FOR THE FIRST AUTHOR, AGAINST THE APPROXIMATION cn = c0e−P
√
n WITH P = 0.5.

RIGHT: THE SAME DATA IS SHOWN ON A LOG-LOG GRAPH, WITH ln(− ln cn
c0

) AGAINST lnn.

where the right hand side is the area under the curve c0e−P
√
x

from zero to infinity. The left hand side is the total number of
citations for the author, which is also a rough measure of the
same area on the plot. We will call this total S from now on:

S
∆
=

∞∑
n=0

cn

Thus S ≈ 2c0/P
2, giving the estimate:

P ≈
√

2c0/S (4)

For the first author of this paper, (4) yields P = 0.47, between
the 0.5 posited from the acuteness of the log/root triangle
formed by the citations graph, and the 0.40 from the log of
the ratio of the top two citation numbers. It is a balanced
estimator over the whole set of data, but in consequence the
first few citation numbers (the most cited on down) are not
so well approximated by it. The effect is visible in the log-
log plot (Table II), where the first few data points appear off
and below the approximating curve although the tail is well
approximated. On the plot with unscaled axes, however, the
deviation is hardly noticeable.

The fourth estimate of P comes from supposing the value
of lnP is where a best-fit straight-line approximation on the
log-log graph of citations crosses the y-axis. Formalised in
terms of the covariance and averages of the log-log data, it is

lnP ≈ av(ln(ln
c0
cn

))− av(lnn) cov(ln(ln
c0
cn

), lnn) (5)

where the uncited papers and the very top cited paper are
left out of the reckoning here. The arithmetic averages of the
logarithms are the logarithms of the geometric means.

B. Adjusting the shape of the curve for different authors

We do not yet have an underlying rationale for the term√
n in the empirically observed formula (1). It seems not to

be quite right for some authors, and in general we would like
to suppose that the term is nA for some constant A that just
happens to be approximately A = 0.5 in the case of the first
author of this paper. The more general approximation is:

cn ≈ c0e−Pn
A

(6)

and (1) is (6) with A = 0.5. A log-log plot like that on the
right in Table II allows A to be estimated by the slope of the



approximating straight line, and placing the line by eye on the
plot is a good practical means of positing a value for A.

For Alan Turing’s citation data as shown on Google
Scholar, we obtain a better approximation with A = 0.4 than
with A = 0.5. The approximation with A = 0.5 is shown
in green in Table III. The approximating curve is high in
mid-range, and a little low farther up-range. That is not too
surprising, given the abnormality of Turing’s data. He has three
most cited papers of roughly the same order, and then a fourth
and more papers an order of magnitude less cited (but still
enormously highly cited by most standards). We could never
hope to capture three nearly equal top papers with the kind
of approximation in (6) and |A|<1 because of the sharp peak
that approximation produces at zero. Turing’s data is more like
what one would expect from three contributors, or three equal
careers (indeed, one of the top three papers is in mathematical
biology). Still the log-log curve shows clearly that 0.5 is too
steep a slope for the straight line approximation after the first
few points. We do need an approximating term more like 2.5

√
n

than
√
n for the tail.

Plotting Alan Turing’s data against A = 0.4 gives the blue
lines in Table III. The log-log graph looks perfect.

How does one estimate P numerically in the general case?

The ‘area under the curve’ argument on the unscaled graph
gives the following approximation when A is the reciprocal of
an integer, A = 1

2 ,
1
3 ,

1
4 , . . . (but not, yet, for A = 0.40):

P ≈ (c0 (A−1)!/S)A

For other values of A, we need to replace the factorial
expression using Euler’s gamma function:

P ≈ (c0 Γ(1 +A−1)/S)A (7)

Varying A then allows approximations to be fine-tuned.

For the second author of this paper, A = 0.4 also appears
to be better than A = 0.5. The plots for A = 0.4 are shown
in Table IV, and P = 0.5 is approximately right for it by eye.
In this case Γ(1 +A−1) = Γ(7

2 ) = 15
8

√
π, so (7) becomes

P ≈
(

15c0
8S

√
π

)0.400

which is 0.520 because c0/S = 0.0587 for this author. The
number is in good agreement with the visually fitted value of
P = 0.5.

C. Classical citation-based measures of worth

The i10, i20 measures promoted on Google Scholar and
elsewhere are defined by cik−1 ≥ k > cik , so:

10 ≈ ci10 ≈ c0e−P (i10)A

20 ≈ ci20 ≈ c0e−P (i20)A

Thus

ln(10/c0) ≈ −P (i10)A

ln(20/c0) ≈ −P (i20)A

and
ln(10/c0)/ ln(20/c0) ≈ (i10/i20)A

or
i10/i20 ≈ A

√
ln(c0/10)/ ln(c0/20) (8)

For the first author of this paper and A = 0.5, the predicted
ratio (8) is 1.98, against the real ratio i10/i20 = 2.08. The
estimate is very close. For the second author of this paper and
A = 0.4, the predicted ratio (8) is 1.75 and i10/i20 = 1.69
in reality, again very close. For Alan Turing, with A = 0.4
the predicted ratio is (8) is 1.32 and i10/i20 = 1.44 in reality,
somewhat less close, but Turing’s numbers are extraordinary.
It is striking, however, that the prediction adjusts to approxi-
mately match the author in every case, despite their differences.

We can derive a relationship between i10 and the h-index,
using ih ≈ h and replacing both i20 and 20 by h in (8). Then

(c0/h)A ln(c0/h) ≈ (c0/i10)A ln(c0/10) (9)

For the first author and A = 0.5, the function on the left is
(109/h)1/2 ln(109/h), and the constant on the right is 4.8,
with solution h ≈ 16.67. The truth is that the author’s h-index
is 15 – but it is only one citation away from 16.

The number on the right in (9) is fairly constant across a
range of i-indices for a given author. For the first author of this
paper, it is in the range 4 to 5 up to about i50. For the second
author of this paper, it is in the range 5 to 6 up to about i100.
A larger number means that the ratio c0/h is larger, and the
h-index is a smaller fraction of the peak (‘most-cited’) number.

IV. UNDERLYING CAUSES

How can we explain these observations?

Plotting the number of articles for which the number
of citations C falls in x ≤ lnC/ ln c0 < x + dx against
x = lnC/ ln c0 for C ≥ 1 gives a curve with mean µ and
standard deviation σ. That is, (lnC/ ln c0 − µ)/σ looks like
a random variable with mean 0 and standard deviation 1.
Moreover, in the data sets we have looked at, the mean µ
and standard deviation σ are nearly the same (approximately
0.2) in every case. For the first and second authors, and
Alan Turing, the mean and standard deviation pairs (µ, σ)
are respectively (0.251331, 0.216663), (0.217722, 0.211669),
(0.190153, 0.196518). Say:

σ = µ = λ

We may take lnC to be normally distributed with mean µ =
λ ln c0 and standard deviation σ = λ ln c0. By the standard
statistics of log-normal distributions, one expects citations C
to have mean m and standard deviation s where

m = c2λ0 s = c2λ0

√
e(λ ln c0)2 − 1

which allows the parameter λ to be conveniently estimated
from s/m. For the first and second authors, and Alan Turing,
λ estimated this way is 0.264, 0.250, 0.209 respectively.

We have generated sets of fake citation data using a
normally distributed random variable for lnC/ ln c0 with both
mean and standard deviation equal to λ. That is, C =
e(λ+λX) ln c0 where X is a normally distributed random vari-
able with mean 0 and standard deviation 1. The generated
data looks like a real citations count list, and ordering it in
descending order c0, c1, . . . and plotting it in log-log as in
Table II-IV (with ln(− ln(cn/c0)) against lnn) shows that a
straight line approximation is appropriate. The slope of the line



TABLE III. LEFT: CITATION COUNTS FOR ALAN TURING, AGAINST THE APPROXIMATION cn = c0e−0.95n0.5
(GREEN), AND c0e−1.50n0.4

(BLUE).
RIGHT: THE SAME DATA ON A LOG-LOG GRAPH, WITH ln(− ln cn

c0
) AGAINST lnn.

TABLE IV. LEFT: CITATION COUNTS FOR THE SECOND AUTHOR, AGAINST THE APPROXIMATION cn = c0e−Pn0.4
WITH P = 0.5. RIGHT: THE SAME

DATA SHOWN ON A LOG-LOG GRAPH, WITH ln(− ln cn
c0

) AGAINST lnn.

is the A of the approximation (6), and the slopes manifestly
cluster around A = 0.4, but can vary between 0.2 and 0.6.

Placing the best fit line via least squares minimisation of
the errors on the log-log plots (excluding the first citation
number) gives the slope as the covariance between x- and y-
ordinates of the data points. That gives the following estimates
of slope A for N = 200 datapoints. The average is taken over
100 generated datasets for each value of λ listed:

λ slope A standard
deviation

0.2 0.396119 0.075180
0.25 0.405471 0.077208
0.3 0.411451 0.080782
0.35 0.384616 0.078864
0.4 0.400892 0.087734
0.45 0.413907 0.090714

This is empirical support for the approximations with power
exponents A=0.4 (exceptionally 0.5, in the case of Table II)

as in Tables II-IV. The value of λ has insignificant effect.

This value of A arises naturally. It is the slope of the
best-fit line to the logarithm of normally distributed data with
equal mean and standard deviation that has been ranked in
decreasing order against the logarithm of the ranking position.1
But the precise value depends on the number of datapoints N
as follows:

1 The slope is that of ln(x0 − xn) against lnn for a standard normal
variable X , with the N observations arranged in decreasing order x0, x1, . . . .
Theory says that the xn are positioned about where the quantiles function
q(ρ) = x ⇔ prob(X<x) = ρ says they should be for ρ = (n + 0.5)/N ,
at xn ≈ q((n + 0.5)/N). In particular, the cumulative density function for
the maximum of the N observations, prob(x0<x), is (prob(X<x))N , the
N th power of the cumulative density function of an individual observation,
and the position of the maximum observation is expected to be x0 ≈ x :
prob(X>x) = 1/(2N); i.e., x0 ≈ q(1 − 1/(2N)). For the normally
distributed standard variable X , that is x0 ≈ 1

2

√
2 lnN asymptotically,

applying classical mathematical analysis to the integral that defines q. The
minimum is expected to be the same distance in the other direction. Thus
the slope ln(x0 − xN−1)/ lnN is approximated by ln

√
2 lnN/ lnN , or

ln(lnN2)/ lnN2.



N slope A standard
deviation

100 0.463705 0.105916
1000 0.363892 0.052899
10000 0.279002 0.032274
100000 0.233939 0.017043
1000000 0.204701 0.012906

The slope A slowly decreases to zero with increasing N . The
measurements in the table above vary from 0.95 to 0.85 of a
predicted bounding asymptote ln(lnN2)/ lnN2.

The approximation (6) is compatible with observations
from a log-normal distribution. The rate A in the exponent
varies slightly according to the number of an author’s publi-
cations, but is otherwise stable across authors. The number P
determines how exceptional are the most cited articles with
respect to the body of work of an author. For the authors of
this paper, P = 0.5 is about right. For Alan Turing P = 1.5 is
indicated, highlighting the extra significance of his three top
papers relative to the rest of his (also highly significant) work.

The numbers 1 − in/N provide a direct measurement of
the cumulative density function prob(C < n) for the random
variable C underlying the citations counts. The derivative is the
probability density function. The logarithm of citation count
(lnC; the x-axis of the density function) looks distributed like
a Poisson distribution (the y-axis). A normal distribution with
equal mean and standard deviation is a fair approximation to
Poisson, and is what we have used in our analysis.

A Poisson distribution represents low probability events
(citations!) accruing in several equal sized slots over time.
After a while, most slots have the average number of events
in, while a very few have none, and a very few have a
large number of events in. The situation here is that instead
of seeing, say, k slots with c events as expected according
to a Poisson distribution, we are seeing k articles with ln c
citations in. We do not have good insight into that from the
publications and citations point of view. Perhaps it means
that the average ‘intrinsic worth’ of an article is distributed
by a Poisson process, but that articles accumulate citations
according to the exponential of their worth. Citation begets
citations, in other words.

Radicci et al report in [10] that citation counts relative
to the average count in a field follow (the same) log-normal
distribution irresepctive of field. We also see log-normal dis-
tribution, but within a single author’s output, so perhaps the
results of [10] apply when one considers an author as defining
their own academic field of study. We normalize with respect to
the maximal citation count, and see equal mean and standard
deviation (in logarithm), while Radicci et al normalize with
respect to the mean citation count and see mean equal and
opposite in sign to twice the variance (in logarithm). We
believe these relations are reflections of the same underlying
reality. While Radicci et al sought to quantify an article’s worth
irrespective of the field it is published in, we have reduced the
question of an individual author’s impact to three parameters,
c0, A and P , which predict the curve of citation counts. How
these parameters are distributed across and within academic
fields remains to be discovered.

V. CONCLUSION

This paper has noted a mathematical pattern with respect
to citation counts for publications of academic authors. When

the citation counts per article are laid out in decreasing order,
they follow the law

cn ≈ c0e−Pn
A

for an appropriate multiplier P and rate A fitted to an
individual author. In practice A ranges from 0.4 to 0.5,
and is lower for higher publication count N , decreasing as
ln(lnN2)/ lnN2. The pattern is compatible with observations
of a log-normal random variable, the exponential of a normal
random variable with equal mean and standard deviation.

Recognizing these empirical patterns and modelling them
allows more meaningful metrics to be developed.

Further patterns could be explored among, for example,
temporal information based on the year of publication and
citation of papers [8]. More visualization would also be pos-
sible [3], [4], [6], [9]. Communities of authors [5], including
their development and demise, could also be investigated for
patterning anomalies.
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