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Abstract—To choose the best service, how much a service
can be trusted is increasingly important for service consumers.
In addition, manually assigned feedback costs much time and
suffers several drawbacks. Automatic trust calculation is the
only feasible method for large-scale service-oriented applications.
Hence, we propose an automatic trust calculation using non-
trust quality criterion values. To make the calculation accurate,
we employ the Kalman Filter to filter out malicious non-trust
values instead of directly filtering out malicious trust values.
Furthermore, to offer higher detection accuracy we propose an
improved algorithm based on the joint probability by taking
the relationship between the non-trust criterion value and its
variance into account. Although malicious data can be filtered
out, dishonest or inaccurate values can still influence trust values.
Therefore, similarity between consumers is used to weight the
values from others, which is calculated by mostly used Euclidean
distance function. However, we modify a collection of distance
functions to calculate similarity. Finally, experiments are carried
out to access the validation and robustness of our model. The
results show that our improved algorithm can offer higher
detection accuracy under several malicious situations, and we
also discovered another similarity function performed better than
the Euclidean function.

I. INTRODUCTION

The rapid growth of service-oriented applications has
spurred a considerable amount of research in this field. How-
ever, service providers (SP) are usually little known by service
consumers (SC). Among various SPs providing identical or
similar services with varying Quality of Service (QoS), it is
hard for SCs to select appropriate services. To help SCs make
decisions, QoS of service-oriented systems has been modelled
[1]–[4] and various selection algorithms have been proposed
to optimise the results.

Several centralised systems [1]–[4] modelled QoS proper-
ties, and then based on consumer requirements and the values
of QoS published by SPs, various algorithms were employed to
select services. However, the systems [1]–[4] did not focus on
how the values of QoS properties were collected. If the values
are given by SPs, they may not be fully true, due to dishonesty
of certain SPs. Wang et al. [5] collected feedback from SCs
to evaluate SPs. Similarly SCs may also provide malicious
feedback. Hence, among QoS criteria, trust is increasingly
important for SCs to select SPs. Although several trust-based
systems [6]–[11] have been proposed, they required humans
to provide feedback ratings used as trust values. Overall, the
existing approaches have the following weaknesses:

1) First of all, the approaches [6]–[11] measure service
reputation based on the assumption that the feedback
is provided by humans. Manually assigning feedback
costs much time and has several disadvantages. For
instance, certain humans are not willing to provide
feedback and may provide unfair one. It is difficult
to ensure the accuracy due to different abilities and
knowledge of humans. According to the review of trust
techniques in service workflows and relevant contexts
[12], Viriyasitavat et al. also discovered that lacking of
a unified way to formalise trust prevented automation
in trust-related processes from realisation. Hence, it is
necessary to build an automatic trust measure system
without humans providing feedback.

2) Secondly, the authors of [9]–[11] employed only one
distance function, the Euclidean function, to calculate
the similarity between SCs, and ignored other methods.

3) Except [11], the approaches [1]–[10] treat trust as only
one QoS criterion of a service, meaning that one service
has only one value representing its overall reputation.

4) Lastly, the systems [1]–[4] did not filter malicious values
out. Malicious SCs might provide malicious values to
falsely improve the trust in certain SPs, or to degrade
the trust in certain providers for commercial benefits.

To address the weaknesses above, an approach to measure
the trust both in SPs and SCs has been proposed. This
approach groups service quality criteria, and then measures
the trust in each quality criterion of a service based on their
characteristics. The measure of trust in SPs has been divided
into two stages, including Time and Aggregation Domain,
because of two reasons. Firstly, a SC may invoke a service
many times, so that it can measure the trust in the service based
on its own data at Time Domain. Because all data is obtained
by itself, it is unnecessary to filter out any information.
Secondly, it may compute the trust in a service by using other
SCs’ data. At this stage, the SC not only needs to aggregate
all data, but also has to filter out malicious data. This stage is
called Aggregation Domain.

Compared to the existing approaches, our main contribu-
tions have been summarised as follows:

1) QoS Criteria have been grouped into several classes
based on their characteristics, and trust calculation has
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been divided into two domains. An approach has been
proposed to compute the trust values automatically.

2) At Aggregation Domain, when a SC aggregates the data
from others, the trust in a SC X is employed to weight
the data from X . The trust in X is calculated by distance
functions, and a poor distance function may lead to
bad aggregation results. Hence, a comparative study of
different distance functions is carried out to find the most
suitable function for trust aggregation.

3) The value of trust in each QoS criterion is calculated.
4) Different from the approaches that directly filters out

malicious trust values, our model filter out malicious
values of non-trust QoS criteria, because it is harder for
SCs to manipulate multiple values than one trust value,
and this model can be extended so that each SC can
use its own trust-based algorithm to calculate the trust.
In addition, the trust value calculated directly from the
raw data is more accurate than aggregating trust values
from others, because the inaccuracy of trust values from
others will accumulate in the trust aggregation.

The rest of this paper is organised as follows. Section II
gives a brief review of related work. Section III demonstrates
how quality criteria are classified, and how the values of trust
in quality criteria and in SCs are calculated automatically.
Section IV presents how malicious values are detected and
how different values from a variety of consumers are aggre-
gated. Section V describes the processes of automatic trust
calculation. The model is evaluated by carrying out different
experiments in Section VI. The final Section contains the
conclusion and some ideas for further work.

II. RELATED WORK

To help SCs select proper services, QoS of web services has
been modelled [1]–[4] and various selection algorithms have
been proposed to optimise the results. The systems [1], [2]
did not aggregate the values of trust, while in the approaches
[3], [4] trust is just one of the QoS criteria considered. Wang
et al. [5] collected feedback from SCs to evaluate SPs. The
approaches of [1]–[4] and [5] used data provided by SPs and
SCs respectively. Both SPs and SCs may provide malicious
data, and none of them [1]–[5] employed detection algorithm
to filter out malicious data. Thereby if malicious SCs exist,
they may not select proper services.

Several trust-based systems [6]–[11] have been proposed.
Although Conner et al. [6] provided high flexibility for SCs
to use a variety of scoring functions over the same data for
personalised reputation evaluation, this approach was based
on the assumption that SCs do not mask their malicious
behaviour, meaning that it is hard to detect those malicious
SCs that behave well until they gain good trust values and
then behave maliciously. X.F. Wang [7] represented trust using
two attributes, trust value and trust estimate variance, and
employed the Kalman Filter (KF) to filter out malicious trust
values and to aggregate feedback. Their experiments showed
that the model provided higher robustness to estimate trust
values with a lower false detection rate.

TABLE I
COMPARISON OF TRUST CALCULATION MODELS

Authors Auto-
matic

Simi-
larity

Direct
Trust

Indirect
Trust

Detection
Algorithm

Conner et al. [6] 3 3

X.F. Wang [7] 3 3 3

P. Wang et al. [8] 3 3

S. Wang et al. [9] 3 3 3 3

Das et al. [10] 3 3 3 3

Yan et al. [11] 3 3 3 3

Our model 3 3 3 3 3

S. Wang et al. [9] measured the reputation by an approach
containing three steps, including feedback checking, feedback
adjustment and malicious feedback detection. They collected
a user survey form to check the feedback ratings from the
users who are lacking in feedback ability, and then adjusted
the ratings by calculating the similarity between the feedback.
Finally, the method of cumulative sum was adopted to detect
malicious feedback. Yan et al. [11] presented a user-centric
trust model to select services for SCs with regard to SCs’ pref-
erences. In the final section, they pointed out that their model
can be improved by automating personal service selection.
Based on the direct experience and indirect recommendation of
services, P. Wang et al. [8] presented a trust-based QoS model
by employing Dempster-Shafer evidence reasoning theory
and belief model. Das et al. [10] proposed a dynamic trust
calculation model named SecuredTrust. In SecuredTrust, the
different factors related to measure the trust were analysed.
Euclidean distance function was employed by [9]–[11] to
calculate similarity between SCs, and the similarity was used
as the weight to aggregate the data from others. However,
many more distance functions in [24] are not considered.

Thereby, trust is increasingly crucial, and the comparison
of the methods in [6]–[11] is made in Table I. It is obvious
that none of them covered all the parameters. Hence, based
on trust, the QoS properties are modelled to address the
existing approaches’ drawbacks and to cover a wider range of
parameters, which the existing models have not considered.

Much work has been done in other fields and several
detection algorithms have been proposed including Bayesian-
based [20]–[22], KF-based algorithms [7], etc. In [20], [21],
a Bayesian reputation approach was proposed to calculate the
trust value based on the beta probability density functions.
In [21], intuitive parameters needed to be tuned manually
without guarantee of any quantitative confidence. In [22], the
trust was modelled as a three-dimension belief (b, d, u), which
represented the positive, negative and uncertain probabilities.
Although the trust in [20]–[22] was modelled as predicted
probability values, prediction variance was ignored by them,
which was considered in [7]. X.F. Wang [7] proposed a
general trust model for a more robust reputation evaluation by
employing KF [25], and their experimental results showed that
KF-based algorithm outperformed others. Hence, KF-based
algorithm is adopted in this paper. In addition, the value of



some QoS property, such as response time, cannot be measured
exactly, because there is network delay and a service-oriented
system is complex and dynamic. KF-based algorithm is also
employed to produce estimates of the response time, because
KF can use a series of measurements observed over time,
containing noise (random variations) and other inaccuracies,
and produce estimates of unknown variables that tend to be
more precise.

III. QUALITY CRITERION

In this section, some concepts related to trust are introduced
first. Based on these concepts, this section presents how the
value of the trust in each individual criterion and other SCs
are calculated.

Definition 1. Quality Criterion: This encompasses a number
of QoS properties used to evaluate a web service, including
Price (PR), Response Time (RT ), Availability (AY ), Success
Rate (SR) and Trust (T ).

There are two ways to categorise Quality Criteria. Firstly,
based on the way how it affects the overall QoS of a service,
Quality Criterion can be classified as either Positive Crite-
rion, whose increase benefits the overall QoS, or Negative
Criterion whose decrease benefits the overall QoS. Secondly,
on the basis of the nature of a criterion, criteria then fall into
three major classes:

1) Ratio Criterion: The value of a criterion can be pre-
sented as a ratio, which can be directly used as the
trust of the criterion, such as availability, success rate
etc. Please note that Ratio Criteria are not the criteria
whose values obtained from SPs are rate. For example,
compensation rate, whose values gotten from SPs are
rate, is not a ratio criterion.

2) Non-ratio Criterion with Accurate Observation: A
criterion’s value cannot be presented as a ratio, and its
exact values can be obtained by consumers, eg. price.

3) Non-ratio Criterion without Accurate Observation:
A criterion’s value cannot be presented as a ratio,
and its values cannot be gotten accurately, because of
observation and systematic error, eg. response time.

For a criterion of a service, a SC can get its value in two
different ways. The SC can obtain the value of a criterion
published by the SP, or it can get the value by invoking the
service. Hence there are two major classes of criterion values:

1) Published Value of a Criterion (PV): A criterion’s
value is published by a SP when a service is published.
This can be updated by SP at any time.

2) Actual Value of a Criterion (AV): The value of a
criterion is collected by SCs after invoking a service,
which may be different from PV. For instance, a SP
may publish 40ms as a service’s response time, but the
actual response time may be 43ms when a consumer
invokes the service.

In this paper, trust is denoted by T . One consumer A has the
value of the trust in another one B, meaning that A knows

how much he can trust B. Trust can be classified as either
criterion or reference trust, on the basis of trust purpose. For
an illustrative purpose, a criterion C of a service S provided
by a provider P is denoted by P.S.C.

1) Criterion Trust: A’s trust in P.S.C, denoted by T (A→
P.S.C). It identifies how much the service’s criterion
P.S.C can be trusted.

2) Reference Trust: A’s trust in another consumer B’s
capacity of referring to SPs’ ability to do something,
defined by T (A → B). Please note that a SP can also
have a reference trust, because a SP can also be a SC,
recommending another SP.

Based on the ways how it affects the overall trust, a trust
can be divided into Positive Part, which increases the trust,
and Negative Part, which decreases the trust.

Similarly, the actual value of a criterion can also be classi-
fied as either Positive Actual Value, which increases the trust
of the criterion, or Negative Actual Value, which decreases
the criterion’s trust.

A. Criterion Trust Calculation
After defining relevant concepts, how the trust value is

derived from values of non-trust quality criteria is presented.
To begin with, a few notations are introduced.
• T (A → P.S.C)j : The value of A’s trust in P.S.C after
jth time A invokes a service S;

• c represents P.S.C’s PV;
• cj is the actual value obtained by A after jth time

invoking service S.
Assume that C is a negative criterion, and then T (A →

P.S.C)j is calculated by the following equations.
Number of positive C values,

numpo
j =

{
numpo

j−1 + 1 cj ≤ c
numpo

j−1 cj > c
(1)

Number of negative C values,

numne
j =

{
numne

j−1 cj ≤ c
numne

j−1 + 1 cj > c
(2)

The value of positive part of T (A→ P.S.C)j is calculated
by,

T poj =


√

num
po
j−1

(T
po
j−1

)2+(1−
cj
c

)2

num
po
j

cj ≤ c

T poj−1 cj > c

(3)

The value of negative part of T (A→ P.S.C)j ,

Tnej =


Tnej−1 cj ≤ c√

numne
j−1

(Tne
j−1

)2+(1−
cj
c

)2

numne
j

cj > c
(4)

At last, the value of A’s trust in P.S.C is computed as
follows:

T (A→ P.S.C)j = 1 + T poj−1 −
numne

j

numne
j + numpo

j

· Tnej (5)

Please note that the values which are equal to PV are always
classified as positive ones.



B. Reference Trust Calculation

To aggregate data from others, a SC needs to know how
much he can trust them. In this thesis similarity between two
SCs is used as a consumer A’s reference trust in another
one B, because A can trust B more, if values of the trust
maintained by A are more similar to B’s. Using the value of
trust in B, A can know how much he can trust the services
referred by B. Before introducing the method of calculating
reference trust, several notations are explained as follows.

• PA: The set of SPs whose certain services have been
invoked by A before, meaning A have data on some
services provided by PA.

• pi.SA (pi ∈ PA): The set of pi’s services which have
been invoked by A, and it is a subset of all pi’s services.

• PA∩B=PA ∩ PB : The set of SPs whose certain services
have been invoked by both A and B.

• px.SA∩B=px.SA ∩ px.SB (px ∈ PA∩B): The set of px’s
services which have been invoked by both A and B, and
it is a subset of all px’s services.

•
−→
TA and

−→
TB represent the trust matrix maintained by A

and B respectively.

To simplify equations, TA and TB are short for T (A →
p.s.c) and T (B → p.s.c) respectively in this section. Distance
functions in [24] are modified to calculate the similarity
between A and B, and they are explained as follows. In
following equations, p ∈ PA∩B , s ∈ p.SA∩p.SB and c ∈ s.C.

S1 = 1−


∑
p

∑
s

∑
c

(TA − TB)p

|TA|


1
p

(6)

Eq. (6) is the most widely used. When p = 2, this equation is
Euclidean distance function used in [9], [11].

S2 = 1−
√

(E(
−→
TA)− E(

−→
TB))TG−1(E(

−→
TA)− E(

−→
TB))/10 (7)

where G represents the pooled covariance matrix calculated
with

−→
TA and

−→
TB .

S3 = 1−max(|
−→
TA −

−→
TB |) (8)

S4 = 1−
∑
p

∑
s

∑
c

√
(TA − TB)2

var(
−→
TA)

/100 (9)

where var(
−→
TA) means the variance of

−→
TA.

S5 = 1−
∑
p

∑
s

∑
c

(TA − TB)p

1 + min{|TA|, |TB |}
(10)

S6 = 1−
∑
p

∑
s

∑
c

(TA − TB)p

max{|TA|, |TB |}
(11)

S7 = 1−
∑
p

∑
s

∑
c

|TA − TB |
max{|TA|, |TB |}

(12)

S8 = 1−
∑
p

∑
s

∑
c

|TA − TB |
1 + min{|TA|, |TB |}

(13)

S9 = 1−
∑
p

∑
s

∑
c

|TA − TB |
1 + max{|TA|, |TB |}

(14)

S10 = 1−
∑
p

∑
s

∑
c

|TA − TB |
1 + |TA|+ |TB |

(15)

S11 = 1−
∑
p

∑
s

∑
c

| TA
1 + |TA|

− TB
1 + |TB |

| (16)

It is obvious that the more similar their values are, the more
A can trust B.

C. Trust Transitivity

Definition 2. Transitive Trust: Assume that there are two SCs
A and B, A has a reference trust in B, and B has a criterion
trust in P.S.C. A needs to know how much he can trust in
P.S.C, and it has no information about it. A’s trust in P.S.C
can be derived by aggregating B’s criterion trust in P.S.C
and A’s trust in B as follows:

T (A→ P.S.C) = T (A→ B) · T (B → P.S.C)

It is common to collect reference trusts from several SCs to
make better decisions, which can be called consensus trust.

Definition 3. Consensus Trust: The consensus trust of two
SCs’ trust in criterion C of service S provided by a provider
P is a trust that reflects trust in a fair and equal way. A
consumer A needs to obtain the value of the trust in P.S.C,
and it knows little about P.S.C. However, it has trust in other
SCs X and Y , and both of them have a trust in P.S.C. The
derived consensus trust in P.S.C can be defined by:

T (A→ S.C) =

|T (A→ X) · T (X → P.S.C)|+ |T (A→ Y ) · T (Y → P.S.C)|
|T (A→ X)|+ |T (A→ Y )|

IV. CRITERION VALUE ESTIMATE AND IMPROVED
DETECTION ALGORITHM

Malicious SC can be classified as either adulating SC, which
tries to falsely improve the trust in certain SPs, or defaming
SC, trying to degrade the trust in certain SPs. The authors
in [7] used this algorithm to filter out malicious values of
the trust, however we use it to filter out malicious values of
non-trust quality criteria to retain the accuracy of the trust.
In addition, based on the algorithm we not only estimate the
value of non-trust quality criteria, but also predict its variance.
We further improve this algorithm by taking the relationship
between the value of non-trust quality criteria and its variance
into account.

A. Criterion Value Estimate

Because the value of a criterion C of a service S provided
by a provider P obtained by a consumer A each time is
independent, it is reasonable to model the distribution of the
values of P.S.C as Normal distribution. For each criterion,
its values follow normal distribution with {µr, σr}, where µr

is the real value of P.S.C’s µ, and σr is the actual P.S.C’s
variance.



Assume that A is going to use estimated values from other
consumers to predict P.S.C’s {µr, σr}. SC i’s estimated
values of P.S.C’s {µr, σr} are denoted as {µei , σei }. After
aggregating i’s estimated values, A’s estimated values are
denoted as {µeA,i, σeA,i}. Because of incomplete knowledge of
P.S.C, i’s estimated values usually have a deviation from A’s
estimated values {µeA,i, σeA,i}. Because the estimated values
are from independent consumers, the relation between i’s
estimate and A’s estimate is modelled as follows:

µei = µeA,i + λµ and p(λµ) ∼ Normal(0,Λµ)

σei = σeA,i + λσ and p(λσ) ∼ Normal(0,Λσ)

Note that λµ is different from σei . λµ is an estimate noise
covariance when A estimates the real value µr, while σei is
estimated covariance from SC i, which may be malicious.
Similarly, λσ is an estimate noise covariance when A estimates
the real value σr.

Based on the Kalman Filter [25], the estimation of {µr, σr}
is governed by the linear stochastic difference equations:

µeA,i = Fµµ
e
A,i−1 +Bui−1 + wµ,i−1; p(wµ) ∼ Normal(0,Wµ)

σeA,i = Fσσ
e
A,i−1 +Bui−1 + wσ,i−1; p(wσ) ∼ Normal(0,Wσ)

where, F is the factor for relationship between the previous
estimate based on the estimate of SC i − 1 and the current
estimate based on i’s estimate, and u is the optional control
input to the estimate {µeA, σeA}. Because in our model there
is no control input, u is 0. Hence, our estimates are governed
by the following linear difference equations:

µeA,i = Fµµ
e
A,i−1 + wµ,i−1; p(wµ) ∼ Normal(0,Wµ)

σeA,i = Fσσ
e
A,i−1 + wσ,i−1; p(wσ) ∼ Normal(0,Wσ)

In the Kalman Filter, there are two steps: Predict step and
Update step. Pµ and Pσ represent predict error covariance of
µeA,i and σeA,i respectively. The Predict step is responsible
for obtaining the priori estimate, denoted by{µ̄eA,i, σ̄eA,i}, for
the next step based on the previous estimate {µeA,i−1, σeA,i−1}.
Similarly, priori predict error covariances are denoted by P̄µ
and P̄σ . The Update step is responsible for incorporating a
new SC’s estimate {µei , σei } to obtain an improved posteriori
estimate {µeA,i, σeA,i}.

Predict step:

µ̄eA,i = Fµ,iµ
e
A,i−1, σ̄eA,i = Fσ,iσ

e
A,i−1

P̄µ,i = F 2
µ,iPµ,i−1 +Wµ,i, P̄σ,i = F 2

σ,iPσ,i−1 +Wσ,i

(17)

Update step:

Kµ,i =
P̄µ,i

P̄µ,i + Λµ,i
, Kσ,i =

P̄σ,i

P̄σ,i + Λσ,i
(18)

µeA,i = P̄µ,i +Kµ,i(µ
e
i − µ̄eA,i),

σeA,i = P̄σ,i +Kσ,i(σ
e
i − σ̄eA,i)

(19)

Pµ,i = (1−Kµ,i)P̄µ,i, Pσ,i = (1−Kσ,i)P̄σ,i (20)

To compute the parameters Fµ,i, Λµ,i, Wµ,i, Fσ,i, Λσ,i,

Wσ,i, the following equations are used:

Fµ,i =

i−1∑
m=1

µeA,mµ
e
A,m−1

i−1∑
m=1

(µeA,m)2

, Fσ,i =

i−1∑
m=1

σeA,mσ
e
A,m−1

i−1∑
m=1

(σeA,m)2

(21)

Λµ,i =
1

i

i−1∑
m=1

(µem−µeA,m)2, Λσ,i =
1

i

i−1∑
m=1

(σem−σeA,m)2 (22)

Wµ,i =
1

i

i−1∑
m=1

(µeA,m − FiµeA,m−1)2,

Wσ,i =
1

i

i−1∑
m=1

(σeA,m − FiσeA,m−1)2

(23)

B. Improved Detection Algorithm

Given significance probability levels δµ and δσ , the problem
of determining if the SC i is not malicious is to find the
threshold values ∆µ,i and ∆σ,i so that:

P (|µei − µeA,i| ≤ ∆µ,i) = δµ, P (|σei − σeA,i| ≤ ∆σ,i) = δσ (24)

In addition, µei − µeA,i and σei − σeA,i follow zero mean
normal distribution with variance Pµ,i + Λµ,i and Pσ,i + Λσ,i
respectively. Hence, there are also equations:

P (|µei − µeA,i| ≤ ∆µ,i) = 1− 2Φ(
−∆µ,i√
Pµ,i + Λµ,i

),

P (|σei − σeA,i| ≤ ∆σ,i) = 1− 2Φ(
−∆σ,i√
Pσ,i + Λσ,i

)
(25)

where Φ(x) is the cumulative distribution function of the
standard normal distribution. Hence, after solving Eq. (24) and
(25), ∆µ,i and ∆σ,i can be obtained:

∆µ,i = −Φ−1(
1− δµ

2
)
√
Pµ,i + Λµ,i,

∆σ,i = −Φ−1(
1− δσ

2
)
√
Pσ,i + Λσ,i

(26)

Using the threshold values ∆µ,i and ∆σ,i, malicious val-
ues of µe and σe can be detected respectively. However,
a malicious consumer can still manipulate the model by
setting σe or µe to be the lower or upper limit. Although
a malicious consumer i can set its feedback {µei , σei } to be
upper or lower limit, the probability of such feedback may
be very low or even zero. Hence, to increase the detection
accuracy, joint probability of σe and µe is used to filter out
this type of malicious values. Differences between {µei , σei }
and {µeA,i, σeA,i} are denoted by dµ,i and dσ,i, which follow
zero mean normal distribution with variance Pµ,i + Λµ,i and
Pσ,i + Λσ,i respectively. The joint probability of dµ,i and dσ,i
can be calculated by:

Pdµ,dσ (dµ,i, dσ,i) = Pdσ|dµ(dσ,i|dµ,i)Pdµ(dµ,i)

= Pdµ|dσ (dµ,i|dσ,i)Pdσ (dσ,i)
(27)

where Pdσ|dµ(dσ,i|dµ,i) and Pdµ|dσ (dµ,i|dσ,i) give the condi-
tional distributions of dσ given dµ = dµ,i and of dµ given



dσ = dσ,i respectively, and Pdµ(dµ,i) and Pdσ (dσ,i) give the
distributions for dµ and dσ respectively.

In Eq. (27), Pdµ(dµ,i) and Pdσ (dσ,i) can be calculated
by the probability density function of normal distribution.
Therefore, the problem is to determine Pdσ|dµ(dσ,i|dµ,i) or
Pdµ|dσ (dµ,i|dσ,i). In this paper, they are calculated by using
a set of clean data {

−→
dµ,
−→
dσ} which can be collected from

those highly trusted consumers. Before introducing the method
of calculating Pdµ(dµ,i) and Pdσ (dσ,i), basic notations are
provided as follows:
• {dµ,min, dµ,max}, {dσ,min, dσ,max}: denote the mini-

mum and maximum values of
−→
dµ and

−→
dσ respectively;

• Ninv,µ, Ninv,σ: The intervals between minimum and
maximum values of

−→
dµ and

−→
dσ are divided into Ninv,µ

and Ninv,σ smaller intervals respectively;
• Nd: The number of the elements of the set {

−→
dµ,
−→
dσ};

• N[dµ,k−1,dµ,k]: The number of elements in {
−→
dµ,
−→
dσ}

whose dµ is in the kth interval [dµ,k−1, dµ,k];
• N[dσ,k−1,dσ,k]: The number of elements whose dσ is in

[dσ,k−1, dσ,k];
• N[dµ,k−1,dµ,k],[dσ,k−1,dσ,k]: The number of elements whose
dµ is in the kth interval [dµ,k−1, dµ,k] and dσ is in
[dσ,k−1, dσ,k].

The first step of this method is to divide the intervals
[dµ,min, dµ,max] and [dσ,min, dσ,max] into Ninv,µ and Ninv,σ
smaller intervals respectively. In the following step, assume
dµ,i and dσ,i are in the ath interval [dµ,a−1, dµ,a] and bth inter-
val [dσ,b−1, dσ,b] respectively, and then Pdσ|dµ(dσ,i|dµ,i) and
Pdµ|dσ (dµ,i|dσ,i) are calculated by the following equations:

Pdσ|dµ(dσ,i|dµ,i) =
N[dµ,a−1,dµ,a],[dσ,b−1,dσ,b]

N[dσ,b−1,dσ,b]
(28)

Pdµ|dσ (dµ,i|dσ,i) =
N[dµ,a−1,dµ,a],[dσ,b−1,dσ,b]

N[dµ,a−1,dµ,a]
(29)

Due to calculation error, the results of
Pdσ|dµ(dσ,i|dµ,i)Pdµ(dµ,i) and Pdµ|dσ (dµ,i|dσ,i)Pdσ (dσ,i) in
Eq. (27) may be different. Hence, two significant probability
level δjointµ and δjointσ are given. At last, for each pair
{µei , σei }, if the joint probabilities of its diversion from
estimation values {µeA,i, σeA,i} calculated by Eq. (27) are
greater than δjointµ and δjointσ respectively, they are classified
as non-malicious values.

V. PROCESSES OF TRUST CALCULATION

A SC can calculate the trust value in a SP in two different
ways. Firstly, it can invoke a service many times, and obtain
the direct experience, called at Time Domain. Secondly, it can
collect trust values in a service from others, and get the indirect
experience, called at Aggregation Domain.

A. Time Domain

Each time a SC invokes a service, it can obtain the values
of all criteria. The consumer can use these values to calculate
the trustworthiness of the service. Assume that it is ith time

that a consumer A invokes a service S provided by a provider
P . The non-trust criteria of S include Price (PR), Response
Time (RT ), Availability (AY ) and Success Rate (SR). In the
four criteria, AY and SR are ratio criteria; P is a non-ratio
criterion with exact observation; RT is a non-ratio criterion
without exact observation. This section describes how estimate
values {µei , σei } of each criterion can be obtained by using A’s
collected criterion values.

1) Estimate values of ratio criteria: Because at time do-
main all values are collected by the SC itself, it is unnecessary
to filter out malicious values. It is easy to calculate ratio
criteria’s value. For instance, the success rate csr of S can
be calculated by the following equations:

If the ith invocation of S is successful:

numsuccess,i = numsuccess,i−1 + 1

If the ith invocation of S fails:

numsuccess,i = numsuccess,i−1

Finally:

csr =
numsuccess,i

i

Because the success rate is accurate, µe,SRi is directly
assigned with csr and there is no variance value σe,SRi for
success rate.

2) Estimate values of non-ratio criteria with exact obser-
vation: Assume that pri is the value obtained after the ith

invocation of S by A, and then PR’s values {µe,PRi , σe,PRi }
can also be calculated by the equations as follows:

µe,PRi =
(i− 1)µe,PRi−1 + pri

i

σe,PRi =
(i− 1)σe,PRi−1 + (pri − µ

e,PR
i )2

i

3) Estimate values of non-ratio criteria without exact ob-
servation: Exact values of RT cannot be obtained, not only
because computer is a complex dynamic system, but also
because of network delay. It is impossible to get exact response
time of a service. Hence, the method of criterion value
estimation in Section IV is used to estimate the value {µei , σei }.
Assume CRT is the vector of RT values obtained by A, and
cRTi is the RT value gotten by A after jth time’s invocation
of the service S. {Ue,RT , V e,RT } is the vector of RT values
estimated by A, and {µe,RTi , σe,RTi } are the estimated values
after getting the value cRTi .

Because variance of RT values cannot be gotten from SPs,
it cannot be estimated directly. Under this situation, the real
RT value µe,RTi is estimated using the Kalman Filter, and
σe,RTi is computed indirectly in the process of estimating
µe,RTi . First, Eq. (21), (22) and (23) are used to compute the



parameters F,Λ,W . They are calculated as follows.

Fµ,i =

i−1∑
m=1

µe,RTm µe,RTm−1/

i−1∑
m=1

(µe,RTm )2;

Λµ,i =
1

i

i−1∑
m=1

(cm − µe,RTm )2;

Wµ,i =
1

i

i−1∑
m=1

(µe,RTm − Fiµe,RTm−1 )2

Similarly, Eq. (17), (18), (19) and (20) are employed, and
µe,RTi are predicted as follows sequentially.

µ̄e,RTi = Fµ,iµ
e,RT
i−1 ; P̄µ,i = F 2

µ,iPµ,i−1 +Wµ,i;

Kµ,i = P̄µ,i/(P̄µ,i + Λµ,i); Pµ,i = (1−Kµ,i)P̄µ,i;

µe,RTi = P̄µ,i +Kµ,i(c
e,RT
i − µ̄e,RTi )

Finally, σe,RTi is assigned with Pµ,i + Λµ,i.

B. Aggregation Domain

Because of incomplete knowledge on SPs, each SC can
collect data from other consumers, and aggregate these values
to obtain more accurate values, although certain values may
be malicious.

Assume a consumer A is going to calculate the trust in
Px.Sx, and has no data on this service. Hence, it collects data
from its neighbour consumers who have used Px.Sx. The set
of A’s neighbours is denoted by CS, which is obviously a
subset of its all neighbours. The values of the four criteria
SR, AY , PR and RT from a SC csi ∈ CS are denoted
by {µe,SRi }, {µe,AYi }, {µe,PRi , σe,PRi } and {µe,RTi , σe,RTi }
respectively. The process of calculating trust is described as
follows.

1) The data is filtered first by using the method introduced
in Section IV, malicious values are filtered out.

2) A trust matrix T maintained by a consumer is a three
dimensional one, P × S × C. Eq. (6) is used as an
example for illustrating how A’s trust in a consumer
csi ∈ CS can be computed. The following equation
is used to calculate the similarity between A and csi,
which is A’s trust in csi.

1−


∑
p

∑
s

∑
c

(T (A→ p.s.c)− T (B → p.s.c)p

|T (A→ p.s.c)|


1
p

where p ∈ PA ∩ Pcsi , s ∈ p.SA ∩ p.Scsi and c ∈ s.C.
3) Based on the transitive property of trust introduced in

Section III-C, A’s trust in Px.Sx’s criteria is calculated
similar to the approach presented III-A. The following
equations explain how A’s trust in Px.Sx.PR is calcu-
lated. PRpb denotes the published value of Px.Sx.PR.
The set of A’s neighbours whose Px.Sx.PR actual
values are positive and the set of neighbours whose

values are negative are denoted by CSpo and CSne

respectively.

Tsumpo =
∑

csi∈CSpo

T (A→ csi)

Tsumne =
∑

csi∈CSne

T (A→ csi)

T po =

√√√√ ∑
csi∈CSpo

T (A→ csi)

Tsumpo (1−
µe,PRcsi

PRpb
)2

Tne =

√√√√ ∑
csi∈CSne

T (A→ csi)

Tsumne (1−
µe,PRcsi

PRpb
)2

T = 1 + T po − Tsumne

Tsumpo + TsumneT
ne

VI. PERFORMANCE EVALUATION

In this section, several experiments are carried out to
evaluate the robustness of the proposed model, compared to
the algorithm (RLM) in [7]. This trust model presented in this
paper, Improved RLM (IRLM), is evaluated in a simulated
environment. Because the experimental results in [7] have
shown that KF-based algorithm outperforms Bayesian-based
algorithms, and so on, IRLM is not compared with those
approaches again. At last, all similarity functions are evaluated
and compared.

To evaluate the robustness of IRLM, an experiment is
carried out in an environment with malicious values. The
probability of malicious values is set up to 40%, because it is
almost impossible that more than a half of SCs behave mali-
ciously and it is impossible to perform well in an environment
with more than 50% malicious SCs.

Definition 4. True Malicious Rate: The percentage of cor-
rectly detected malicious values.

The number of all malicious values and correctly detected
malicious ones are denoted by numm and numc respectively,
and true malicious rate is calculated by

numc

numm
.

Definition 5. False Malicious Rate: The percentage of
wrongly detected non-malicious values.

The number of all non-malicious and wrongly detected ma-
licious values are denoted by numnon and numw respectively,
and false malicious rate is calculated by

numw

numnon
.

This experiment is similar to the experiment in [7], and
the variance σe of malicious values is set to be an extreme
low value. All results are shown in Fig. 1 and 2, and IRLM
performs almost the same as the original RLM algorithm in
this situation, as the increase of the malicious value probability.
Because IRLM is based on RLM, it will not perform worse
than RLM. IRLM aims at another situation which is not
considered by RLM. Hence, in this experiment, IRLM does
not outperform RLM, either. Results in Fig. 1 and 2 further
proved these two points.
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Fig. 1. Average true malicious rate with the variance being set to be an
extreme low value
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Fig. 2. Average false malicious rate with the variance being set to be an
extreme low value

Furthermore, in another experiment with malicious values,
three different types of malicious values are listed as follows:
• σe is set to be the real value and µe is set to be the lower

or upper limit;
• σe is set to be the lower or upper limit and µe is set to

be real value;
• Both σe and µe are set to be the lower or upper limit.
The values of σe in IRLM correspond to P in two dimension

tuple, {〈R〉, P}, of RLM. RLM used manual feedback and
the values of P were also set manually, therefore, there is
no relationship between R and P in RLM. In IRLM both
σe and µe are derived from the collected values, and σe and
µe are related to each other. However, consumers can still
manipulate the values and provide inaccurate values to other
consumers. In this situation, malicious consumers may try to
mislead the results gradually. Hence, seen from Fig. 3, IRLM
still has high detection efficiency in this strategic malicious
environment while RLM does not. However, as shown in Fig.
4, IRLM suffers higher false detection rate than RLM.

Before evaluating how distance functions affect the aggre-
gation of trust value, the parameters in Eq. (6), (10) and (11)
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Fig. 3. Average true malicious rate with three types of malicious values
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Fig. 4. Average false malicious rate with three types of malicious values

needs to be fixed. Therefore an experiment is carried out, and
Fig. 5 shows the value of the trust by the use of Eq. (6) with
the parameter p in the range [1, 100]. Seen from Fig. 5, this
parameter affects the result of the aggregation a little. Hence,
in the following experiment p is assigned with 50. The results
of Eq. (10) and (11) are similar, and both of their parameters
are set to be 50.

To evaluate how similarity functions affect the aggregation
result, all functions are run on the same data. In the experiment
whose results are shown in Table. II, dishonest SCs try to
falsely improve the value of the trust of a bad service. Hence,
the smaller the deviation is from the ideal value, the better
the similarity function is. The first row represents the ideal
trust values, and other rows show the results of corresponding
similarity function. Seen from the results of the Table. II, S2,
Eq. (7) works the best.

Table. III shows the results with dishonest consumers trying
to degrade the value of the trust. We can see that the aggre-
gation results of S2 have the smallest deviation from the ideal
values. Hence, Eq. (7) performs the best.
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TABLE II
VALUE OF TRUST AGGREGATED WITH DIFFERENT PERCENTAGE OF
DISHONEST CONSUMERS TRYING TO FALSELY IMPROVE THE TRUST

0% 10% 20% 30% 40%
Ideal 0.3 0.3 0.3 0.3 0.3

S1 0.3017 0.3296 0.3583 0.3858 0.4161

S2 0.3016 0.3088 0.3175 0.3224 0.3302

S3 0.3017 0.3243 0.3488 0.3718 0.3986

S4 0.2991 0.6438 0.6718 0.6877 0.6937

S5 0.3022 1.0722 0.8082 0.7639 0.7416

S6 0.2986 0.6667 0.6830 0.6949 0.6985

S7 0.3008 0.4926 0.5692 0.6140 0.6407

S8 0.3011 0.5109 0.5840 0.6259 0.6497

S9 0.3011 0.489792 0.5660 0.6116 0.6387

S10 0.3011 0.4972 0.5726 0.6169 0.6428

S11 0.3011 0.4944 0.5702 0.6149 0.6413

VII. CONCLUSION

Trust in QoS of SPs is increasingly important for consumers
to select appropriate services. In this paper, QoS criteria
have been classified into several groups on the basis of their
characteristics, and then a model of automatically calculating
the trust in quality criteria has been presented, not only based
on the trust in SPs but also on the basis of the trust in SCs,
which significantly helped reduce the influence of dishonest
SCs. The trust calculation process has been divided into two
steps, Time and Aggregation Domain. At time domain, a
SC used the values obtained by the consumer itself while
at aggregation domain a SC calculated the value of trust
using values from others, which may be malicious. Hence
at aggregation domain, an improved KF-based algorithm has
been presented to filter out malicious values and the trust in
other consumer X was used to weight the data provided by X .
Finally, our model has been evaluated by several experiments

TABLE III
VALUE OF TRUST AGGREGATED WITH DIFFERENT PERCENTAGE OF

DISHONEST CONSUMERS TRYING TO FALSELY DEGRADE THE TRUST

0% 10% 20% 30% 40%
Ideal 0.7 0.7 0.7 0.7 0.7

S1 0.6950 0.6687 0.6397 0.6072 0.5704

S2 0.6950 0.6868 0.6754 0.6608 0.6398

S3 0.6951 0.6729 0.6476 0.6185 0.5848

S4 0.6947 0.34504 0.3191 0.3065 0.3058

S5 0.6950 -0.1630 0.1710 0.2273 0.2586

S6 0.6952 0.2321 0.2697 0.2772 0.2877

S7 0.6951 -0.0127 0.1992 0.2409 0.2659

S8 0.6949 0.4652 0.3943 0.3568 0.3397

S9 0.6949 0.4864 0.4111 0.3693 0.3486

S10 0.6949 0.4538 0.3858 0.3506 0.3353

S11 0.6949 0.4315 0.3701 0.3396 0.3278

and the results have shown that a more accurate value estimate
can be made by our model, with higher detection accuracy
than the original algorithm under a more strategic malicious
environment, although our algorithm suffers a higher false
detection rate. Among a collection of similarity functions, Eq.
(7) performed the best.

However, our model required a large amount of historic
estimation and lots of calculation. Hence, further research
will be carried out to reduce the need of storing a large
number of historic estimation and calculation. In addition,
when aggregating values from other consumers, only first-
hand data were used, meaning that a SC only aggregates the
data from the SCs that it knows. In future, more data will be
considered.
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