
 

 

 
 

1 INTRODUCTION 
 
Imperfection sensitive structures are characterized by 
the fact that when the structure undergoes buckling 
its load carrying capacity diminishes and the buck-
ling load is theoretically the maximum load that can 
be supported (Hutchinson, 1972). As a result, small 
imperfections have an appreciable effect on the max-
imum actual load that these structures can support 
and this is particularly true for circular cylindrical 
shells in the plastic range (Bushnell, 1982). 

On these bases the present work attempts to con-
tribute to a further understanding of this problem by 
means of a few numerical examples and comparisons 
with some classical results (Batterman 1965, Blachut 
et al. 1996). It is shown that using a geometrically 
nonlinear shell-based finite-element formulation and 
an extension of the small-strain elastoplasticity theo-
ry based on linear hypo-elastic relations between 
stress and elastic strain rates, a good agreement be-
tween numerical and experimental results can be ob-
tained.  

2 BRIEF OUTLINE OF THE ADOPTED 
NUMERICAL APPROACH 

2.1 FE modelling 

When buckling occurs during the loading process, 
even if the stress-strain relation remains linear, large 
deformations and the change in the geometry cause  

 
 
the structure to behave non-linearly and the analysis 
requires a non-linear geometric approach. Addition-
ally, for the vast majority of moderately thick shells, 
the bifurcation load occurs mostly in the plastic range 
of the material and an adequate representation of the 
material behaviour must be introduced in the analy-
sis.  

The commercially available Finite Element pack-
age ABAQUS provides tools to carry out all these 
kinds of non-linear analyses by means of a modified 
version of the arc-length method first proposed by 
Riks (1979). The Modified Riks method is able to 
identify the limit points and trace the equilibrium 
path by using both displacement increments and the 
scalar load increment as unknown variable in the it-
eration scheme. The methods falls within the general 
category of the linearized arc-length methods and 
searches the solution in the generalized plane orthog-
onal to the tangent line to the current iterative tenta-
tive solution, see for example Crisfeld (1991).  

2.2 Description of imperfections 

Imperfections are accounted in the geometry of 
the problem by adding the form of a suitable buck-
ling mode or the combination of multiple linear 
eigenmodes. This is practically achieved by scaling 
and adding buckling eigenmodes to a perfect geome-
try in order to create a perturbed model. The scale 
number is usually taken as a percentage of the shell 
thickness, t. 
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ABSTRACT: It has been long known that finding a thoroughly good agreement with experimental results for 
the buckling loads of circular cylinders in the plastic range constitutes a very difficult task, beyond the same as 
well challenging problem in the elastic range. This paper attempts to contribute to the understanding of this is-
sue by discussing a few numerical examples in comparison with some classical experimental results reported 
by Blachut et al. (1996) and Batterman (1965). It is shown that finite-element analyses grounded on the hypo-
elasticity-based extension of small-strain theory of plasticity to geometrically nonlinear problems lead to good 
agreement with experimental results, although in some cases the sensitivity to the amount and shape of imper-
fection plays an important role, a fact which leaves open issues in terms of fully predictive capability of the 
computational models. 
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2.3 Material modeling 

Simulations were conducted adopting a constitutive 
model based on the J2 theory of plasticity and a von 
Mises yield criterion with nonlinear isotropic harden-
ing extended to the large-strain regime by using spa-
tial stress and strain measures and a hypoelastic rela-
tion between the rates of stress and elastic strain. 
Starting from an additive decomposition of the spa-
tial rates of the deformation tensor into its elastic and 
plastic parts, 

pe ddd   (1) 

the rate of the Cauchy stress tensor σ  is obtained 
from the elastic part of the strain tensor through the 
isotropic linear elastic relation: 

1ddσ eeG tr2   (2) 

where G and  are the shear elastic modulus and the 
second Lamé’s constant and 1 is the rank-2 identity 
tensor. The von Mises’ yield function f is then intro-
duced as follows: 
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where  σdev  denotes the deviatoric part of the Cau-
chy stress tensor and   represents the uniaxial yield 
strength which, in order to model nonlinear isotropic 
hardening, is assumed to be an increasing function of 
the equivalent plastic strain eq

p  defined at time t by 
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The evolution of the plastic strain tensor is given by 
the flow rule: 
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where   is related to the yield function through the 
Kuhn-Tucker conditions:  

0           0σf          0σf   (5) 

The above described constitutive relation has been 
the subject of controversial debate because relation 
(2) can be shown to be non hyper-elastic, and leads 
to fictitious numerical dissipation. However, this 
formulation is widely implemented in many of the 
commercial codes, including ABAQUS, and it can be 
argued that the hypo-elasticity of the formulation has 
limited influence on the results because, even when 
strains are large, the elastic part of the strain is typi-
cally still very small and therefore close to the limit 
where hypo-elastic and hyper-elastic formulations 
coincide (Simo and Hughes, 1998).  
 

3 CIRCULAR CYLINDERS UNDER AXIAL 
TENSION AND EXTERNAL PRESSURE 

3.1 Geometry, boundary conditions, material 
properties and loading 

Blachut et al. (1996) conducted experiments on 30 
mild-steel machined cylinders, ≈34 mm in diameter 
with a length-diameter ratio (L⁄D) of 1.0, 1.5 and 2.0. 
In the present study twelve of these cylinders were 
chosen for the numerical analysis. In the experi-
mental setting one flange of the specimen was rigidly 
attached to the end flange of the pressure chamber 
and the other flange was bolted to a coupling device 
which in turn was bolted to the load cell, see Figure 
1. The load cell was centered with respect to the test 
chamber in order to prevent any eccentricity of the 
axial load applied to the cylindrical specimen. 
 
 
 
 
 
 
 

 
Figure 1. Experimental setting (Blachut et al. 1996). 

3.2 FE analyses 

In the FE model a reference point was located at the 
centroid of the top end of the cylinder and kinematic 
coupling constraints were assigned to it. The axial 
load was applied directly to the reference point. One 
end of the cylinder was clamped, while the nodes at 
the other end were allowed displacements in the axial 
direction, see Figure 2 

 
 
 
 
 
 
 
 
 

 
Figure 2. FE modeling of Blachut experiments. 

 

In order to simulate the experimental settings, two 

loading conditions were considered: an axial load in 

the longitudinal direction of the cylinder and a pres-

sure applied normally to the surface of the shell ele-

ments. The material properties were derived from the 

material tests conducted by Blachut et al. (1996). 

Young’s modulus, E, and Poisson’s ratio, ν, were set 

equal to 212 GPa and 0.31, respectively. The yield 



 

 

stress of the mild steel was assumed to be 328 MPa 

and uniform in the model 

In Table 1 the predicted buckling pressures pro-

vided by the numerical simulations are compared 

with the experimental findings. 
 

Table 1. Experimental (Blachut et al. 1996) vs nu-
merical predictions  

 

 
In Figures 3-5, the load-displacement curves ob-

tained for all the simulations are shown. They clearly 
reveal the unstable nature of the post-buckling re-
gime, but also show that extent of structural soften-
ing is significantly influenced by the different values 
of the axial pressure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Load-displacement curves numerically determined for 

specimens S1-S7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Load-displacement curves numerically determined for 

specimens S2, M7 and M12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Load-displacement curves numerically determined for 

specimens L4 and L8. 

4 CIRCULAR CYLINDERS UNDER 
AXISYMMETRIC COMPRESSION LOAD 

4.1 Geometry, boundary conditions, material 
properties and loading 

Batterman (1965) used tubular specimens made of 
aluminum alloy 2024-T4, clamped at both ends as in 
the case of Blachut tests. By applying axisymmetric 
compression, Batterman tested 30 cylinders with a 
radius-thickness ratio (R⁄ t) between 9.7 and 121.25 
with great emphasis on the buckling pattern of each 
cylinder. Nine cylindrical shells were chosen for 
the present numerical analysis 
 

4.2 FE analyses 

The material characterization for the FE anal-
yses was derived from the test results from Bat-
terman. Young’s modulus, E, Poisson’s ratio, ν, 
hardening parameter, n, yield stress, σy, and yield 
offset α of the cylindrical shell were taken as 
74.46 GPa, 0.32, 14.45,  389.55 and 0.382, respec-
tively.  
 

 

Spec. 
Axial 

tension 
(N) 

External pressure experimental 
(Mpa) 

Pexp/Pnum 
Experimental re-
sults (Blachut et 

al.,1996) 

Numerical 
results 

Pexp Pnum 

S1 17960 4.07 5.43 0.75 

S2 0 12.76 13.14 0.97 

S3 18000 4 4.91 0.81 

S4 3990 10.41 11.79 0.88 

S5 12010 8.28 8.72 0.95 

S6 15030 6.55 7.72 0.85 

S7 7970 9.66 10.39 0.93 

M2 10670 8.14 7.79 1.04 

M12 18530 4.48 4.16 1.08 

M7 15060 5.52 5.64 0.98 

L4 8210 10.34 9.90 1.04 

L8 16490 5.17 6.24 0.83 



 

 

 
 

 
Table 2. Experimental (Battermann 1965) vs 
ABAQUS results  

 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 6. Comparison between numerical and experimental rati-

os for different imperfection ratios. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Load displacement curve obtained for specimen 12. 
 

Figure 6 shows the influence of the imperfection 

ratio on the results of the nonlinear post-buckling 

analysis and reveals that such sensitivity increases 

with increasing values of the ratio between the outer 

radius, R, and the thickness, t ,of the specimen. Fig-

ure 7 shows a typical load-displacement curve nu-

merically determined. 

5 CONCLUSIONS 
 

Nonlinear post-buckling analyses which properly 
account for the plastic response of the material have 
been found to provide very good agreement with 
some classical experimental results reported in the 
literature.  

The importance of a correct modeling of loading, 
nonlinearity and boundary conditions (see, for exam-
ple, Pietraszkiewicz 1984 and Guarracino 2007) has 
been once again confirmed and the results are shown 
to be sensitive to the amount imperfection used, as it 
is expected for this kind of structures. This is particu-
larly so for moderately thick cylinders, a case for 
which the influence of plasticity is fairly noticeable. 
The results suggest that the use of a hypo-elasticity 
based extension of the small-strain elasto-plasticity 
von Mises model to the case of (moderately) large 
strains is adequate, despite the theoretical issues 
raised by the lack of preservation of the elastic ener-
gy within a closed cycle.  

The presented results are however very prelimi-
nary and the undertaken research aims at thoroughly 
examining the influence of different modeling as-
sumptions which can be used to represent material 
and geometrical nonlinearities, of different finite-
element approximations of the boundary value prob-
lem and, finally, of various solution approaches.  
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Spec. 
Sexp=Experimental 

Buckling Stress 
(Batterman, 1965) 

Snum=Numerically 
predicted buckling 

stress  
Sexp/Snum 

12 480.08 455.57 1.05 

18 482.63 454.87 1.06 

22 439.8 433.18 1.02 

5 410.72 401.56 1.02 

15 382.6 377.44 1.01 

16 354.25 366.92 0.97 

26 301.23 307.92 0.98 

8 227.73 220.93 1.03 

9 219.05 234.04 0.94 


