
On the Instantaneous Acceleration of Points in a Rigid

Body

J.M. Selig

London South Bank University

London SE1 0AA, U.K.

Abstract

This work re-examines some classical results in the kinematics of points in
space using modern vector-matrix methods. In particular, some very simple
Lie theory allows the velocities and accelerations of points to be found in
terms of the instantaneous twist of the motion and its derivative. From
these results many of the classical results follow rather simply.

Although most of the results are well known, some new material is pre-
sented. In particular, the discriminant curve that separates cases with one
or three real acceleration axes is found and plotted. Another new result con-
cerns the chords to the cubic of inflection points. It is shown that for points
on such a chord the osculating planes of the point’s trajectories are parallel.
Also a new result is found which distinguishes between cases where the Bresse
hyperboloid of points whose velocities and accelerations are perpendicular,
has one or two sheets.
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1. Introduction

The advent of cheap solid-state accelerometers has made it possible to
incorporate these devices into everyday consumer electronic products such
as mobile phones and games controllers. This has prompted interest in the
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problem of finding the state of motion of a rigid body from measurements of
its acceleration at a finite number of points, see for example [1].

In this work an older problem is re-examined, the problem of describing
the instantaneous acceleration field of a rigid-body motion. This is essentially
instantaneous kinematics. It is expected that a better understanding of the
acceleration and velocity fields of a rigid motion will illuminate the problem
mentioned above. A better understanding of this area may also help the
study of finite rigid-body motions. This is an area that has several applica-
tions to robot path planning and computer animation. It has also long been
appreciated that instantaneous kinematics is of fundamental importance to
the theory of mechanisms.

Since this is a very old and well studied area many of the results are well
known. The aim of this present work is first to give modern proofs of these
well known results and then to extend them where possible. Further, by
putting these ideas into a common geometrical framework, relations between
different results can be seen. Perhaps the standard reference in this area is
the seminal work of Bottema and Roth, [2]. However, over the years many
other workers have revisited this area, see for example, [3], [4], [5].

Due to limitations of space, only general results are considered in this
work. However, there are many special cases where curves and surfaces
degenerate or acquire special properties. Many of these special cases are
studied in [6], but see also [7].

The first result addressed in this work is the existence and location of the
acceleration centre of the motion, this was studied in [8]. Here simple matrix
methods are used to quickly derive familiar results. A key method used here
is a series of symbolic relations for certain 3 × 3 matrices derived in full in
the appendix to this work.

Next, the acceleration axes are studied. A novel result here is the explicit
determination of the discriminant curve which distinguishes the cases where
there are one or three real acceleration axes.

The following section concerns the acceleration ellipsoids as studied in
[9]. The novelty of this section is the relationship between the principal
axes of the ellipsoids and the singular value decomposition of the angular
acceleration tensor. This tensor was also studied in [10]. Conditions for the
ellipsoids to be cylindrical are found.

The complex of acceleration lines are studied in the following section.
The same methods used in the preceding sections allow a very simple and
explicit derivation of this tetrahedral quadratic line complex.
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In the rest of the work the acceleration and velocity of points are consid-
ered together. The main results in this area is that the points in the body
that are instantaneously at points of inflection form a twisted cubic curve.
This result seems to date back to [11], but has been rediscovered by many
others over the years, for example see [12]. Again a simple derivation is given
here, this allows an explicit parameterisation of the curve to be found.

In the next section, what is believed to be a completely novel result is
presented. This relates the osculating planes for points, to the chords of
the cubic of inflection points. The osculating plane of a point is the plane
spanned by the velocity and acceleration vectors at the point.

Another new idea is introduced in the following section. It is well known
that the tangent lines to a twisted cubic curve lie in a unique linear line
complex. Here the line complex determined by the cubic of inflection points
is studied. The unique screw defining the line complex is found.

Finally, the Bresse hyperboloid of points with perpendicular velocity and
acceleration is considered. This has been studied previously in [13], for ex-
ample. Here the centre of the hyperboloid is found and the condition for the
hyperboloid to have one or two sheets is determined.

To begin, key relations for the velocity and acceleration of points in a
moving rigid body are derived.

2. Velocity and Acceleration of Points

Let G(t) be a rigid body motion, that is G(t) ∈ SE(3). In the 4 × 4
representation of the group this can be written,

G(t) =

(

R(t) p(t)
0 1

)

,

where R is a 3×3 rotation matrix and p is a translation vector. The param-
eter t will usually be though of as time in the following.

If r0 is a point on the moving body when t = 0, then its position at
subsequent times r(t), will be given by,

(

r(t)
1

)

=

(

R(t) p(t)
0 1

)(

r0
1

)

. (1)

The velocity of the point will be found by differentiating with respect to
t, this will be denoted by a dot, so

(

ṙ(t)
0

)

=

(

Ω v

0 0

)(

R(t) p(t)
0 1

)(

r0
1

)

=

(

Ω v

0 0

)(

r(t)
1

)

,
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where Ω is the anti-symmetric matrix representing the angular velocity of
the body, that is the matrix which satisfies Ωr = ω×r for any vector r. The
vector v is a characteristic linear velocity of the motion. It is easily seen that
v is the velocity of the point on the body which is located at the origin at
time t. In terms 3-vectors the velocity can be written,

ṙ(t) = ω × r(t) + v. (2)

The acceleration of the point will be given by the second derivative,

(

r̈(t)
0

)

=

(

Ω̇ v̇

0 0

)(

r(t)
1

)

+

(

Ω v

0 0

)2(
r(t)
1

)

.

This can be summarised as,

r̈(t) = W r(t) + a0, (3)

where W = (Ω̇ + Ω2) is the angular acceleration tensor referred to in [10]
and a0 = v̇ + Ωv = v̇ + ω × v, is the acceleration vector of the point at the
origin at time t.

In the rest of this work the explicit dependence on t will usually be
dropped for brevity. Futher details on this approach to the velocity and
acceleration of points can be found in [14].

3. The Acceleration Centre

The acceleration centre is the point in space which, at the instant un-
der consideration, has no acceleration. This point will satisfy the matrix
equation,

W rc + a0 = (Ω̇ + Ω2)rc + (v̇ + ω × v) = 0. (4)

The acceleration centre rc, is therefore given by,

rc = −W−1a0 = −(Ω̇ + Ω2)−1(v̇ + ω × v). (5)

Thus a unique acceleration centre exists if and only if the matrix W is
non-singular. Using equation (A.1) from the Appendix, it can be seen that
this matrix is non-singular when, −|ω × ω̇|2 6= 0, that is so long as ω 6= 0,
ω̇ 6= 0 and ω is not parallel to ω̇.

Using (A.1) and (A.2), the coordinates of the acceleration centre can be
computed explicitly. Before doing this, it is convenient to denote the angular
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acceleration of the body as α = ω̇, to be compatible with previous work.
With this notation the equation for the acceleration centre is,

rc =
α(α · a0) + (α× ω)(ω · a0)− ω((α× ω) · a0) + |ω|2ω(ω · a0)

|ω ×α|2 .

The relation for the vector triple product this can be tidied a little to give,

rc =
(α · a0)α+ |ω|2(ω · a0)ω + a0 × (ω × (ω ×α))

|ω ×α|2 . (6)

This is in agreement with the results of [8], however these authors choose to
write |ω ×α|2 as |ω|2|α|2 − (ω ·α)2.

4. The Acceleration Axes

Consider the set of points in the body with acceleration normal to some
given direction. Suppose the given direction is m, then the points sought
must satisfy the equation,

0 = m · r̈ = mTW r+mTa0. (7)

This is the equation of a plane through the acceleration centre. This can
be seen from equation (5) above, which shows that the acceleration centre
satisfies the equation for any directionm. Notice that the normal to the plane
is given by W Tm. In general, the normal to the plane will be different from
the normal to the acceleration vectors of the points in the plane. However,
if m is an eigenvector of the matrix W T = (Ω̇ + Ω2)T = ( − Ω̇ + Ω2),
then the acceleration vectors of points in the corresponding plane will lie in
the plane. The matrix can have one or three real eigenvalues, so there are
correspondingly one or three such planes. Exceptionally, the matrix can have
two real eigenvalues if one of these eigenvalues is repeated.

If there are three real planes then their point of intersection will, of course,
be located at the acceleration centre. These planes do not seem to have a
particular name in the literature, here they will be labelled π12, π23 and π31

corresponding to the eigenvalues m3, m1 and m2 respectively.
Next, consider the sets of points whose acceleration vector lies in a given

direction. Suppose the given direction is specified by a vector product, m1×
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m2. From the above it is easy to see that the points with acceleration vector
in the direction m1 ×m2 lie on the intersection of the two planes,

mT
1W r+mT

1 a0 = 0, and mT
2W r+mT

2 a0 = 0.

That is, along a line through the acceleration centre. Notice that this argu-
ment is reversible, the points on any line through the acceleration centre will
have acceleration parallel to some direction.

Figure 1: The Discriminant curve. Here ω is assumed to be of unit length and directed
along the vertical axis. The position vector of a point in the plane determines the angular
acceleration vector ω̇, the length of the position vector is |ω̇| the magnitude of the angular
acceleration and the angle between the vertical axis and the position vector is φ. Inside
the curve the motion has 3 real acceleration axes while outside only one.

Following Bottema and Roth [2, Chap. 6 §12], consider lines where the
acceleration of any point on the line is directed along that line. From the
above we can see that if m1 and m2 are eigenvectors of W T then the line
through the acceleration centre with direction m1×m2 is such a line. Recall
that the acceleration of points in the planes through the acceleration centre
and normal to m1 or m2 lie in the planes π23 and π31. So the intersection of
two such planes gives a line of points with acceleration vectors perpendicular
to bothm1 andm2. These normals are also normal to the line of intersection.
In the literature these lines are known as the acceleration axes.
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Using the relation (A.3) given in the Appendix, it is simple to show that
if n1 and n2 are eigenvectors of the matrix W , then n1×n2 is an eigenvector
of the transposed matrix W T . This justifies the notation introduced above:
π12 is the plane of points whose accelerations are normal to n1 × n2 = m3.
Also the intersection of two such planes π12 and π23 say, is the acceleration
axis directed along the eigenvector n2 = m3 ×m1.

In fact even when W T only has one real eigenvector, the acceleration
axis is directed along the corresponding real eigenvector of W . To see this
consider the points along a line through the acceleration centre, r = rc+λu,
where u is the direction of the line and λ is an arbitrary parameter. The
acceleration of such a point is given by,

r̈ = W (rc + λu) + a0 = λWu.

Now, for this acceleration to be directed along the line we must have,

0 = u× r̈ = UWu,

the parameter λ is irrelevant. Clearly, the only solutions are when u is an
eigenvector of W . Notice that the acceleration vectors of points on lines not
passing through the acceleration centre, do not all share the same direction.
So the solutions above are the only possible solutions.

This leads to consideration of the circumstances under which W = (Ω̇ +
Ω2) has one, two or three real eigenvalues. To find the characteristic equation
of the matrix we can use the same methods as those used in the appendix.
The characteristic equation for the normal form is,

det





−b2z − λ −az ay
az −b2z − λ −ax
−ay ax −λ



 =

−λ3 − 2b2zλ
2 − (a2x + a2y + a2z + b4z)λ− (a2x + a2y)b

2
z = 0.

If a is substituted by ω̇ and b by ω, then writing the result in terms of
invariants and cancelling a minus sign produces the equation,

λ3 + 2|ω|2λ2 + (|ω̇|2 + |ω|4)λ+ |ω̇ × ω|2 = 0. (8)

The discriminant of a general cubic equation a3λ
3 + a2λ

2 + a1λ+ a0 = 0
is given by, D = a21a

2
2−4a0a

3
2−4a31a3+18a0a1a2a3−27a20a

2
3, see [15]. For the
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cubic above, it may be assumed that, |ω̇ × ω| = |ω̇||ω| sinφ, where φ is the
angle between the angular velocity and angular acceleration vectors. After
some computation the discriminant becomes,

D = −27|ω̇|4|ω|4 sin4 φ+ 4(9|ω̇|2 + |ω|4)|ω̇|2|ω|4 sin2 φ−
4(|ω̇|4 + 2|ω̇|2|ω|4 + |ω|8)|ω̇|2 (9)

The significance of this discriminant is that if D > 0 the cubic will have 3
real roots, but if D < 0 it has just one real root. When D = 0, at least
one of the roots is repeated. Notice that the discriminant depends only
on the relative magnitudes of the angular velocity and angular acceleration
vectors, together with their angular separation. Coordinates can be chosen
so that ω is a unit vector in the y-direction and ω̇ lies in the xy-plane.
With this choice of coordinates the points in the xy-plane where ω̇ satisfies
D = 0 can be plotted, see Figure 1. A point on the curve in this figure
has a position vector with length |ω̇| and its angle to the y-axis is φ. For
angular accelerations outside the curve D < 0, hence only one acceleration
axis exists for these cases. Inside the curve D > 0, so in these cases there
are three acceleration axes. On the curve we expect that there will be two
acceleration axes but with one a repeated axis, at the ordinary cusp point on
the curve there is a single, thrice repeated, acceleration axis. The location
of these cusp point are easily found, they occur when |ω| =

√
3|ω̇| and the

angle between the angular velocity and angular acceleration vectors satisfies,
sinφ = ±2

√
2/3

5. Acceleration Ellipsoids

Bokelberg et al. [9] studied the idea of acceleration ellipsoids. See also [2,
Chap. 6 §12]. These are surfaces on which all points have acceleration vectors
with the same magnitude. Assuming the magnitude of the acceleration is
given by k, these surfaces can be defined by the following equation,

r̈T r̈ = k2 = (W r+ a0)
T (W r+ a0).

It is easy to see that if coordinates centred on the acceleration centre are
used, so that a0 = 0, then the equation for the surfaces reduces to,

rTW TW r = k2.
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The symmetric matrix on the left is a Gram matrix and hence is positive def-
inite so long as W is non-singular. This shows that the surfaces are indeed
ellipsoids. The axes of these ellipsoids are directed along the eigenvectors
of the matrix W TW . These are closely related to the singular value decom-
position of the matrix W . Suppose that UTWV = Σ is the singular value
decomposition of W , so that U and V are orthogonal matrices and Σ is the
diagonal matrix of singular values. The symmetric matrix W TW can be
diagonalised using the matrix V , that is,

(UTWV )T (UTWV ) = Σ2 = V TW TWV.

So the columns of V are the eigenvectors of W TW and the squares of the
singular values of W are the eigenvalues of W TW .

The acceleration ellipsoids of an instantaneous motion will be cylindrical
if two of the eigenvalues coincide. To investigate this phenomenon the char-
acteristic equation of the matrix W TW can be computed. This is most easily
done using the same methods as used in the previous section. The result is,

λ3 − 2(|ω̇|2 + |ω|4)λ2 + (|ω̇|2 + |ω|4)2λ− |ω̇ × ω|4 = 0. (10)

Substituting this into the expression for the discriminant of a cubic given in
the previous section yields,

D = |ω̇ × ω|4(4(|ω̇|2 + |ω|4)3 − 27|ω̇ × ω|4). (11)

Assuming that the angular velocity and angular acceleration are not parallel
or zero, that is that the term |ω̇×ω| does not vanish, we can look for solutions
as in the previous section by assuming that the angle between the angular
velocity and angular acceleration is φ so that |ω̇ × ω| = |ω̇||ω| sinφ. Now
for physical solutions of the equation D = 0 we must have that | sinφ| ≤ 1
and hence that,

4(|ω̇|2 + |ω|4)3 ≤ 27|ω̇|4|ω|4,
or

4(|ω̇|2 + |ω|4)3 − 27|ω̇|4|ω|4 ≤ 0.

This can be solved if we assume that |ω̇| = µ|ω|2 for some positive constant
µ. Substituting into the equation above and simplifying gives,

(4(µ2 + 1)3 − 27µ4)|ω|12 ≤ 0.
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The polynomial in µ factorises and the magnitude of the angular velocity is
positive so this simplifies to,

(1 + 4µ2)(µ2 − 2)2 ≤ 0.

This is never negative, the only solutions are when the left-hand side of the
inequality vanishes, that is when µ =

√
2. This corresponds to sinφ = ±1

and hence φ = ±(π/2), the angular velocity and angular acceleration are
perpendicular in this case with |ω̇| =

√
2|ω|2. This is the only case where

two eigenvalues of W TW are the same, in fact it is easy to compute the
eigenvalues here; one is 4|ω|4 and the other two have the value |ω|4. In
particular note that it is not possible for the acceleration ellipsoids to be
spheres. In [2, Chap. 6 §12], a relation is also given for the lengths of the
semi-axes of these ellipses.

6. Complex of Acceleration Lines

Consider the line complex formed by taking lines through points in the
direction of the acceleration vector through the point. In [2, Chap. 6 §12] it
is shown that this is a quadratic line complex. Here a simple derivation is
given which produces the symmetric matrix defining the complex.

Assume that the Plücker coordinates of the line have the form (ψT , uT ).
That is the vector ψ = (p01, p02, p03)

T , is the direction of the line and u =
(p23, p31, p12)

T , is the moment of the line. The direction of the line is given
by,

ψ = p̈ = Wp+ a0 = (Ω̇ + Ω2)p+ (v̇ + ω × v). (12)

The moment of the line is given by,

u = p×ψ.

From the relation for the vector product given in (A.3) below we have that,

Wp×Wψ = Adj(W T )(p×ψ) = Adj(W T )u.

Substituting for Wp = ψ − a0 from (12) above gives,

Adj(W T )u = (ψ − a0)×Wψ.

Now the scalar product of this equation with ψ can be taken, that is the
equation can be multiplied on the left by ψT to get,

ψT Adj(W T )u = −ψTA0Wψ,
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where A0 is the 3× 3 antisymmetric matrix corresponding to the vector a0.
This is a quadratic equation in the Plücker coordinates and hence defines a
quadratic line complex. This can be written as a matrix equation,

(ψT , uT )

(

A0W −W TA0 Adj(W T )
Adj(W ) 0

)(

ψ

u

)

= 0, (13)

where the equation has been written using a symmetric matrix by adding
the equation above to its transpose. The matrix can be simplified a little by
choosing the origin to be at the acceleration centre, so that a0 = 0, in these
coordinates the equation becomes,

(ψT , uT )

(

0 Adj(W T )
Adj(W ) 0

)(

ψ

u

)

= 0. (14)

In any quadratic line complex the lines of the complex passing through a
point usually form a quadratic cone. Exceptionally, for some points this cone
degenerates to a pair of planes. Such points are called the singular points
of the complex. Again for a general quadratic complex the set of singular
points form a degree 4 surface known as the Kummer surface, see [16]. Here
the complex of acceleration lines forms a tetrahedral complex. In such a
quadratic line complex the Kummer surface degenerates to a set of 4 planes.
These four planes consist of the three planes π12, π23 and π31, as in the
previous section, together with the plane at infinity. To see this consider the
lines in the complex passing through a point p, on one of the planes. In
general a line in the complex satisfies the equation,

ψT Adj(W )T (p×ψ) = 0.

The term (p×ψ) can be written as Pψ, where P is the 3×3 anti-symmetric
matrix corresponding to the position vector p. Then adding the equation to
its transpose gives the standard form for a quadric,

ψT
(

Adj(W )TP − P Adj(W )
)

ψ = 0.

To see that the symmetric matrix (Adj(W )TP −P Adj(W )) singular on the
points of the planes π12, π23 and π31 consider a point on say π12, determined
by p = µ1n1 + µ2n2, where µ1 and µ2 are arbitrary constants and the ni are
the eigenvectors of the angular acceleration matrix W . That is,

Wni = λini.

11



Notice that these vectors are also eigenvectors for the matrix Adj(W ), mul-
tiplying the above equation and rearranging gives,

Adj(W )ni =
∆

λi

ni

where ∆ = det(W ). The matrix is singular since there is a vector,

ψ = µ1(∆λ1 − λ2
1λ

2
2)n1 + µ2(∆λ2 − λ2

1λ
2
2)n2,

that is annihilated by the matrix. Verifying this is helped by noticing that,
from the above,

Adj(W )ψ = µ1∆(∆− λ1λ
2
2)n1 + µ2∆(∆− λ2

1λ2)n2,

and that,

Adj(W )T (n1 × n2) = (Wn1)× (Wn2) = λ1λ2(n1 × n2),

using (A.3).
The complex is also singular on the plane at infinity, to see this a ho-

mogenising variable p0 must be introduced. This is multiplied by the coor-
dinates of ψ, in this way the equation for the lines of the quadric through
the point p will be a degree 2 homogeneous equation in the coordinates of
p and p0. However, it is clear that the only consequence of this will be to
introduce the plane of singularities at p0 = 0.

7. Points of Inflection

Next, the velocity and acceleration of points are considered together. The
point c(t) is an inflection if and only if its velocity vector and acceleration
vector are parallel. The condition,

λċ+ µc̈ = 0, (15)

can be written as,
λ(Ωc + v) + µ(Wc+ a0) = 0.

This is easily rearranged to give,

c = −(µW + λΩ)−1(µa0 + λv).
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It is useful at this point to consider the curve c(λ, µ) as a curve in projective
space P

3. Suppose that the homogeneous coordinates for this space are (x :
y : z : w), then the curve of inflection points can be written,





x
y
z



 = −Adj(µW + λΩ)(µa0 + λv)

and

w = det(µW + λΩ).

Using the results from the appendix the above equations can be expanded to
give,





x
y
z



 = λ3(ω · v)ω + λ2µ
(

(ω̇ · v)ω + (ω · v)ω̇ + (ω · a0)ω
)

+

λµ2
(

(ω̇ · v)ω̇ + |ω|2(ω · v)ω + v× (ω × (ω × ω̇)) +

(ω̇ · a0)ω + (ω · a0)ω̇
)

+

µ3
(

(ω̇ · a0)ω̇ + |ω|2(ω · a0)ω + a0 × (ω × (ω × ω̇))
)

,

w = −µ3|ω × ω̇|.

This shows that the curve is a twisted cubic curve since the homogeneous
coordinates are given by cubic functions in the parameters µ and λ. More-
over, the curve meets the plane at infinity when w = 0, since w is a cubic in
µ the curve must osculate the plane at infinity at the point µ = 0. This is
the defining characteristic of a cubical parabola, see [18, Chap. XII].

Returning to Euclidian space R
3, we may set s = λ/µ so that,

c(s) = −(W + sΩ)−1(a0 + sv). (16)

Notice that with this parameterisation c(0) = rc, the acceleration centre.
Substituting the relation for the acceleration centre; a0 = −W rc, gives,

c(s) =
1

|ω × ω̇|2
(

s3(ω · v)ω +
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s2((ω̇ · v)ω + (ω · v)ω̇ − (rc · (ω × ω̇))ω) +
s((ω̇ · v)ω̇ + |ω|2(ω · v)ω + v × (ω × (ω × ω̇))−
rc · (ω × (ω × ω̇))ω − rc · (ω × ω̇)ω̇)

)

+ rc. (17)

This simplifies greatly if we choose to put the origin at the acceleration centre
so that rc = 0.

c(s) =
1

|ω × ω̇|2
(

s3(ω · v)ω + s2((ω̇ · v)ω + (ω · v)ω̇) +

s((ω̇ · v)ω̇ + |ω|2(ω · v)ω + v × (ω × (ω × ω̇))
)

. (18)

Clearly if ω · v = 0 the inflection cubic degenerates to a conic. This
condition implies that the motion is instantaneously planar, since if ω = 0
the motion is instantaneously a translation and if v = 0 or ω is perpendicular
to v, the motion is instantaneously a rotation. More details on the possible
degeneracy of this curve can be found in [6] and [7].

Another property of a twisted cubic curve is that it is the intersection
of three quadric surfaces. An alternative condition for a point to be an
inflection is that the curvature of the point’s trajectory must be zero. This
is because the curvature is proportional to the vector product ċ × c̈, see
[17], for example. Now for an arbitrary point r, the instantaneous velocity
ṙ = Ωr+ v and instantaneous acceleration r̈ = W r+ a0 are linear functions
of coordinates of r. Hence the components of the vector equation,

ṙ× r̈ = 0, (19)

give three, degree 2 equations, which define 3 quadric surfaces. Clearly the
inflection curve c(s), satisfies all three equations since points along this curve
have parallel velocity and acceleration. Note that, since the cubic lies on all
three quadrics it also lies on any linear combination of the quadrics, that is
the cubic is the base curve for the net of quadrics.

8. Osculating Planes

Consider an arbitrary point r, suppose that the osculating plane to the
trajectory of this point has a normal vector n. This normal vector will be
given by the vector product,

n = ṙ× r̈.
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The set of points in space whose osculating planes are mutually parallel can
be found from the solutions to the equations,

n1 · n = n1 · (ṙ× r̈) = 0, and n2 · n = n2 · (ṙ× r̈) = 0.

where n1 and n2 are perpendicular to the common normal to the planes and
linearly independent. Notice that each equation ni · (ṙ × r̈) = 0 picks out a
quadric in the net of quadrics given by equation (19) above, see [18]. The
intersection of a pair of such quadrics is a quartic curve, it must consist of
the twisted cubic of inflections plus a line. Moreover the line will be a chord
of the cubic, that is a line meeting the cubic in two points. The cubic curve
here corresponds to common solutions to the two equations where ṙ× r̈ = 0,
so the residual line contains the points whose osculating planes are parallel.

Any chord to a twisted cubic can be found as the residual line in the
intersection of a pair of quadrics from the net defining the cubic. Moreover
any point in space, not on the cubic, lies on exactly one chord of the cubic, see
[18]. Hence there is a 1-to-1 correspondence between chords of the cubic of
inflection points and the direction of the normal vectors to osculating planes.

This result can be proved in another way. Consider the set of points
with osculating plane normal to a vector n. These points satisfy the pair of
equations,

n · ṙ = 0, and n · r̈ = 0.

Substituting for the velocity and acceleration vectors gives a pair of linear
equations in the position r,

nTΩr + nTv = 0, nTW r+ nTa0 = 0.

Linear equations define planes in space, the normals to these planes are given
by, m1 = ΩTn = n×ω and m2 = W Tn. The intersection of the two planes is
a line in general. The direction of this line of points with parallel osculating
planes will be given by m1 × m2. Further, the points on the line can be
parameterised as,

r(µ) = r0 + µ(m1 ×m2), (20)

where r0 is a given point on the line and µ an arbitrary parameter. The
normal to the osculating plane for any point on this line will be some multiple
of n by hypothesis, this can be written,

κ(µ)n = ṙ× r̈ = (Ωr(µ) + v)× (W r(µ) + a0),
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where κ(µ) is a multiplicative factor depending on the parameter µ. Substi-
tuting from (20) gives,

κ(µ)n = ṙ0 × r̈0 + µ(Ω(m1 ×m2)× r̈0 −W (m1 ×m2)× ṙ0) +

µ2(Ω(m1 ×m2)×W (m1 ×m2)).

Notice that since ṙ0, r̈0, Ω(m1 × m2) and W (m1 × m2) are coplanar, the
vector products on the right-hand side of the above equation are all parallel
to n so κ(µ) is given by a quadratic in µ. The root of this quadratic are
points where the instantaneous velocity and instantaneous acceleration are
collinear, that is inflection points. Hence this line meets the cubic of inflection
points at two points, the roots of the quadratic, and hence is a chord of the
cubic curve.

On the other hand, suppose that c1 and c2 are two points on the cubic of
inflection points, the line joining these points, a chord to the cubic, can be
parameterised as,

r(λ) = (1− λ)c1 + λc2.

At any point on this line the normal to the osculating plane is given by,

ṙ(λ)× r̈(λ) = λ(1− λ)(ċ1 × c̈2 + ċ2 × c̈1).

The terms, ċ1 × c̈1 and ċ2 × c̈2 vanish since c1 and c2 are inflection points.
In the equation above the direction of the normal is independent of the
parameter λ and hence is constant along the chord. In particular notice that
the direction of the normal to the osculating planes along a chord is given
by,

n = (ċ1 × c̈2 + ċ2 × c̈1),

where c1 and c2 are the points where the chord meets the cubic of inflection
points. Of course the magnitude of the normal vector is arbitrary in the
above equation. The equation can be simplified further by recalling that for
points of inflection c1 and c2 the velocities and acceleration are parallel and
satisfy (15) above. Hence ignoring the magnitude of the normal vector again
we have,

n = ċ1 × ċ2. (21)

9. The Linear Complex of Tangent Lines

The methods of the previous section can be extended to study the tan-
gents to the cubic of inflection points. These tangents are, of course, also
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chords to the curve. Suppose that c is a point on the cubic of inflection
points and t is the direction of the tangent line at this point. The tangent
line will be given by the parameterisation,

r(λ) = c+ λt.

Notice that, with this parameterisation,

ṙ(λ) = Ωc+ λΩt+ v = ċ+ λΩt,

and similarly,
r̈(λ) = Wc+ λW t+ a0 = c̈+ λW t.

So the normal to the osculating plane to points along this line will be given
by,

ṙ(λ)× r̈(λ) = λ(Ωt× c̈+ ċ×W t) + λ2(Ωt)× (W t).

In order that t is the tangent direction the tangent line must meet the inflec-
tion cubic at a single point, this is only possible if the λ term in the above
equation is zero. This gives a vector equation for the tangent direction,

Ωt× c̈+ ċ×W t = 0.

Now since c is an inflection point ċ and c̈ are parallel and indeed from (15)
above we have that c̈ = −sċ. Substituting this relation and rearranging the
above equation gives,

ċ× (W + sΩ)t = 0.

The vector product of two non-zero vectors will only vanish if the vectors are
parallel so we can infer that ċ and (W + sΩ)t are parallel and so we may set,

t = (W + sΩ)−1
ċ. (22)

This result can also be found by differentiating the results at the end of
section 7 with respect to the parameter s.

Another known property of twisted cubic curves is that the tangent lines
to the curve lie in a unique linear line complex, [19]. Here we look at the
linear line complex determined by the cubical parabola of inflection points.
Historically, linear line complexes were referred to as screws. This is because
a linear line complex is uniquely determined by a screw. A twist is an element
of the Lie algebra to the group of rigid transformations, se(3). A screw is
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an element of the projectivisation of this Lie algebra, that is a ray through
the origin in se(3), or to put it yet another way a screw is represented by a
twist but multiplying the twist by any non-zero constant represents the same
screw.

So a twisted cubic curve determines a unique screw. To see this we can
use a parameterisation of the curve given by,

c(s) = k3s
3 + k2s

2 + k1s. (23)

Comparing this with the result given in (18) above, it can be seen that,

k3 =
1

|ω × ω̇|2 (ω · v)ω,

k2 =
1

|ω × ω̇|2 ((ω̇ · v)ω + (ω · v)ω̇),

k1 =
1

|ω × ω̇|2 ((ω̇ · v)ω̇ + |ω|2(ω · v)ω + v × (ω × (ω × ω̇)).

On the other hand, notice that the vectors ki can be found by differentiating
c(s) with respect to s and then setting s to 0. In particular we have that
k1 = c′(0) = −W−1v = t0. Where t0 denotes the tangent vector at the
acceleration centre. Continuing in this fashion produces, k2 = (1/2)c′′(0) =
W−1ΩW−1v = −W−1Ωt0 and k3 = (1/6)c(3)(0) = −(W−1Ω)2W−1v =
(W−1Ω)2t0.

Returning to the tangent lines to the curve, these are given in Plücker
coordinates by,

(

c′(s)
c(s)× c′(s)

)

=

(

3k3s
2 + 2k2s+ k1

(k2 × k3)s
4 + 2(k1 × k3)s

3 + (k1 × k2)s
2

)

(24)

where, as above, the dash indicates differentiation with respect to the pa-
rameter s.

Now suppose that ζ(s)T = (ψT , uT ) is an arbitrary twist, if this is recip-
rocal to the tangent lines of the inflection cubic it must satisfy,

(3k3s
2+2k2s+k1) ·u+((k2×k3)s

4+2(k1×k3)s
3+(k1×k2)s

2) ·ψ = 0 (25)

This must be satisfied for all s, by inspection the solution is,

ψ = 3k3, u = k2 × k1,
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or any constant multiple of this. As a partitioned 6-vector this can be written
in several ways,

ζ =

(

c(3)(0)
c′′(0)× c′(0)

)

=

(

(1/2)(W−1Ω)2t0
t0 × (W−1Ω)t0

)

.

This expression could be expanded in terms of the angular velocity and angu-
lar acceleration of the body, this will produce large expressions which do not
seem to be very illuminating. However, it is worth noting that the direction
of the axis of this screw is parallel to the direction of the angular velocity of
the body ω, and the moment is directed along the binormal to the curve of
inflection points at the acceleration centre.

10. The Bresse Hyperboloid

Consider the points in the moving body whose velocity and acceleration
vectors are instantaneously perpendicular. From the above, such point will
satisfy the equation,

ṙ · r̈ = (Ωr+ v)T (W r+ a0) = 0. (26)

Expanding this equation and adding it to its transpose it is possible to rewrite
it in matrix form as,

(rT , 1)

(

ΩTW +W TΩ ΩTa0 +W Tv

vTW + aT
0Ω 2aT

0 v

)(

r

1

)

= 0. (27)

This represents a quadric surface, it is usually known as the Bresse hyper-
boloid, see [13]. To study this surface in more detail first notice that the top
left-hand block simplifies:

ΩTW +W TΩ = −Ω(Ω̇ + Ω2) + (−Ω̇ + Ω2)Ω = −(ΩΩ̇ + Ω̇Ω), (28)

as do the off-diagonal blocks:

ΩTa0 +W Tv = ΩT (v̇ + ω × v) + (Ω̇ + Ω2)Tv = v̇ × ω − ω̇ × v, (29)

using the definitions W = (Ω̇ + Ω2) and a0 = v̇ + ω × v.
Next it is possible to find a point where the bottom left and top right-

hand blocks of the matrix vanish. Since the matrix is symmetric, only one
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of these blocks needs to be considered, suppose the point sought is denoted
rB then it can be found from the equation,

(ΩTW +W TΩ)rB + ΩTa0 +W Tv = 0, (30)

or using the relation in equations (28) and (29) and solving for rB,

rB = (ΩΩ̇ + Ω̇Ω)−1(v̇× ω − ω̇ × v). (31)

This point is, of course, the centre of the hyperboloid. Now if coordinates are
chosen so that rB is at the origin, the matrix equation for the hyperboloid
becomes,

(rT , 1)

(

−(ΩΩ̇ + Ω̇Ω) 0

0T 2vT v̇

)(

r

1

)

= 0, (32)

where the bottom right entry has been simplified using the definition of a0

again.
Having chosen the position of the origin of coordinates the orientation can

be chosen as in section 4 above. That is, the x-axis is chosen to be parallel to
the angular velocity vector, so that ω = (ω, 0, 0)T . The xy-plane is chosen to
contain the angular acceleration vector, so ω̇ = (α cosφ, α sinφ, 0)T , where
α = |ω̇| and ω = |ω|. With the coordinate axes oriented in this way the 4×4
symmetric matrix in (32) becomes,

QB =









0 −αω sin φ 0 0
−αω sinφ 2αω cosφ 0 0

0 0 2αω cosφ 0
0 0 0 2vT v̇









. (33)

The signs of the eigenvalues of QB reveal the geometrical nature of the
quadric surface determined by this matrix. The eigenvalues are simple to
compute,

λ1 = 2αω cosφ, λ2 = αω(cosφ+ 1), λ3 = αω(cosφ− 1) and λ4 = 2vT v̇.

Now it is easy to see that λ2 is non-negative and λ3 is non-positive, hence if
λ1 and λ4 have opposite signs then the surface is a hyperboloid of one sheet.
While if λ1 and λ4 have the same sign then the surface is a hyperboloid of
two sheets. This can be summarised neatly as,

if (ω · ω̇)(v · v̇) =
{

> 0, two sheets,
< 0, one sheet.
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When (ω · ω̇)(v · v̇) = 0 the situation is more complicated. Certainly
when (v · v̇) = 0, the Bresse hyperboloid degenerates to a cone with vertex
at rB. However, if (ω · ω̇) = 0, then the matrix (ΩΩ̇ + Ω̇Ω) is singular and
hence it is not possible to solve for rB. The matrix QB, however, will not
usually be singular and hence when ω and ω̇ are perpendicular the Bresse
hyperboloid will be a non-central quadric surface. Not a hyperboloid but a
paraboloid.

If ω and ω̇ are parallel, (ΩΩ̇+Ω̇Ω) is singular but it is straightforward to
see that the Bresse hyperboloid degenerates to a cylinder, that is a cone with
vertex at infinity. When either ω or ω̇ vanish, then the Bresse hyperboloid
degenerates to a repeated plane.

11. Conclusions

In this work no mention has been made of axodes nor of any analogue
of the Euler-Savary equation of planar kinematics. This is not seen as a
disadvantage, but just as an indication that these ideas are not central in the
subject. Rather, they are interesting objects, which may merit investigation
in their own right. In particular, this work only studies the effects of spatial
motion on points. A similar study could be carried out for lines in space.
Given a line, a spatial motion will determine a one parameter family of
lines, that is a ruled surface, by sweeping the original given line. The local
properties of such surfaces could be related to the properties of the motion.
For example the set of lines that are instantaneously moving in a plane lie in
a quadratic line complex, this is a simple first order property of the motion.

This work only looks at properties of spatial motion up to second order.
Of course it is possible, but harder, to look at properties up-to third order
and higher. This is a less well understood area although some results are
known. For example, it is well known that in a general spatial motion the
point in space that are at points of zero torsion in their trajectories form a
cubic surface.

A less explored direction here is the connection with special motions.
For example, if it is known that a motion is say line symmetric, what does
that imply about the acceleration ellipsoids? This problem could also be
approached the other way around. Consider the circumstances where, for
example there is a single, thrice repeated, acceleration axis. The conditions
for this to happen can be thought of as differential equations for the twist
of the motion. The question now is: can these differential equations be
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integrated? If the answer is yes, then the result will be a new special motion
for which the acceleration axes have this property at every instant. Notice
there is already a nice example of this. Consider the cubic of zero-torsion
points in space, under some circumstances this can degenerate in such a way
that every point in space has zero torsion, see [6] and [7]. The conditions
under which this occurs must be integrable, since it is known that there is a
special motion under which each point moves on a plane, that is the Darboux
motion.

Although this is an old and well researched area, there remains a lot of
scope for further work.
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Appendix A. Some Relations for 3 × 3 Matrices

Several small relations concerning 3 × 3 matrices are collected together
here.

Suppose that A and B are 3 × 3 anti-symmetric matrices corresponding
to vectors a = (ax, ay, az)

T and b = (bx, by, bz)
T . That is,

A =





0 −az ay
az 0 −ax
−ay ax 0





and similar for B. So that for an arbitrary vector r, Ar = a× r. Now let λ
and µ be constants, then

det (λA+ µB2) = −λ2µ|a× b|2. (A.1)

To show this, rotate the coordinates so that b is aligned with the z-axis. In
these coordinates the matrices become,

A′ = RART , (B′)2 = RB2RT =





−b′z
2 0 0

0 −b′z
2 0

0 0 0



 .

So that,

det (λA+ µB2) = det (λA′ + µ(B′)2) = det





−µb′z
2 −λa′z λa′y

λa′z −µb′z
2 −λa′x

−λa′y λa′x 0



 .

Evaluating the determinant gives, −λ2µ(a′x
2 + a′y

2)b′z
2. In terms of vector

and scalar products this can be written as −λ2µ|a′ × b′|2 and finally, the
transformation properties of the vector and scalar products give the result.
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The second useful result concerns the adjugate matrix. Recall that for an
non-singular matrix X , its adjugate Adj(X), satisfies, Adj(X) = det(X)X−1.
Here we have the result,

Adj (A +B2) = (A +B2)2 + 2|b|2(A +B2) + (|a|2 + |b|4)I.

This result can be found in the same way as the previous one, computing
the result in a particular coordinate system and then expressing the result
using invariants. Alternatively, the Cayley-Hamilton theorem could be used
to find a polynomial satisfied by the matrix (A + B2). This equation could
then be multiplied by (A+B2)−1 and rearranged to produce the result.

In either case the following simple result, valid for any 3×3 anti-symmetric
matrix A,

A2 = aaT − |a|2I,
can be used to rewrite the equation in terms of vectors as,

Adj (A+B2) = aaT + (a× b)bT − b(a× b)T + |b|2bbT . (A.2)

Finally, suppose M is a non-singular 3× 3 matrix and u, v are 3-vectors,
then

(Mu)× (Mv) = Adj(M)T (u× v). (A.3)

To see this let w be another arbitrary 3-vector. Now

w · (u× v) = det
(

w

∣

∣

∣
u

∣

∣

∣
v
)

,

that is the scalar triple product is the determinant of the 3×3 matrix whose
columns are the 3 vectors. Multiplying by the non-singular matrix M gives,

(Mw) · ((Mu)× (Mv)) = det
(

(Mw)
∣

∣

∣
(Mu)

∣

∣

∣
(Mv)

)

= det
(

M
(

w

∣

∣

∣
u

∣

∣

∣
v
))

= det(M) det
(

w

∣

∣

∣
u

∣

∣

∣
v
)

= det(M)(w · (u× v)).

Now the determinant can be written as det(M) = Adj(M)M = MT Adj(M)T

and the scalar product can be written as a matrix product to give,

wTMT (Mu)× (Mv) = wTMT Adj(M)T (u× v).

Since w and M are arbitrary they can be cancelled to give the result above.
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