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Abstract. Degradation and failure of aircraft wiring insulation is of particular 

interest which could lead to smoke and fire due to arcing. With two recent major air 

accidents and hundreds of major incidents over the past twenty years, health 

monitoring and sustainment of wiring, particularly for aging aircraft is a major 

concern. The results of a technique based on TDR, using trains of successive pulses 

is presented in this paper for detection of partial damage to insulation in electrical 

wires and cables.  

Introduction  

Electrical wiring and cables used in many applications occasionally suffer damage. In many 

cases the damage only affects wire insulation and cannot be detected through routine tests 

and inspection. In aircraft the degradation of wires are generated because the wiring is 

subjected to heat, cold, moisture and vibration, which can eventually cause the wire 

insulation and even the wire conductor to fail. In most cases these environmental and 

operational conditions are modest, but in some cases these conditions are extreme and can 

cause the insulation to become brittle and crack. There are a range of factors that result in 

wire degradation and damage.  These include vibration, which can result in insulation 

damage through rubbing on other wires or structural parts of the aircraft, hardening of 

wires, loosening of connections or terminations. Exposure to moisture and hydrolysis could 

lead to cracking and breakdown of insulation. Elevated temperatures or repeated thermal 

cycles can increase ageing rate. Exact wire position can also vary slightly from one aircraft 

to the next resulting in changes in bend radius, wire position relative to structural parts, 

clamping of wires and similar problems during maintenance. If this is not conducted 

correctly, it can result in the wire or insulation degradation, cracking and damage through 

the introduction of foreign bodies, such as metal shavings. Chemical Contamination, 

exposure to hydraulic fluid, fuel, battery electrolytes, waste system chemicals, cleaning 

solvents and agents, de-icing fluids, paints and soft drinks can also contribute to wire 

degradation. Time Domain Reflectometry is often used in many fields from ecology to fault 

detection in microelectronic circuits, but present systems developed so far are unable to 

detect minor faults resulting from insulation damage and partial degradation of electrical 

wires. Many other techniques have been investigated for finding faults in aircraft harnesses 

[1-3], communication lines [4] and power cables [5]. These mostly involve considerable 

change in localised impedance. A number of advanced techniques have also been 

developed for detection and characterisation of defects in wires and cables [6-9]. The 
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detection of small impedance irregularities associated with chafes and frays are still very 

hard to detect [10]. Similar defects to those considered here were previously reported using 

ultrawide-band (UWB) signals for shorter lengths of cables [11-12]. Recent work also 

includes investigations in complex wired networks using distributed reflectometry [13-14]. 

The work described in this paper was carried out in order to investigate the development of 

a technique for the detection of small faults over long lengths of wires and cables, which 

would require sharp rise and fall times, as well as higher pulse spans of up to around 10 

nanoseconds. 

 

1. Measurements 

1.1 Experimental Setup 

An Agilent arbitrary pattern generator (81134A 3.35 GHz) was used to generate and launch 

the successive pulses into the cables. The reflected waveforms were then captured using an 

Agilent 4 GHz, 20GS/s Infiniium oscilloscope (MSO9404A). The Agilent pattern generator 

and oscilloscope were used in conjunction with a PC workstation in order to demonstrate 

this technique for the detection and locating damage to insulation and braiding in a coaxial 

cable. The insulation damage was created at an arbitrary position along the wire. The fault 

consisted of a 1.0 cm (10 mm) cut created on the insulation and braiding of an RG59 

coaxial cable of a total length of six metres. This fault was created on one side of the cable 

in a position between the centre and the end of the cable. The central core conductor of the 

coaxial cable remained undamaged. This flaw which was created at around two thirds of 

the way down from the beginning of the cable was successfully detected using the ETDR 

technique. 

 

 

1.2 Test Procedure 

 

The technique uses injection of successive pulses with sharp rise and fall times into the 

cable. A large number of pulses are currently used at the demonstration stage for the 

technique. A similar number of pulses are also required for the original pulse conditions for 

representation of the no fault conditions. The time required for the flight and capture of a 

single pulse is around 200 ns. So, one full set of measurement results should be obtained 

well within 100 μs. For the demonstration purposes, a PC workstation was used for control 

and synchronisation of the Agilent pattern generator and the scope, as well as processing 

and analysis of the results. This PC was networked through a hub for connection with the 

pulse generator and oscilloscope. The generation of the pulses through the pulse generator 

and capture of the reflection signals through the scope was automated using dedicated 

Agilent software operated through Matlab. As a consequence of communication through 

the router, control of the constituent parts of the system and processing of the 

measurements through the PC, long delays are expected. The final system should be able to 

provide fault detection within a few minutes. The processing of the results is presently done 

using Microsoft Excel, and Matlab, which will return a single file. this can then be 

displayed graphically where start and the end of the cable together with the fault are 

identified.  

Figure 1 shows the experimental setup used in the measurements, Agilent 81134A 

3.35 GHz Pattern Generator and Agilent 4 GHz, 20GS/s Infiniium oscilloscope 

(MSO9404A). An Agilent 81150A 120 MHz arbitrary waveform generator (the instrument 



on the top right in figure 1) was initially used to synchronise the 3.35 GHz generator and 

the 4GHz Infiniium scope with each other, and was not used in the measurements. Figure 2 

shows the selected position (marked by brown tape on the floor), for creation of the 

arbitrary Fault which was chosen to be at around two meters from the end of the six meter 

long cable under test.  

Figures 3 and 4 show the position, shape and size of the 10 mm fault created in an 

RG59 coaxial cable of an overall length of six metres. This defect was created on the 

insulation and braiding on one side of the cable. The central core conductor of the coaxial 

cable remained unaffected.  

 

 

 

 
 

Figure 3. Fault created at around two 

meters from end of the six meter long 

cable (the position shown in Figure 2). 

 

 

 

 
 

Figure 4. Shape and size of the 10 mm 

fault created on the insulation and 

braiding of an RG59 coaxial cable. 

2. Results 

As mentioned, the technique involves injection of a large number of pulses of varying size 

into the cable under test which span over 5, and in some cases 10 nanoseconds. The 

analysis of these pulses is then carried out which will provide the anomalies due to the 

defects to be detected. Figure 5 shows the reflection trace for a test pulse, observed on the 

Agilent 4 GHz, 20GS/s Infiniium oscilloscope, with rise and fall times of around 132 and 

121 picoseconds respectively. A positive reflection from the end of the cable is also seen, 

which was an open circuit in this case.  

 

 

 
 

Figure 1. The experimental setup, Agilent 

Pattern Generators and Infiniium 

oscilloscope. 

 

 

 
 

Figure 2. The selected position for the 

creation of the fault at two meters from 

the end of the six meter long cable. 

 



 

 
 

Figure 5. Captured image of a test pulse with rise and fall 

times of around 132 and 121 picoseconds respectively 

showing a positive reflection from the end of the cable 

(which is open circuit in this case). 

 

 

 

Figure 6 shows analysis of the results obtained for the six metre long RG49 coaxial 

cable with a 10 mm fault created on the insulation and shielding screen of at around two 

thirds of the distance from the beginning of the cable where TDR pulses were being 

injected into the cable.  

 

 
Figure 6.  Analysed results for the detection of a 10 mm fault created on the 

insulation and shielding screen at two thirds of the distance down a six 

metre long coaxial cable. The large spike in the trace is due to the fault. 

 



The figure shows the analysed reflected signals from the cable, which starts from 

point zero on the horizontal axis, as indicated in the figure, coinciding with the rise of the 

green trace, representing the pulse span. The pulse span describes the width within which 

all injected pulses are contained. The end of the cable can also be determined by the rise of 

the pulse span trace when the pulses are reflected from the end of the cable, which was an 

open circuit in this case. In real terms, the TDR traces show a distance equivalent to that of 

twice the time of flight to the end of the cable, since the measurements are carried out at 

one end of the cable under test, and the time taken for the reflection signal to reach the 

detector would have to cover the length of the cable, and its return back to the detector. The 

pulse span itself, in this case, is the period of time where multiple pulse lengths are 

launched into the cable and hence cannot be included in the measurements. A 10 ns time 

span is generally the time of flight in around one metre for most of the wires and cables. In 

this case the fault was created at around four metres down from the start of the cable. The 

position of the fault is shown as indicated in the figure, as a large spike. This spike is 

clearly seen to be well above the measurement noise along the axis. 

 

3. Work in progress 

Smaller 5 mm defects were also investigated in shielded twisted pair cables as well as the 

above mentioned RG59 cable, which are currently being analysed. Computer models of 

these cables are also currently under examination, using both finite element and finite 

difference techniques. 

 

4. Conclusions 

An experimental technique has been developed for detection of small faults over long 

lengths of wires and cables. The technique uses injection of successive pulses with sharp 

rise and fall times, and with higher pulse spans of up to around 10 nanoseconds into the 

cable, in order to detect small faults over longer distances. The technique has been used to 

accurately detect the position of a 10 mm fault created on the insulation and braiding on 

one side of a six metre long coaxial cable.   
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