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Abstract

There is increasing pressure on governments and industries to make significant reductions in carbon emissions.

In the UK, 11% of electricity is consumed by the food industry and in some sectors a substantial portion of site

energy, up to 90%, is consumed by refrigeration systems. The aim of this work was to: identify the major pri-

mary chilling energy requirements in the UK; calculate or make a best estimate of their efficiency; and deter-

mine which chilling processes have the highest energy saving potential. In terms of the heat energy to be

extracted during the primary chilling process, the six most important categories in rank order were milk (532

GWh/year), meat (114 GWh/year), potatoes (59 GWh/year), other vegetables (36 GWh/year), fish (6.5 GWh/

year) and fruit (5.9 GWh/year). There is little published data on the measured energy consumption of commer-

cial primary chilling processes in the UK or that is directly applicable to the UK. From the data that is avail-

able, the energy efficiency (useful heat extracted from material/measured electrical energy used) varies from

0.138 to 5.337, with cooling of milk being far more efficient than that of the next two most important cate-

gories, meat and potatoes. Using the best of existing technologies it is estimated that 154 GWh could be saved

per year in potato cooling, 128 GWh in milk and between 51 and 80 GWh in the cooling of carcass meat. Sav-

ings in other commodity areas are likely to be more than an order of magnitude less.
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1. Introduction

With the rising concern over climate change, global warm-

ing and the recent sharp increases in energy costs, there is

increasing pressure on government and industry to make

significant reductions in carbon emissions. This has

resulted in greater efforts to focus on energy consumption

and ways to reduce it to sustainable levels. Worldwide, it

is estimated that 15% of the electricity consumed is used

for refrigeration, and Mattarolo (1990) estimates that 40%

of food requires refrigeration. In the UK, 11% of electricity

is consumed by the food industry (Department for Business

Enterprise and Regulatory Reform (BERR) 2005). How-

ever, detailed estimates of what proportion of this is used

for refrigeration processes are less clear and often contra-

dictory. Efforts to determine how much energy is used in

each sector of the food industry for refrigeration is often

hampered by the apparent lack of measured data and lim-

ited availability of process throughput data (Swain 2006).

The cold chain is vital in ensuring the safety, organo-

leptic quality, nutritional content and market value of per-

ishable foodstuffs from harvest to consumer. Due to the

current concerns over climate change and increasing

energy prices, it is now appropriate to examine whether

current technologies and practices in use throughout the

cold chain are the most efficient and sustainable.

There are many publications (International Institute of

Refrigeration 2000; James and James 2004, 2006; ASH-

RAE 2006) that cover the range of refrigeration systems

used to chill foods and others more specific to red meat

(James and James 2002), poultry (James 2004), fruits and

vegetables (Aked 2005), fish (Jul 1985) and dairy (Lascu

1976). Table 1 provides a summary of the primary chilling

methods used for each major raw material.

This study focuses on the first stage of the food chill

chain and aims to determine the energy required for

refrigeration of raw food materials immediately post har-

vest or slaughter in the UK and to identify the main pro-

ducts where the potential for saving energy is the greatest.

The energy consumption of a refrigeration system for

cooling food is dependent on a number of factors not least

the energy that is required to be removed from the food

itself to reduce its temperature from its initial post har-

vest/slaughter temperature to its desired storage tempera-

ture; the product heat load. In addition, the heat load seen

by a refrigeration system is made up of the heat from the
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surroundings (e.g. transmission through chillroom walls,

ceiling and floor), air infiltration/ingress (e.g. through open

doors, faulty seals), packaging/containers, ancillary equip-

ment (e.g. motors, lights, fans and pumps) and people. In

primary cooling systems, the majority of the total heat

load should be the product load since the purpose of a pri-

mary chilling system is to extract this load. The extraction

of this energy from the food must be carried out in the

most energy efficient manner.

The product heat load is dependent on the initial tempera-

ture of the product (at harvest or slaughter), the final tem-

perature to which the product is required to be cooled prior

to storage, the mass of the product that is being cooled. In

some raw products (fruits and vegetables), heat from

respiration is also part of the heat load but this has been

assumed to be insignificant for the purposes of this study.

2. Refrigeration requirement and efficiency

The aim of this work was to:

� Identify the major primary chilling energy require-

ments in the UK
� Calculate or make a best estimate of their efficiency
� Determine which chilling processes had the highest

energy saving potential.

To achieve these aims, all the available data on the annual

volume (tonnes) of each of the major raw food materials

produced in the UK has been collated. The amount of

thermal energy that has to be removed post harvest or

slaughter to cool it to its recommended storage tempera-

ture per year, i.e. the temperature at which it enters the

chill chain has then been calculated. Available data on the

amount of energy used in existing chilling systems has

then been used to estimate the current efficiency of chil-

ling systems and the processes with the greatest energy

saving potential identified.

2.1 Annual chilling requirements in the UK

2.1.1 Red and white meat

Red meat – the major red meat species are beef/veal, pork

and lamb with a combined annual production of approaching

1.8 million tonnes in 2005 (Figure 1). The total annual UK

production of horse, goat and other red meats is only about 4

thousand tonnes/year and is not considered in this study.

White meat – chicken is by far the major meat under

this category with an annual UK production of 1.3 million

tonnes/year, followed by turkey with 206 thousand tonnes/

year and duck with approaching 42 thousand tonnes/year.

The combined annual production of goose and guinea fowl

meat is less than 3 thousand tonnes/year. The total annual

production figure for game meat is 5 thousand tonnes/year

and, therefore, only has a very small impact on the

amount of energy used for meat refrigeration in total.

2.1.2 Fish

One of the most important pre-requisites for obtaining an

optimal quality of fish is rapid chilling after catching and

storage at a temperature of 08C (Hanusardottir et al.
1985). The total weight of fish landed in the UK in 2005

(including shell fish and freshwater fish) was approxi-

mately 824 thousand tonnes (Figure 2). Large pelagic fish

Figure 1. Annual UK production of meat in 2005 in thou-

sands of tonnes (FAOSTAT 2007).

Table 1. Raw material and primary chilling

methods used

Raw material Primary chilling method(s) (8C)

Meat Forced air chilling
Fish Packing in ice

Chilled sea water
Ice/water slurry

Apples Forced air chilling (rapid)
Room cooling (slow)
Hydrocooling

Strawberries Forced air chilling
Carrots and turnips Forced air chilling

Hydrocooling
Onions Drying/Forced air

chilling (in store)
Cabbages and other brassicas Forced air chilling
Cauliflowers and broccoli Forced air chilling

Icing (US)
Lettuce and chicory Hydrocooling

Vacuum cooling
Peas, green Forced air chilling

Hydrocooling (freezing)
Tomatoes Forced air chilling
Potatoes Forced air chilling (in store)
Milk Liquid cooling
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(including mackerel and herring) and demersal fish

(including cod and haddock) accounted for over half of

the total weight of fish landed with a combined figure of

almost 496 thousand tonnes.

2.1.3 Fruit

The total tonnage of fruit that would require primary chil-

ling in the UK in 2005 was 359 thousand tonnes. Apples

made up more than 60% (218 thousand tonnes/year) of

this total followed by strawberries (62.6 thousand tonnes/

year) (Figure 3).

2.1.4 Vegetables and salad crops

In 2005, the UK production of potatoes was over 5.8 mil-

lion tonnes, which made up almost 68% of the tonnage of

vegetables and salad crops chilled. The next most impor-

tant category, carrots and turnips, made up less than 10%

of the total (Figure 4). Potatoes are traditionally stored in

bulk in large storage buildings, which are not always refri-

gerated. However, there is a continuing trend towards

more potatoes being stored refrigerated to satisfy the

requirements of supermarkets.

2.1.5 Milk

The UK is the third largest producer of milk in Europe

with an annual production of whole fresh cows’ milk of

14.6 million tonnes in 2005. Of this, just over 14 million

tonnes was collected for use by dairies with approximately

half going on to be consumed as milk (49%) and half for

processing into dairy products, mainly cheese (27%).

2.1.6 Cereals and grains

As cereals and grains are cooled post harvest by ventilat-

ing with ambient air (not refrigerated), they are not con-

sidered within this study.

2.1.7 Overall production

Overall milk is chilled in substantially larger tonnages

than any other single primary food material or material

category in the UK (Figure 5). Potatoes, which are the

next largest single primary food, account for less than

40% of the milk tonnage. However, this is still substan-

tially larger than any other raw material category.

2.2 Energy to be extracted

The energy required to cool each of the raw food materi-

als was calculated using the overall weight of annual UK

production multiplied by the enthalpy change required to

reduce the temperature post harvest/slaughter to its recom-

mended storage temperature. For each raw material

selected, Table 2 provides details of the initial temperature

(8C), final temperature (8C) and the calculated enthalpy

change (kJ kg–1). To compile Table 2, the following

assumptions were made concerning the initial and final

average temperatures of the selected primary food materi-

als. Red and white meat has been assumed to start off

close to the body temperature of the live animal (408C)

and be cooled to 38C. The legal requirement in the UK is

for red meat to be chilled to a maximum core temperature

of 78C and poultry to 38C. To achieve this requirement

the average temperature of the chilled carcass will be

close to or slightly below 38C. Fish have been assumed to

start at 108C (average water temperature around the UK)

and be cooled to 08C. Current legislation requires fish to

be stored at the temperature of melting ice (08C). After

milking the temperature of milk is between 35 and 378C

Figure 2. Annual UK production of fish in 2005 in thou-

sands of tonnes (FAOSTAT 2007).

Figure 3. Annual UK production of fruit in 2005 in thou-

sands of tonnes (FAOSTAT 2007).

3Energy consumption in the UK food chill chain – primary chilling M.J. Swain et al.



and is typically cooled to 48C prior to collection by insu-

lated road tankers. Although codes of practice allow tem-

peratures higher than this (up to 88C for milk collected

daily, up to 68C if longer), the requirements of the milk

purchasers specifications often require that milk is cooled

to 48C to avoid penalty payments. Apples, strawberries

and tomatoes have been assumed to be picked in summer

Figure 4. Annual UK production of vegetables in 2005 in thousands of tonnes (FAOSTAT 2007).

Figure 5. Annual UK production of selected primary food

materials in 2005 in thousands of tones.

Table 2. Initial and final temperature and enthalpy

change per kg to reduce average temperature of

selected primary food materials from initial to final

temperature

Raw material

Initial
temperature

(8C)

Final
temperature

(8C)

Enthalpy
change

(kJ kg�1)

Chicken meat 40 3 125.6
Cattle meat 40 3 118.7
Pig meat 40 3 112.4
Sheep meat 40 3 125.0
Turkey meat 40 3 129.1
Duck meat 40 3 110.9
Large Pelagic fish 10 0 34.0
Demersal fish 10 0 37.3
Freshwater fish 10 0 35.4
Apples 20 0 75.3
Strawberries 20 0 78.6
Carrots and turnips 15 0 57.2
Onions 15 0 57.7
Cabbages and other

brassicas
15 0 58.2

Cauliflowers & broccoli 15 0 59.5
Lettuce and chicory 15 0 59.5
Peas, green 15 0 51.4
Tomatoes 20 8 60.8
Potatoes 15 5 36.5
Milk 37 3 131.3
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at an average temperature of 208C and root crops and

other vegetables which are harvested throughout the year

158C. The fruits and vegetables are assumed to be cooled

to their optimum storage temperatures which range from 0

to 88C.

To calculate the enthalpy that would have to be

removed to reduce the temperature of the product by the

desired amount, compositional data for an average mate-

rial of each type was obtained from the USDA Nutrient

Database (Anon 2006). Using this data, an FRPERC pro-

prietary program (FoodProp), which is based on the

COSTHERM equations (Miles et al. 1983) relating ther-

mal properties to a foods composition, was used to calcu-

late the enthalpy change per kg.

Summing the annual production � enthalpy figures for

each raw material the total amount of energy that had to

be extracted each year was then calculated (Figure 6). In

the UK, milk is the raw material that requires the most

cooling with an estimated energy value at least 2.5 times

more than all the other major materials added together

and over 4.5 times more than all types of meat combined.

In addition to milk and meat the primary chilling of vege-

tables, especially potatoes, requires the extraction of sub-

stantial quantities of heat.

2.3 Efficiency of current practices

To be able to calculate the energy efficiency of current

primary chilling processes data is required on the mea-

sured energy consumption of industrial systems for a

known throughput of the raw material being chilled. The

authors have been able to locate very few publications that

contain both measured energy and throughput data. How-

ever, five publications have been located that provide

some relevant data on milk, potatoes and meat which are

three of the key primary raw materials in terms of a high

primary chilling energy requirement.

Two publications provide actual on farm energy use for

milk refrigeration that can be correlated to throughput.

The UK Milk Development Council (1995) reported on

the measured energy consumption of different types and

configurations of on farm milk coolers, which provides a

basis for estimations of energy required to cool the UK

milk production. The data indicated that the energy used

by the least efficient (old ice bank tank) milk cooling sys-

tem (21.6 kWh/tonne) was almost twice that of the most

efficient (direct expansion (DX) tank with new scroll com-

pressor, 11.2 kWh/tonne). If the effect of adding plate heat

exchangers is taken into account then this difference is

even greater. In a US study, Legett et al. (1997) reports

values for the average unit energy use to cool milk on the

farm from 4.84 to 11.66 kWh/tonne for different scenar-

ios. Using these data the measured energy consumption

per kg of milk cooled would vary from 24.6 to 77.8 kJ.

The efficiency (ratio of useful heat energy removed to

electrical energy consumed) of a milk cooling process can

therefore vary from 5.337 to 1.668 (Table 3).

Devres and Bishop (1992) provide monthly energy con-

sumption data measured at a UK potato storage facility

over a complete storage period from September to June.

Using this data, the energy efficiency over the total sto-

rage period is 0.14 (Table 3). This includes energy

required to both initially cool and subsequently store the

potatoes over the whole storage period. If it is assumed

that all the product load is removed in the initial two

months as judged by the levelling out of the monthly

energy data stated, then it is estimated that the efficiency

rises to 0.31.

Two sets of data are available for the primary chilling

of meat carcasses. One applies to beef and the other to

pork. Gigiel and Collett (1989) provide measured specific

energy consumption data for primary chilling of beef car-

casses in 14 different chilling systems in the UK. Values

range from 68.8 kJ kg–1 for the most efficient chiller to

187 kJ kg–1 for the least efficient, with a mean value of

122.5 kJ kg–1. The efficiency (ratio of useful heat energy

removed to electrical energy consumed) of a beef cooling

process can therefore vary from 1.7 to 0.63 (Table 3). Col-

lett and Gigiel (1986) provide measured specific energy

consumption data for primary chilling of pork carcasses in

the UK. Values range from 89 kJ kg–1 for the most effi-

cient chiller to 258 kJ kg–1 for least efficient with a mean

value of 153 kJ kg–1. The efficiency (ratio of useful heat

energy removed to electrical energy consumed) of a pork

cooling process can, therefore, vary from 1.3 to 0.44

(Table 3).

The values of measured energy consumption for fish in

Table 3 are based on data provided in Myers (1981) for

Figure 6. Estimated annual heat energy that needs to be

extracted to cool selected major raw food materials post

harvest/slaughter.
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the electrical energy required to produce flake ice using an

industrial scale ice making system (50 to 60 kWh/tonne).

The mass of ice required to chill each kg of fish from 10

down to 08C was calculated (assuming that all ice is just

melted) using equation (1):

Mass of ice (kg)¼
Mass of fish (kg)�Enthalpy change to cool fish ðkJ kg�1Þ

Energy required to convert water toice ðkJ kg�1Þ
(1)

Approximately 0.1 kg of ice is required to cool each kg

of fish from 10 to 08C. The ratio of useful to ‘measured’

values in Table 3 for fish are based on an industrial flake

ice machine producing this amount of ice per kg of whole

fish. However, in practice more ice is required to compen-

sate for thermal losses from containers and ice handling

losses. Myers (1981) states that an ice to fish ratio of 1:2

is commonly used on board fishing vessels in temperate

climates, to allow enough ice for initial cooling and sto-

rage for voyages up to 18 days. However, in reality ice

requirements could vary greatly depending on types of

containers and local practices etc. (Zugarramurdi et al.
1995).

In order of energy efficiency current milk cooling can

be three times more efficient than primary carcass cooling

(5.4 to 1.7). However, the least efficient milk cooling sys-

tem (efficiency 1.7) has a similar efficiency to that of the

best carcass cooler (1.7). The efficiency of fish cooling

appears to be similar to that of meat even though a very

different cooling method is used. Potato cooling is the

least efficient process with a 17-fold ratio between it and

the best milk cooling process (0.31:5.3) and a 5.5 fold

ratio between it and the best carcass cooling system

(1.7:0.31).

3. Energy saving potential

There are a number of stages in quantifying the potential

to save energy in different primary chilling operations.

The first stage is a simple technology transfer exercise in

which the most energy efficient current industrial process

is identified.

With milk and carcass meat, data exists to make a first

attempt at calculating the energy reduction potential of a

simple technology transfer exercise.

Refrigeration accounts for 20–40% of the electrical

energy consumption of a milking operation (Plemper and

Table 3. Useful heat energy extracted, measured electrical energy consumed and maximum and minimum ratio

(useful:measured) for different primary raw materials

Raw material
Useful heat

extracted (kJ kg–1)
Measured energy

consumption (kJ kg–1)

Ratio useful to measured

Maximum Minimum

Chicken meat 125.6 –
Cattle meat 118.7 68.8–1871 1.725 0.634
Pig meat 112.4 89–2582 1.263 0.436
Sheep meat 125.0 –
Turkey meat 129.1 –
Duck meat 110.9 –
Large Pelagic fish 34.0 18.3–21.93 1.86 1.55
Demersal fish 37.3 20.1–24.13 1.86 1.55
Freshwater fish 35.4 19.0–22.83 1.86 1.55
Apples 75.3 –
Strawberries 78.6
Carrots and turnips 57.2 –
Onions 57.7 –
Cabbages and other brassicas 58.2
Cauliflowers and broccoli 59.5 –
Lettuce and chicory 59.5 –
Peas, green 51.4 –
Tomatoes 60.8 –
Potatoes 36.5 116.6–265.34 0.313 0.138
Milk 131.3 24.6–77.84,5 5.337 1.688

1
Gigiel and Collett 1989

2
Collett and Gigiel 1986AQ9

3
Myers 1981

4
Devres and Bishop 1992

5
Milk Development Council 1995

6Legett et al. 1997
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Stace 2003; Souness 2005). However, no data have been

located on the number of each type of system currently

used for on-farm cooling of milk in the UK, but if it is

assumed that all UK milk production is cooled with equip-

ment having the efficiency of the average between a new

ice bank and a standard DX cooling system reported, the

annual electrical consumption would be 227 GWh/year.

This could be reduced to 163 GWh/year (28% reduction)

if the most efficient DX system reported was used to cool

the same UK milk production and could potentially be

reduced further if the additional benefits of pre-cooling

with plate heat exchangers were to be included. However,

there is the potential impact of the additional cooling

water to be considered with the latter option.

In a US study, (Legett et al. 1997) reports values for

the average unit energy use to cool milk on the farm from

4.84 to 11.66 kWh/tonne for different scenarios. The least

efficient was the base system, a DX cooler with a con-

centric tube well water pre-cooler. The most efficient sce-

nario was the base DX system with the addition of an

upgraded two-stage plate heat exchanger, variable speed

milk pump to optimize milk flow through the heat exchan-

ger and a glycol chiller with ambient cooling capabilities

for the second stage of the heat exchanger. However, the

lowest energy consumption could only be achieved if the

ambient temperature was below –78C. In addition, unless

the ambient temperature was below 08C the glycol chiller

was not as efficient as the DX system alone. Energy

values as low as 6.82 kWh/tonne could potentially be

achieved by the DX system with the plate heat exchanger

and variable speed milk pump optimized system alone. If

this could be applied to the UK, then the total energy

required to cool the annual milk production could be

reduced from the 227 GWh/year estimate to 99.4 GWh/

year, a reduction of 56%.

The average energy required to cool cattle and pig car-

casses is 122.5 and 153 kJ kg–1, respectively, whilst the

best system required approximately 69 kJ kg–1. The over-

all amount of energy required to cool the 3 390 000

tonnes of carcass meat produced in the UK per year, based

on these means, is, therefore, in the region of 115 to 144

GWh. Using the most energy efficient meat refrigeration

system measured in the identified study, this could be

reduced to 64 GWh a reduction of between 44 and 56%.

No data has been located to ascertain the average and

lowest energy consumptions in the primary chilling of

fish. However, as previously discussed five times as much

ice, 0.5 kg ice/1 kg of fish, as that theoretically required,

0.1 kg ice/1 kg of fish, is used in the recommended

method. If it is assumed that by using better insulation

and improved ice distribution it is possible to reduce the

amount of ice required to 0.3 kg/kg of fish (still three

times that theoretically required), then the total energy

required to cool the annual UK fish production could be

reduced from the 3.49 GWh/year estimate to 2.10 GWh/

year, a reduction of 40%.

Due to the large throughput of milk the energy saving

potential of simple technology transfer in its primary chil-

ling is 48 to 76 GWh more than that from carcass chilling

(Figure 7).

A second stage of the process to identify potential to

save energy is to see if a simple technology transfer

between sectors would be beneficial. The cooling of a

liquid product such as milk is a very different process to

than of cooling solids such as potatoes and meat carcasses.

However, meat carcasses and potatoes are both cooled in

air based systems so should it be possible to make potato

cooling as efficient as the best of the measured carcass

cooling plants i.e improve the efficiency from 0.313 to

1.725, then this would result in a potential annual saving

of 154 GWh.

4. Discussion and conclusion

The overall objective of the project which this study is

part of ‘Is to identify and stimulate the development and

application of more energy efficient refrigeration technolo-

gies and business practices for use throughout the food

chain whilst not compromising food safety and quality’.

When looking at the potential to save energy in the pri-

mary chilling processes we must bear in mind the need to

maintain food quality and safety. All primary food-chilling

systems were initially developed to increase the high qual-

ity distribution life of the raw material.

For a number of raw materials there are standards of

legislative requirements on cooling rates or final tempera-

tures. For milk, the European Standard (Comité Européen

de Normalisation (CEN) 2002) which deals with the per-

formance for bulk milk coolers on farms defines four

classes (0 to III) of maximum cooling times to cool any

milking from 35 to 48C ranging from 2 to 3.5 h. It also

defines the thermal insulation performance stating that

Figure 7. Energy saving potential with existing technology

transfer.
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when milk at 48C is stored at the performance ambient

temperature (328C in class B), the mean temperature rise

after 12 h must be a maximum of þ38C, without starting

the cooler. European Union legislation for red meat

requires that for red meat the meat temperature is reduced

below 78C before cutting and transportation while poultry

meat has to be below 38C. No current chilling legislation

includes any maximum energy requirements.

Although there are sources of published electrical

energy consumption data for the food industry, there are

very few that indicate how much of the consumption is

due to refrigeration and even fewer that can be relied upon

to provide a measure of the energy used for primary cool-

ing of specific materials. Ideally, electrical sub-metering

of individual refrigeration systems is required which can

be related to volume of product being cooled over a set

time period. A number of organisations are no doubt

carrying out individual studies to collect the appropriate

data, but there is a distinct lack of published data available

in the public domain and certainly not enough to accu-

rately determine the full extent of energy used for refrig-

eration in primary chilling let alone throughout the food

industry.

It is important to consider the definition of the system

boundaries when interpreting the energy consumption of

refrigeration processes. At one extreme only the electrical

energy consumed by the compressor motor might be con-

sidered and at the other extreme, all of the energy con-

sumption related to the food refrigeration process in total

might be included – condenser and evaporator fan motors,

defrost heating elements, electric pumps and valves, con-

trol panels and also any electrically operated equipment

that if the refrigeration process were not in existence

would not be required – lights, automatic doors/heaters,

auxiliary fan motors, conveyors and process equipment

etc. To identify the specific refrigeration processes that

have the greatest potential for saving energy, some mea-

sure of efficiency needs to be used and clearly defined. In

this paper when characterising the efficiency of a refrig-

eration systems for primary cooling of raw materials post

harvest/slaughter the ratio of the heat energy extracted

from the food to the total energy consumed in the whole

refrigeration system has been calculated.

In terms of the heat energy to be extracted during the

primary chilling process the six most important categories

in rank order are milk (532 GWh/year), meat (114 GWh/

year), potatoes (59 GWh/year), other vegetables (36 GWh/

year), fish (6.5 GWh/year) and fruit (5.9 GWh/year).

There is little published data on the measured energy

consumption of commercial primary chilling processes in

the UK or that is directly applicable to the UK. From the

data that is available the energy efficiency (useful heat

extracted from material/measured electrical energy used)

varies from 0.138 to 5.337. Cooling of milk is far more

efficient than that of the next two most important cate-

gories, meat and potatoes.

Using the best of existing technologies, it is estimated

that if applied to the entire UK production, 154 GWh

could be saved per year in potato cooling, 128 GWh in

milk and between 51 and 80 GWh in the cooling of car-

cass meat. Savings in other commodity areas are likely to

be more than an order of magnitude less.
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