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Pinhole Camera

Very simple but common model of a camera. Can put coordinates
on the image plane, don’t need to here, just think about the lines
through the optical centre.



Plücker Coordinates

Given 2 points,

p1 =

x1

y1

z1

 and p2 =

x2

y2

z2


Line joining them has direction
p1 − p2 and moment p1 × p2.

Line’s Plücker coordinates are these 6 quantities—written as a
6-vector, 

p01

p02

p03

p23

p31

p12

 =



x2 − x1

y2 − y1

z2 − z1

y1z2 − z1y2

z1x2 − x1z2

x1y2 − y1z2

 .



Plücker Coordinates cont.

Partitioned form for Plücker coordinates,(
p1 − p2

p1 × p2

)
=

(
ω
v

)
.

Lines in P3, homogeneous coordinates p̃T = (x1, x2, x3, x0). Now
Plücker coordinates just pij = xiyj − xjyi for i , j = 0, 1, 2, 3. Get
back to R3 by putting x0 = 1.



The Klein Quadric

Using different points on the same line gives the same Plücker
coordinates multiplied by a non-zero constant. Plücker coordinates
are homogeneous coordinates in P5.

Not all points in P5 represent lines, all lines must satisfy the
homogeneous quadratic relation p01p23 + p02p31 + p03p12 = 0. In
partitioned form, if sT = (ωT , vT ), then this relation becomes,

ω · v = sTQ0s = 0

where Q0 =

(
0 I
I 0

)
, represents a 4-dimensional quadric in P5. All

lines in P3, or all lines in R3 plus lines at infinity (those with
ω = 0).



A Line through Successive Points

General rigid motion: rotation
followed by translation along
same axis, screw motion.
Effect on points,

p2 = Rp1 + t

Where R is a rotation matrix
and t translation vector.



Lines from all Points

Same for all points in space.
Assume that rotation is about
z-axis and consider a point a
distance d along the x-axis
from the rotation axis. Plücker
coordinates of the line are,

s =

(
p1 − p2

p1 × p2

)
=



d(1 − cos θ)
−d sin θ
−θh/2π

0
−dθh/2π
d2 sin θ


Where θ is the rotation angle,
θh/2π the pitch of the motion.



The Quadratic Line Complex

Notice that for any rigid motion and any point can always choose
coordinates to as above. Invariants don’t depend on choice of
coordinates. Compute invariants,

lTQ∞s = −θhλ/2π, lTQ0s = d2λ sin θ

and
sTQ∞s = 2d2(1 − cos θ) + θ2h2/4π2.

Here l =

(
λk
0

)
is the line representing the axis of the motion and

the matrix Q∞ =

(
I 0
0 0

)
gives the other rigid-motion invariant.



The Quadratic Line Complex cont.

Now eliminate d to get an equation satisfied by any line s, arising
in this way.

(lTQ0s)(lTQ∞s) + q
(
λ2(sTQ∞s) − (lTQ∞s)2

)
= 0.

Here q = h(θ/2)/2π tan(θ/2), turns up in other
places—Parkin+Hunt’s ‘quatch’.



The Quadratic Line Complex cont.

Now let l be a general line, l =

(
ω
v

)
, replace λ2 by

lTQ∞l = ω · ω, some algebra, the equation becomes,

sTKs = 0.

where K is a symmetric 6 × 6 matrix,

K = q

(
−Ω2 0

0 0

)
+

1

2

(
ΩV + V Ω Ω2 + I

Ω2 + I 0

)
.

Where,

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 and V =

 0 −vz vy

vz 0 −vx

−vy vx 0

 .



The Quadratic Line Complex cont.

Since these are lines, they lie on the Klein quadric, so can take off
Q0 to get,

K = q

(
−Ω2 0

0 0

)
+

1

2

(
ΩV + V Ω Ω2

Ω2 0

)
.

Intersection of the Klein quadric with another quadric in P5, gives
3-dimensional family of lines, classically known a quadratic line
complex. Much studied object in the past.
Notice: transformations with the same axis and quatch produce
the same quadratic complex of lines (new result?).



Cone of Lines through a Point

Well known property of a quadratic line complex. The lines in the
complex through any particular point in space form a quadratic
cone. To see this let p0 be some point in space, all lines through
p0 have the form, (

u
p0 × u

)
=

(
I
P0

)
u,

P0 the 3 × 3 anti-symmetric matrix corresponding to p0, and u a
vector in an arbitrary direction. Substituting into the equation for
the complex gives,

uT
(
− 2qΩ2 + ΩV + V Ω + Ω2P0 − P0Ω2

)
u = 0,

that is a homogeneous, degree 2 equation in the components of u,
a conic curve.



Rigid Motion of the Object

Suppose object undergoes a
rigid motion. Which points on
the object are unchanged in the
image?

Solve this in a moment, but
already can see that the
projection of such points into
the image plane will give a
conic curve.



Rigid Motion of the Camera

Here camera undergos rigid motion, or we have 2 identical cameras
(eyes). Classical problem (Helmholtz), which points in space have
the same coordinates in both cameras?
Clearly the same as previous problem using inverse transform.



The Horopter

Answer to both problems is a twisted cubic curve known as the
Horopter. To see that this is a twisted cubic it is simpler to look at
the first problem. A point p will lie on the Horopter if the optical
centre p0 the point p and its transform Rp + t are collinear. Best

to use homogeneous coordinates here, p̃T = (x , y , z , w). Now the
transformed point can be written as a 4 × 4 matrix,(

Rp + t
1

)
=

(
R t
0 1

)(
p
1

)
= G p̃.

So the condition for p to lie on the Horopter can be written,

λ(p̃− p̃0) = µ(G p̃− p̃0),

where λ and µ are arbitrary paramenters.



The Horopter is a Twisted Cubic Curve

Rearranging this equation gives,

(µG − λI )p̃ = (µ− λ)p̃0.

Since we are working in P3 overall multiplicative factors like (µ−λ)
or det(µG − λI ) are irrelevant. So the solution can be written,

p̃ = Adj(µG − λI )p̃0,

where Adj() denotes the adjugate of the matrix. The elements of
the adjugate matrix are the 3 × 3 cofactors of the original matrix.
Hence we can see that x , y , z and w are given by cubic
polynomials in the parameters λ and µ. This is what defines a
twisted cubic curve.



Cubical Ellipse
All twisted cubic curves are the
same up to projective
transformation, but if we only
allow affine transformations
then the different twisted cubic
curves are classified by how
they meet the plane at infinity
w = 0 and the circle at infinity
x2 + y2 + z2 = 0.
The Horopter is very special in
this respect, it meets the plane
at infinity in 3 points, 1 real
and 2 complex conjugate
points both lying on the circle
at infinity. This makes the
Horopter a special cubical
ellipse.



Conclusions

I Paper also deals with degenerate cases.

I All of this extends easily to optical flow—quatch replaced by
pitch.

I Still plenty of geometry to study.
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