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In this paper, the application of photogrammetry to accurately reconstruct three-
dimensional shape of an aircraft component is presented. This technique, which has matured 
significantly throughout the years, is originally an optical method to measure distances with 
high accuracy. In this work, images of the object are taken from several positions using 
single digital camera. Circular markers are distributed over the surfaces of the object in 
order to improve the accuracy of the reconstructed object. The accuracy of the 
reconstruction process is checked by comparing several measurements using caliper with the 
distance obtained by photogrammetry. The results show that the differences is less than 
0.1%.  
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1. Introduction 
In the last two decades, there have been a number of advances in the efficiency and effectiveness of image-based 

metrology systems. The use of digital images and digital transmission of images, the expansions in image resolution 
provided by new CCD arrays, the rapid measurement of targets and the increasing sophistication of software for data 
analysis and geometric fitting are all factors that have contributed to the gains in efficiency and effectiveness. One of 
the most popular image-based techniques used in industry in photogrammetry. 

Photogrammetry is a technique of measuring objects (2-D or 3-D) from photographs. Its most important feature 
is the fact that the objects will be measured without being touched. Therefore, the term “remote sensing” is used by 
some authors instead of “photogrammetry”. The goal of photogrammetry is to determine geometric properties of the 
three-dimensional (3-D) world from images. Navigation of autonomous vehicles, object recognition, reverse 
engineering and synthesis of virtual environment are some of its applications which reconstruct a 3-D model of the 
scene from a moving camera [1]. 

In this paper, the surface reconstruction of an aircraft component is performed. Its images are captured by a 
single digital camera at different positions in space. Then, corresponding features will be matched (or referenced) 
from image to image. The matching performance is significantly increased with the use of circular markers, which 
are distributed over all surfaces of the object. Triangulation, which may be formulated as a least-squares 
minimization, will recover the position of a point in space given its position in two or more images taken with 
cameras with known calibration and pose. Finally, 3-D coordinates of the features and camera poses are refined 
using the bundle adjustment [7, 8] which is a non-linear optimization of triangulation.  

A number of surface reconstruction works have been studied such as that of a five-meter inflatable space antenna 
under a NASA project in 2001 by Pappa [9]. One year later, Pappa and his colleagues applied photogrammetry to 
reconstruct spacecraft structures [10]. The procedures presented in those projects are only consistent with 
commercial softwares. They showed that the average measurement precision for more than 500 markers on the 
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antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-plane. The precision 
presented in table 1 reaches 0.0109 millimeters in average, which is good compared to the results reported in [9, 10]. 

2. Methodology 
In this section, brief mathematical formulation related to this work is introduced.  
A pinhole camera is modeled by its optical center O and its image plane I. A 3-D point M is projected into an 

image point m given by the intersection of I and the line containing O and M. For simplicity, let M = (X, Y, Z) be 
the coordinates of point M in the world reference frame and m = (x, y) be the pixel coordinates of point m. In 
homogeneous (or projective) coordinates:  
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The transformation from  to  is given by the perspective projection matrix P: M m
  
 λ =m PM  (2) 

 
where λ  is a scale factor. The camera is then modeled by its matrix P, which can be decomposed by QR 
factorization: 
 
 = ⎡ ⎤⎣ ⎦P K R t  (3) 
 

The camera matrix K depends only on the intrinsic parameters of the camera, and has the following form: 
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where x xf fk= , y yf fk=  are the effective 
focal length in horizontal and vertical axis, 
respectively (f is the focal length in 
millimeters, kx and ky are the effective number 
of pixels per millimeter along the x- and y-
axes), (x0, y0) are the coordinates of the 
principal point, determined by the orthogonal 
projection of O onto the plane I, and s is the 
skew factor. 

The camera position and orientation 
(extrinsic parameters) are encoded by a  
rotation matrix R and a translation vector t, 
representing the rigid transformation that 
aligns the camera reference frame and the 
world reference frame.  

3 3×

 
Figure 1. Camera model with coordinate systems 

2.1 Calibration 
A calibration is required to find out all components of the matrix K (or intrinsic parameters). A checkerboard of 

black and white squares is used as the target object to calibrate the camera. The board is placed at different positions 
to the camera, which is in turn kept stable and unchanged. With the aid of Harris corner detection algorithm [2], the 
intrinsic parameters of the camera will be recovered [3]. A 30D Canon digital camera with identical zoom lens 
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Canon EF28-135mm F3.5-5.6 IS USM is used to capture images of the checkerboard and the aircraft component.  
 

2.2 Ellipse fitting (target detection) – Pose from ellipses 
The aircraft component will be reconstructed based on the center coordinates of the circular targets distributed 

over its surfaces. Since the images are taken from different orientations, the circular shape of the targets becomes  
ellipses. Canny edge detection is applied first to extract the edges of the ellipses, and then direct least square ellipse 
fitting can be used to locate the centers of the ellipses in the image reference frame and the normal vectors 
orthogonal to the surface at the corresponding centers.  

Assume that the general form of any conic is: 
 
 ( ) 2 2,F Ax Bxy Cy Dx Ey F 0= + + + + + =a x  (5) 

 
and in matrix form:  
 
  . 0=a x  (6) 
 
where a = (A, B, C, D, E, F)T is a vector containing all parameters which can define a conic, and x is a vector which 
stores coordinates used in ellipse fitting. The fitting of a general conic may be approached by minimizing the sum of 

squared algebraic distances: . By introducing the quadratic constraint , the 

vector a can be computed through a system of equations (see [4] for more details). The most important information 
from ellipse fitting is the coordinates of its center which is easily determined by rewriting general equation in 
canonical form:  
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2.3 Point cloud from sequence of images 
Corresponding center points of ellipses on every images of the sequence will be referenced from one to another 

in order to calculate the fundamental matrix F. Then, camera position (or translation vector t) and orientation (or 
rotation matrix R) are extracted from F (see [5]). In this method, the object frame is aligned with the first camera 
(i.e. coincide with the camera frame). The second position of the camera is chosen so that the epipolar geometry 
corresponds to the retrieved F21: 

  
 [ ]1 3 3 3 3 [ ]|× ×=P K I 0 ; 2 21 21|=P K R t  (8) 
 
The projection matrix of the third image is then [ ]3 21 32 21 32|=P K R R R t t21+ , and so on. When all projection 

matrices P and normalized image coordinates m are known, the 3-D points M will be computed by Eq. (4) through 
triangulation [6]. Minimization of the distances between the reprojected 3-D points and the image points should be 
carried out .The set of such points M creates a point cloud of the 3-D surface.    

2.4 Sparse bundle adjustment 
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Bundle adjustment (BA) is the last step to refine a visual reconstruction to produce jointly optimal 3-D structure 
and viewing parameter estimates. Optimal means that the parameter estimates are found by minimizing some cost 
function that quantified the model fitting error, and jointly that the solution is simultaneously optimal with respect to 
both structure and camera variations [7]. BA is really a large sparse geometric parameter estimation problem, the 
parameters being the combined 3-D feature coordinates, camera positions and orientations. BA minimizes the 
reprojection error with respect to all 3-D point and camera parameters, specially: 
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where aj is a vector containing all (intrinsic and extrinsic) parameters and initial estimated pose of the camera j, bi is 
a vector containing parameters of the i-th 3-D point, ( ),j iQ a b  is the predicted projection of point I on image j and 
d(x, y) denotes the Euclidean distance between the inhomogeneous image points represented by x and y. The 
expression (9) can be treated as a non-linear minimization based on Levenberg-Marquardt algorithm by solving the 
normal equations: 
 
  T Tδ ε= −J J J   (10) 
 
where J is the Jacobian of the error function, δ is the update to the parameter vector and ε is the difference between 
the real and the initially estimated values [8]. Note that if κ and λ are respectively the dimensions of each aj  and bi, 
the total number of minimization parameters in (9) equals m nκ λ+  and is therefore large even for moderately sized 
BA problems.   
 

In short, the algorithm of surface reconstruction using digital photogrammetry is summarized in the block-
diagram below: 

 
 
 

 

 
 

Figure 2. Outline of 3-D surface reconstruction algorithm 
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3 Results 
 

 

 
Figure 3.   a) b)       Aircraft component with detected circular targets

 c) d) e) Reconstructed point cloud of the component 
 f)  g) h) Surface reconstruction based on point cloud 

Distances 
(mm) 

by Direct 
Measurement 

(mm) 

by  
Photogrammetry 

(mm)

Absolute 
differences 

(mm) 

Relative 
differences 

(%) 

e1 8.55 8.5446 0.0054 0.0632 

e2 8.70 8.7243 0.0243 0.2793 

e3 36.70 36.7003 0.0003 0.0008 

e4 36.85 36.8523 0.0023 0.0062 

e5 13.10 13.0776 0.0224 0.1710 
 

Average: 20.78 20.7691 0.0109 0.0525 

Table 1. Measurement precision for 5 specific thicknesses of the component 

4 Discussions 
The edge thicknesses of the aircraft component, labeled from e1 to e5, are measured by a caliper of 0.05 mm. 

precision (direct measurement). The corresponding distances which are joined by reconstructed points of the point 
cloud (by photogrammetry) are computed and compared to those of direct measurement. The higher the precision of 
the measuring instrument is, the more accurate the results are.  The precision of the method using digital 
photogrammetry which falls into the interval between 0.0003 and 0.0243 mm, has a mean value of 0.0109 mm. In 
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percentage, this interval is approximately from 0.001 to 0.3% which is good enough compared to the results given in 
[9, 10].  

5 Conclusion 
Photogrammetry is a leading candidate technology for measuring the static shape of complicated-shape 

structures. It offers the simplicity of taking photographs coupled with good to excellent measurement precision. This 
paper discussed a method of five main steps to create 3-D surfaces model of an aircraft component.  The key idea is 
the use of circular targets on the object’s surfaces. The results show that the method meets all desired objectives, 
especially the measurement precision (0.0525% in average).  
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