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Abstract

The concept of curves of minimal acceleration seems to have been introduced

by Žefran and Kumar and independently by Noakes, Heinzinger and Paden. In

part the motivation was to extend the notion of spline curves to curves in groups,

specifically the groups associated with robotics. A curve in the rigid body motion

groupSE(3) for example, can be thought of as a trajectory of a rigid body. Hence

these ideas have applications to motion planning and interpolation. In this work the

analysis is repeated but using bi-invariant metrics on the group. Since these metrics

are not positive definite the curves specified by the equations derived are only

stationary, not minimal. It is possible to solve these non-linear coupled differential

equations in some simple cases. However, these simple cases turn out to be highly

relevant to robotics and mechanism theory.

1 Introduction

Understanding the geometry of rigid body motion is a fundamental problem in Robotics.

A continuous sequence of rigid body motions can be thought of as a curve in the space

of all possible rigid body motions, that is a curve in the groupSE(3). In robotics it is

usual to assume that the links of the robot are rigid bodies. Hence, the motion of the

robot’s end-effector can be thought of as a curve inSE(3).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/227103685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A detailed understanding of the geometry of these curves would have many appli-

cations in robotics. For example a natural question to ask is: Given a starting position

and a final target position for the end-effector of a robot, what is the ‘best’ path for the

end-effector?

An early suggestion was that the robot should drive the end-effector along a screw

motion. That is a rotation about a fixed axis followed by a translation in the direction

of the same axis. There is almost always a unique screw motion which moves one

position into the other. These motions correspond to one-parameter subgroups in the

group of rigid body motions and are also geodesics in the group. A geodesic here is

a curve with stationary arc-length with respect to a bi-invariant metric defined on the

group. But currently these screw motions are not used. This is because some pairs

of start and finish positions produce screw motions which produce excessively large

motions of the end-effector.

This motion interpolation problem is also relevant in computer graphics where in-

termediate positions of bodies need to be generated between ‘keyframes’. Many algo-

rithms to generate spline curves have been proposed over the years both for computer

graphics and robotics, however the geometry behind these methods is not too clear.

More recently work in biomechanics has suggested that humans move their limbs

in such a way that jerk is minimised. However, there is a difficulty with this idea, jerk is

the third derivative of displacement and in these biomechanical studies the jerk of some

point on the hand is measured. It is not clear that the jerk of other points on the hand

are also minimised. In part to generalise these idea to rigid body motionsŽefran and

Kumar (1998), defined the acceleration of a rigid body as the covariant derivative of its

motion and the jerk as the second covariant derivative.Žefran and Kumar then stud-

ied curves which minimised these measures. By introducing the covariant derivative

the curves obtained were automatically coordinate-free, that is invariant with respect

to changes in coordinates or selection of reference point. This is clearly a desireable

feature of any motion planning scheme, we don’t want the path of the robot to depend

on our choice of coordinate frame. Unfortunately, this work introduced another ambi-

guity, the covariant derivative depends on a choice of metric on the group. In order to

minimise acceleration or jerk it is necessary that the metric should be positive definite.
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But there are many such metrics to choose from onSE(3). A little earlier Noakeset al

(1989), used the same definition of acceleration to derive equations for minimum ac-

celeration curves inSO(3). They avoided the ambiguity refered to above by using the

unique positive definite bi-invariant metric on the rotation groupSO(3). However, it is

well known that there are no positive definite bi-invariant metrics onSE(3). So instead

Žefran and Kumar used positive definite left-invariant metrics. These left-invariant

metrics can be thought of as inertia tensors for rigid bodies. Indeed the geodesics for

such metrics, the minimum velocity curves, are simply the solutions to the dynamic

equations for the rigid body not subject to any external forces. With this interpretation

the main metric chosen by̌Zefran and Kumar is then the inertia tensor of a spherically

symmetric body.

In this work the ideas of̌Zefran and Kumar are revisited but using bi-invariant

metrics onSE(3). Since these metrics are not positive definite the curves defined here

are not going to be minimal—only stationary. In fact, neitherŽefran and Kumar nor

Noakeset al check that their curves are really minimal and the porperty of minimality

is not subsequently used. The derivation presented here followsŽefran and Kumar but,

not surprisingly, the results are essentially the same as Noakeset al, allowing for the

change of group. However, since bi-invariant metrics are being studied here, standard

results on the connection and its curvature can be used to shorten the exposition.

In fact the curves defined here do not depend on the precise bi-invariant metric

used. So these curves really are intrinsic properties of the group, they do not depend

on choice of coordinate frame or reference point. Hence, we can consider these curves

as natural in some sense, and we can expect that they will be simple to deal with—at

least for theoretical purposes. Although the equations for the curves are not in general

soluble in closed form, there are there are many closed form solutions which can be

found quite simply.

2 Screw Theory

In this section some of the mathematical background is given and basic notation de-

fined.
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A screw or more accurately a twist is an element of the Lie algebra to the group

of rigid body motionsSE(3). In general the elements of a Lie algebra can be thought

of a tangent vectors to the identity element in a group or equivalently as left-invariant

vector fields on the group.

Screws can be written as 6-dimensional vectors, often partitioned into a pair of

3-vectors,

s =

(
ω

u

)
, (1)

whereω is the angular velocity vector of the body andu a linear velocity characteristic

of the motion. Corresponding to different representations of the group we can also

have different representations of the Lie algebra. For example, we can write a screw as

a4× 4 matrix,

S =

(
Ω u

0 0

)
, (2)

again this is in partitioned form withΩ a 3 × 3 matrix. The relationship between the

elements ofω and those ofΩ is given by,

Ω =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (3)

The other representation of screws that used here is called the adjoint representa-

tion, this is a 6-dimensional representation defined by,

ad(s) =

(
Ω 0

U Ω

)
. (4)

HereU is the3× 3 anti-symmetric matrix corresponding tou in the same way thatΩ

corresponds toω.

In any Lie algebra we have a binary operation called the Lie bracket or commutator.

The operation is denoted,[s1, s2] and in a matrix representation it is given by the

commutator of matrices,

ad([s1, s2]) = ad(s1) ad(s2)− ad(s2) ad(s1). (5)

The Lie bracket is anti-commutative,

[s1, s2] = −[s2, s1]. (6)
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It is not associative but it does satisfy the Jacobi identity:

[s1, [s2, s3]] + [s2, [s3, s1]] + [s3, [s1, s2]] = 0. (7)

The adjoint representation has the property that for any Lie algebra elements,

ad(s1)s2 = [s1, s2]. (8)

The Lie algebra can be mapped to the group using the exponential map,

eS = I + S +
1
2
S2 +

1
3!

S3 + · · · . (9)

If S is in some matrix representation of the Lie algebra theneS will be in the cor-

responding representation of the group. In particular, if we exponentiate an matrix

from the adjoint representation of the Lie algebra we will get a matrix in the adjoint

representation of the group, denotedAd(G) here.

Since square matrices always satisfy a polynomial equation (Cayley-Hamilton the-

orem) the infinite sum of matrix powers in the definition of the exponential map above,

is a little misleading. In fact we can usually write the exponential map in terms of just

the first few powers of the matrix. However, the precise expression may depend on

the representation chosen rather than the Lie algebra element itself. InSE(3) we have

simple results that will be used later. Ifs is a pure translation, that is ifω = 0, then we

have the particularly simple result,

eS = I + S. (10)

On the other hand ifs is a unit rotation about the origin, that isu = 0 andω · ω = 1,

then an arbitrary rotation about the origin can be writtenθs whereθ is the rotation

angle. Now the exponential of this is,

eθS = I + sin θS + (1− cos θ)S2. (11)

This is the well known Rodrigues formula. In this case the formulas are the same

for both the 4-dimension representation and the adjoint representation. It is possible

to derive formulas for more general elements of the Lie algebra but these will not be

needed in what follows.
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Suppose that we have curve in a Lie group given by the exponential of a curve in

the Lie algebra,

G(t) = eS(t), (12)

wheret is the parameter along the curve. Now, what is the derivative of such a curve?

If the curve in the Lie algebra is simply some scalar function oft times a constant screw

then we have,
d

dt
eθ(t)S = θ̇(t)eθ(t)S . (13)

However, when the screw itself is a function oft things are not so simple. This is

because the matriceṡS andS do not necessarily commute. Hausdorff (1906) showed,

that in general we have
d

dt
eS(t) = Sde

θ(t)S , (14)

where

Sd = Ṡ +
1
2
[S, Ṡ] +

1
3!

[S, [S, Ṡ]] +
1
4!

[S, [S, [S, Ṡ]]] + · · · . (15)

This can be written more neatly in the adjoint representation as

ad(sd) =
∞∑

i=0

1
(i + 1)!

ad(s)iṡ. (16)

Again it is possible to find reasonably short formulas forSd however these will not be

required below. More important here is the interpretation of this result. The derivative

is the tangent vector to the curve. Translating the tangent vector back to the identity

gives the corresponding Lie algebra element,

dG(t)
dt

G−1(t) = Sd. (17)

On SE(3) we have two bi-invariant metrics, or rather a pencil of them. We will

write any of these metrics as,

< s1, s2 >= sT
1 Qps2. (18)

HereQp is a6× 6 matrix,

Qp =

(−2αI3 βI3

βI3 0

)
, (19)
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with p = α/β andI3 the3× 3 identity matrix. Whenp = 0 we have,

Q0 =

(
0 I3

I3 0

)
. (20)

This is sometimes call the Klein form or the reciprocal form. Ifβ = 0 but α 6= 0 we

setp = ∞ and

Q∞ =

(−2I3 0

0 0

)
. (21)

This is the Killing form of the Lie algebra. Notice thatQ∞ is semi-definite and all the

other metrics are indefinite. However,Q∞ is also the only one of these metrics that is

degenerate. The group invariance comes from the fact that,

AdT (G)QpAd(G) = Qp, (22)

for all p and all group elementsG ∈ SE(3), hence

< Ad(G)s1, Ad(G)s2 >=< s1, s2 > . (23)

The covariant derivative is a differential operator on vector fields. The definition of

the covariant derivative depends on a choice of metric. We also usually demand that the

covariant derivative be torsion free, this then determines a unique covariant derivative.

In a Lie group the covariant derivative based on a bi-invariant metric (provided such a

metric exists) satisfies,

∇XY =
1
2
[X, Y ], (24)

for arbitrary left-invariant vector fieldsX andY , that is for Lie algebra elementsX and

Y . Further details of these covariant derivatives will be introduced later. More details

on rigid body motions, screws and covariant derivatives can be found in (Selig 2005)

and similar texts.

3 Acceleration

Recently in the robotics literature there has been some discussion about acceleration

and second derivatives. See (Featherstone 2001), (Stramigiolli and Bruyninckx 2001)

and also to some extent (Lipkin 2005). This interest seems to date back to a discussion
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at a conference in Cambridge a few years ago. The difficulty is that, “Acceleration is

not a screw!”. This statement makes perfect sense if one considers the motion of points

in space to be the primary object of study. Consider an arbitrary pointr, on a rigid body

moving according to some sequence of rigid transformationsG(t) ∈ SE(3). Then the

point on the rigid body, which has positionr0 at timet = 0 will subsequently have

position given by, (
r(t)

1

)
= G(t)

(
r0

1

)
. (25)

Now the4× 4 matrixG(t) can be written as the exponential of a twistS(t),

G(t) = eS(t), (26)

whereS(t) lies in the4× 4 representation of the Lie algebra. The velocity of the point

is now easy to compute by differentiating,
(

ṙ(t)

0

)
= Sde

S(t),

(
r0

1

)
= Sd

(
r(t)

1

)
, (27)

whereSd is the “velocity screw” of the rigid body. Notice that if we expand this

relation using the partitioned form the following relation can be derived in terms of

3-dimensional vectors,

ṙ = ωd × r + vd. (28)

This is the standard form for the velocity field given by the point in a rigid body moving

about an instantaneous screwSd.

The acceleration field of these points is not given by such a simple relation. How-

ever, we can find the relation for the acceleration of points if we just differentiate again,
(

r̈(t)

0

)
= Ṡd(t)eS(t)

(
r0

1

)
+

(
Sd(t)

)2
eS(t)

(
r0

1

)
. (29)

So that, (
r̈(t)

0

)
=

(
Ṡd(t) +

(
Sd(t)

)2
)(

r(t)

1

)
. (30)

Expanding this we get the result,

r̈ = ω̇d × r + v̇d + ωd × (ωd × r) + ωd × vd. (31)
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Now, sinceSd is an element of a Lie algebra and hence a vector in a vector space,

its derivativeṠd, is also an element of the same vector space. So we see thatṠd is a

screw but that the acceleration of a point is not simplyṠdr, there is an extra term which

involves the square of the velocity screw.

Žefran and Kumar defined the acceleration of a rigid body using a covariant deriva-

tive. Let us write the tangent vector to the curve in the group asV = Sd. Then in

Žefran and Kumar’s notation the acceleration is,

A = ∇V V. (32)

Now we may identify left-invariant vector fields with Lie algebra elements, so we

will choose a basis for the Lie algebra,

ωx =




1

0

0

0

0

0




, ωy =




0

1

0

0

0

0




, ωz =




0

0

1

0

0

0




and

vx =




0

0

0

1

0

0




, vy =




0

0

0

0

1

0




, vz =




0

0

0

0

0

1




.

We can write the tangent vector field to a curve as,

V = a1(t)ωx + a2(t)ωy + a3(t)ωz + a4(t)vx + a5(t)vy + a6(t)vz, (33)

where the coefficientsai are functions of the position along the curve. In section 2

above we saw that for a covariant derivative compatible with bi-invariant metrics, act-

ing on Lie algebra elements we have

∇XY =
1
2
[X, Y ], (34)
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see (Milnor 1969) and§15.1 of (Selig 2005). Notice that this means that the basis cho-

sen is not a coordinate basis since in general the Lie algebra elements do not commute.

To find an expression for the acceleration∇V V , we may use the following standard

identities for a covariant derivative taken from (Schutz 1980):

∇X(aY ) = a∇XY + X
da

dt
, (35)

∇aX+bY Z = a∇XZ + b∇Y Z. (36)

Using the general form for the tangent vector to a curve given in (33) above we get,

∇V V = a1∇V ωx + a2∇V ωy + · · ·+ a6∇V vz + ωx
da1

dt
+ · · ·+ vz

da6

dt
. (37)

Now using the relations above we have for example,

∇V ωx = a1∇ωxωx + · · ·+ a6∇vzωx,

=
1
2
a1[ωx, ωx] + · · ·+ 1

2
a6[vz, ωx],

=
1
2
[V, ωx], (38)

and hence we have that

∇V V =
1
2
[V, V ] + V̇ = V̇ . (39)

That is∇V V = Ṡd. This agrees with the results given byŽefran and Kumar, even

though they used a different metric.

Finally here a similar expression for the jerk can be found. Jerk is roughly the third

derivative of position and was defined byŽefran and Kumar as∇V∇V V . With respect

to a bi-invariant metric we find that

∇V∇V V = V̈ +
1
2
[V, V̇ ]. (40)

4 Stationary Acceleration

Next we look at the problem of optimising the acceleration along a curve. Again fol-

lowing Žefran and Kumar we define the acceleration along a curve by the integral,

J = (1/2)
∫ b

a

< ∇V V, ∇V V > dt. (41)
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Here however, the notation< X, Y > denotes a bi-invariant metric, see section 2

above.

Following the derivation of̌Zefran and Kumar yet again, we define a first variation

of the integral as a vector fieldS, which vanishes at the boundary pointsa and b.

Further we require that the covariant derivatives ofS alongV ; ∇V S, vanish at the

boundary points. Now the Lie derivative of the integralJ along the fieldS is given by,

£SJ = (1/2)
∫ b

a

S < ∇V V, ∇V V > dt

=
∫ b

a

< ∇S∇V V, ∇V V > dt (42)

We can swap the order of the covariant derivatives using the definition of the curvature

of the metricR,

R(X, Y )W = −∇X∇Y W +∇Y∇XW +∇[X,Y ]W. (43)

Notice thatS andV do not commute, this is not a coordinate basis, see (Schutz 1980).

For brevity we will consider the integrandI =< ∇S∇V V, ∇V V >, so that,

I =< ∇V∇SV +∇[S,V ]V −R(S, V )V, ∇V V > . (44)

The first term here< ∇V∇SV, ∇V V > can be written as,V < ∇SV, ∇V V > − <

∇SV, ∇2
V V >. The first of these terms is a total derivative and hence can be integrated.

In general,

∇XY = ∇Y X + [X, Y ], (45)

so that, since we have assumed thatS and∇V S vanish at the boundaries so does∇SV

and hence so does the integral of this term.

The relation (45) expresses the fact that the connection we are using has no torsion.

It can be used to develop the the rest of the first term:

< ∇SV, ∇2
V V >=< ∇V S + [S, V ], ∇2

V V > . (46)

Again we can remove the first derivative with respect toV ,

< ∇SV, ∇2
V V >= V < S, ∇2

V V > − < S, ∇3
V V > + < [S, V ], ∇2

V V > . (47)
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Once again the first term in the above equation can be integrated but then vanishes

at the boundary points. The second term in the integrandI, can be manipulated in a

similar fashion to produce the overall result:

£SJ =
∫ b

a

< S, ∇3
V V > −2 < [S, V ], ∇2

V V >

+ < [[S, V ], V ], ∇V V > − < R(S, V )V, ∇V V > dt. (48)

Next we use a couple of relations which apply to bi-invariant metrics in Lie groups

and hence were not available toŽefran and Kumar. First,

< [X, Y ], Z >=< X, [Y, Z] > . (49)

In the Lie algebra of the rotation groupso(3), the bi-invariant metric is the scalar

product of 3-vectors and the Lie bracket is the vector product. So the above relation

could be thought of as the generalisation of the cyclic property of the scalar triple

product to arbitrary Lie algebras. The second relation we have is that the curvature is

given by,

R(X, Y )Z =
1
4
[[X, Y ], Z]. (50)

These relations can be found in (Milnor 1969). Hence the first variation of the integral

becomes,

£SJ =
∫ b

a

< S, ∇3
V V + 2[∇2

V V, V ] +
3
4
[[∇V V, V ], V ] > dt. (51)

In order that this vanish for arbitrary variationsS it is necessary that,

∇3
V V + 2[∇2

V V, V ] +
3
4
[[∇V V, V ], V ] = 0, (52)

or, if we substitute∇V V = V̇ then the equation for stationary acceleration is

∇2
V V̇ + 2[∇V V̇ , V ] +

3
4
[[V̇ , V ], V ] = 0. (53)

Recall from (40) above that,

∇V V̇ =
1
2
[V, V̇ ] + V̈ (54)

and hence

∇V∇V V̇ =
1
4
[V, [V, V̇ ]] + [V, V̈ ] + V (3). (55)
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Substituting this into (53) above gives

V (3) + [V̈ , V ] = 0. (56)

This agrees with the results of Noakeset al (1989) who derive a relation for stationary

acceleration curves of the bi-invariant metric inSO(3).

5 First integrals

Noakeset al (1989), observe that equation (56) can be integrated once to give

V̈ + [V̇ , V ] = C, (57)

where the constant vectorC is determined by the boundary conditions. Solutions to

this equation are called Lie quadratics by Noakes and whenC = 0 they are null Lie

quadratics, see(Noakes 2003).

In (Noakes 2003) it is also established that the scalarJ =< V̈ , V̈ > is a constant

along the solutions to (56) inSO(3). This can be show very simply here for any group

with a bi-invariant metric. To see this we differentiate this quantity along the path and

show that its derivative vanishes. So consider,

V < V̈ , V̈ > = 2 < V̈ , ∇V V̈ >,

= 2 < V̈ , (V (3) + [V̈ , V ])− 3
2
[V̈ , V ] >= 0. (58)

The term in the round brackets here is the equation for stationary acceleration and

hence vanishes along the curve, see equation (56) above. The second term vanishes

because of the triple product identity (49) above.

There is however, an alternative expression for the first integral of (56). This is

given by,

V̈ = GXG−1, (59)

whereX is a constant vector. To see this we can differentiate the above equation

remembering thatdG/dt = V G see (17) above.

V (3) = V GXG−1 + GX
d

dt
G−1. (60)
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To finddG−1/dt we can differentiate the relationGG−1 = I to show thatdG−1/dt =

−G−1V . Hence,

V (3) = V GXG−1 + GXG−1V = [V, V̈ ]. (61)

Notice that it is clear that the solution̈V = GXG−1 has constantJ indeed< V̈ , V̈ >=<

X,X >.

Finally here notice that we can play the same trick for null Lie quadratics. When

C = 0, V̇ = GY G−1 will satisfy (57) and it is easy to see that< V̇ , V̇ > will be

constant along these curves.

6 Simplest Solutions

A very simple and obvious solution to (53) occurs if we letG = eθX with θ a function

of t. ThenV = θ̇X and hencëV = θ(3)X. We obtain a solution so long asθ(3) = 1.

That is, wheneverθ is a cubic polynomial int,

G(t) = e(t3/6+c2t2+c1t+c0)X . (62)

This is a motion about a single screw axis but the “rate of screwing” is not constant but

a cubic polynomial.

This solution can be elaborated a little, notice it was only really necessary that

the Lie algebra exponent inG commute with the constantX. In the groupSO(3) the

centraliser of any element, that is the set of elements which commute with it, are trivial.

In SE(3) this is not the case, for example all the translations commute with each other.

So if X = ad(t), wheret is a translation, then we have a simple solution,

G(t) = eθ ad(t)+φ1 ad(t1)+φ2 ad(t2), (63)

whereθ is a cubic int as above,φ1 andφ2 are quadratics int, andt1 and t2 are

translations linearly independent oft.

For a general element of the Lie algebra, that is a screw motion with finite pitch

we can always decompose the element into a rotation and a translation along the same

axis,

X = ad(ω) + ad(t). (64)
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Moreover, the rotationad(ω) and the translationad(t) will commute since they have

the same axis. Hence we have a simple solution,

G(t) = eθ1 ad(ω)+θ2 ad(t) = eθ1 ad(ω)eθ2 ad(t), (65)

whereθ1 andθ2 are both cubic polynomials int. Notice that this motion is quite similar

to our first solution (62) above but now the pitch of the screw can also vary but the axis

of the screw remains fixed.

Finally here, suppose that,

G(t) = et ad(v)et ad(ω), (66)

where the axes of the rotationω and the translationv are arbitrary. For such a motion

we have,

V =
d

dt
GG−1 = ad(v) + et ad(v) ad(ω)e−t ad(v), (67)

and hence,

V̇ = et ad(v)[ad(v), ad(ω)]e−t ad(v), (68)

and subsequently,

V̈ = et ad(v)[ad(v), [ad(v), ad(ω)]]e−t ad(v). (69)

Now the commutator[ad(v), ad(ω)], between a translation and a rotation is always

another translation. So the double commutator[ad(v), [ad(v), ad(ω)]], is a commu-

tator between two translations and hence vanishes. Thus this motion satisfies (59) with

the constantX = 0. Notice that the vanishingX in (59) is different from the null Lie

quadratics discussed by Noakes (2003).

Notice that if the translation vectort and the rotation axisω are perpendicular then

this is a planar motion, such a motion is illustrated in figure 1. The motion is illustrated

by a sequence of positions for a pair of small perpendicular lines. These lines could be

thought of as a coordinate frame in the moving body. Notice that the origin, where the

lines meet traces out a cycloid. In the next section planar motions will be studied in

more detail.
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Figure 1: A Stationary Acceleration Curve in the Plane

7 Planar Motions

Another way to simplify the problem is to restrict to a subgroup of full rigid-body

motion group. Here we look at the group of planar motionsSE(2). As generators of

the Lie algebra of this group we can take the two translations,

s1 =

(
0

i

)
, ands2 =

(
0

j

)
,

together with the rotation

s3 =

(
k

0

)
.

Now we can write down the equations in terms of canonical coordinates of the second

kind, see (Norman and Wei 1964). That is we seek a solution of the form,

G(t) = eθ1 ad(s1)eθ2 ad(s2)eθ3 ad(s3), (70)

where the joint variablesθi are functions oft but the elementssi are constant. With

the generators as defined above the exponentials can be expressed as

eθ1 ad(s1) = I + θ1 ad(s1), (71)

eθ2 ad(s2) = I + θ2 ad(s2), (72)

and

eθ3 ad(s3) = I+sin θ3 ad(s3)+(1−cos θ3) ad(s3)2. (73)

Moreover,ad(s1) commutes withad(s2) and

[ad(s1), ad(s3)] = − ad(s2), [ad(s2), ad(s3)] = ad(s1). (74)
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Using these relations we find expressions forV = ĠG−1 and its derivatives,

V = (θ̇1 + θ̇3θ2) ad(s1) + (θ̇2 − θ̇3θ1) ad(s2) + θ̇3 ad(s3), (75)

V̇ = (θ̈1 + θ̇3θ̇2 + θ̈3θ2) ad(s1)

+(θ̈2 − θ̇3θ̇1 − θ̈3θ1) ad(s2) + θ̈3 ad(s3), (76)

V̈ = (θ(3)
1 + θ̇3θ̈2 + 2θ̈3θ̇2 + θ

(3)
3 θ2) ad(s1)

+(θ(3)
2 − θ̇3θ̈1 − 2θ̈3θ̇1 − θ

(3)
3 θ1) ad(s2) + θ

(3)
3 ad(s3). (77)

Now the constant vectorX in (59) can be chosen to be,

X = r cos δ ad(s1) + r sin δ ad(s2) + φ ad(s3). (78)

Substituting in to the equation̈V = GXG−1 and comparing the coefficients of the

generators gives three equations, after a little cancelation these are,

θ(3) = φ, (79)

θ
(3)
1 + θ̇3θ̈2 + 2θ̈3θ̇2 = r cos(θ3 + δ), (80)

θ
(3)
2 − θ̇3θ̈1 − 2θ̈3θ̇1 = r sin(θ3 + δ). (81)

Clearly the general solution for the rotation angleθ3 from equation (79), is a cubic

in t. If we substitute this in the equations (80) and (81) we get a pair of coupled linear

equations for the translation variablesθ1 andθ2. These equations are probably solvable

in closed form but certainly a general solution is not easy to write down.

Again we will just look at a couple of simple solutions. First, assume thatX = 0

that isφ = 0 andr = 0. Now suppose we haveθ3 = αt + β as a possible solution for

the rotation, withα andβ constant. Substituting this into equations (80) and (81) gives

a pair of homogeneous, constant-coefficient linear equations. The general solution for

the translational variables will be a sinusoid plus a term linear int,

θ1 = A cos(αt + γ) + Bt + C, (82)

θ2 = A sin(αt + γ) + Dt + E, (83)

17



where areA, B, C, D, E andγ are arbitrary constants. In the case were the constant

A = 0 all the variablesθi are linear functions oft. This is a motion much used in

industrial robotics, it consists of a translation along a line with a simultaneous rotation

about a perpendicular axis. Notice that this is not a screw motion, where the rotation

and translation axes would be parallel. In fact these motions can be thought of as being

generated by a circle rolling on a line, the radius of the circle will be determined by

the constantsα, B andD. Any point on the moving plane will trace out a cycloid.

Of course, this is the motion mentioned at the end of the last section and illustrated in

figure 1.

In the case whereB = D = 0 but A 6= 0, the motion can be thought of as being

produced by one circle rolling on another. The trajectory of a point undergoing one of

these motions will be a trochoid.

For the second simple solution we can relax the assumptionr = 0 in the above, so

the equations forθ1 andθ2 become non-homogeneous. The right-hand sides are just

as in (80) and (81) above but withθ3 = αt + β. The results from (82) and (83) can

be used as complimentary functions while we can find the particular integrals using

Laplace transforms for example,

θ1 = − rt

α2
cos(αt + β + γ), (84)

θ2 = − rt

α2
sin(αt + β + γ). (85)

Notice that this motion can be produced by a circle rolling on a uniform spiral.

8 Some Spatial and Rotational Motions

In (Noakeset al 1989) the problem of stationary acceleration curves in the rotation

groupSO(3) was studied. Equations (56) and (57) were derived. In this section we

again look for simple solutions.

Inspired by the results for planar motion above we can look for motions generated

by rolling one circular cone on another. This will be given by,

G(t) = eα1t ad(ω1)eα2t ad(ω2). (86)

18



Notice that here it has been assumed that the variable are linear functions oft, that is

α1 andα2 are constants. The Lie algebra elementsω1 andω2 are essentially 3-vectors

satisfying the standard rules of vector algebra with the commutator[ad(ω1), ad(ω2)]

represented by the standard vector product,ω1 × ω2. Now with the ansatz (86) above

we get,

V = ĠG−1 = α1 ad(ω1) + α2e
α1t ad(ω1) ad(ω2)e−α1t ad(s1), (87)

Hence we have,

V̇ = α1α2e
α1t ad(ω1)[ad(ω1), ad(s2)]e−α1t ad(ω1), (88)

V̈ = α2
1α2e

α1t ad(ω1)[ad(ω1), [ad(ω1), ad(ω2)]]e−α1t ad(ω1). (89)

Then we have,

G−1V̈ G = α2
1α2e

−α2t ad(ω2)[ad(ω1), [ad(ω1), ad(ω2)]]eα2t ad(ω2). (90)

For this to be constant and hence satisfy equation (59), the vector[ad(ω1), [ad(ω1), ad(ω2)]]

must commute withad(ω2). In familiar 3-vectors this is equivalent to the requirement

thatω2 should be parallel toω1×(ω1×ω2). Using the standard expansion for the vec-

tor triple product we see that ifω1 6= ω2, then for solutions we must haveω1 ·ω2 = 0.

That is the two rotation axes must be perpendicular. Notice that this motion can be

produced by bevel gears with perpendicular axes, The ratioα1/α2 gives the ratio of

the numbers of teeth on the gears.

The argument above applies in any group until we use the vector product. So we

can apply this toSE(3) the group of rigid transformations. In this case, the motion will

be generated by two screws,G(t) = et ad(s1)et ad(s2). The condition to satisfy is that,

[ad(s1), [ad(s1), ad(s2)]] must commute withad(s2). In the lie algebra ofSE(3) this

is equivalent to,

< ad(s1), ad(s2) >= sT
1 Qps2 = 0, (91)

for all p. This implies that the two screwss1 ands2 have axes that are perpendicular and

meet at a point, the pitches are arbitrary. These paths are difficult to visualise. Figure

2 shows an example of such a path, the perpendicular axes are shown as thick lines,

19



Figure 2: A Stationary Acceleration Curve in Space

the motion is represented by a sequence of orthogonal frames attached to the moving

body. In the motion shown the pitch about the horizontal axis is 0 but the motion about

the vertical axis has non-zero pitch. As can be seen, the motion can be quite complex.

9 Frenet-Serret Motion

So far we have considered motions determined by exponentials of paths in the Lie

algebra or products of such paths. This is not the only way to specify trajectories in the

group of rigid body motions. In (Bottema and Roth 1990) Bottema and Roth study a

number of ‘special motions’, one of which is the Frenet-Serret motion. Such a motion

is determined by a unit speed space-curvep(t). Now in a Frenet-Serret motion a point

in the moving body moves along the curve and the coordinate frame in the moving body

remains aligned with the tangentt, normaln, and binormalb, of the curve. Using the

4-dimensional representation ofSE(3) the motion can be specified as,

G(t) =

(
R(t) p(t)

0 1

)
, (92)
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wherep(t) is the curve and the rotation matrix has the unit vectorst, n andb as

columns,

R(t) =
(
t
∣∣n ∣∣b)

. (93)

The aim of this section is to determine which of these Frenet-Serret motions can

also be stationary acceleration motions. To do this we need to find the velocity of the

motion and its derivatives. Of course the famous Frenet-Serret relations will be used to

do this:

ṫ = κn, (94)

ṅ = −κt + τb, (95)

ḃ = −τn, (96)

whereκ andτ are respectively the curvature and torsion of the curve. Our work here

will be simplified by introducing the Darboux vectorω = τt + κb which has the

properties that,

ṫ = ω × t, ṅ = ω × n, ḃ = ω × b,

see§10.2 of (Marsh 2005) for example. This means that we can write,

Ṙ = ΩR, (97)

whereΩ is the3× 3 anti-symmetric matrix corresponding toω. Hence we have that,

V =
d

dt
GG−1 =

(
Ω t− ω × p

0 0

)
, (98)

remember thaṫp = t since this is assumed to be a unit speed curve.

Using the Frenet-Serret relations (94)–(96) above the derivative of the velocity is,

V̇ =

(
Ω̇ −ω̇ × p

0 0

)
. (99)

Here,ω̇ = τ̇t + κ̇b.

The second derivative of the velocity is now,

V̈ =

(
Ω̈ −ω̈ × p− κ̇n

0 0

)
, (100)
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Figure 3: The Curve of a Stationary Acceleration Frenet-Serret Motion

where the fact thatn = b×t has been used here. Also hereω̈ = τ̈t+(τ̇κ−κ̇τ)n+κ̈b.

Finally here we computeG−1V̈ G, using (92) above this is,

G−1V̈ G =

(
RT Ω̈R −κ̇RT n

0 0

)
. (101)

Using (93) and the standard formulas for the scalar and vector products oft, n andb

we can expand the above to give,

G−1V̈ G =




0 −κ̈ τ̇κ− κ̇τ 0

κ̈ 0 −τ̈ −κ̇

κ̇τ − τ̇κ τ̈ 0 0

0 0 0 0




. (102)

Setting this equal to a constant gives four differential equations for the two unknowns

κ andτ . For solutions to exist a couple of consistency conditions must be satisfied but

these are easy to find, ifκ̇ = u a constant then we must have thatκ̈ = 0. Solving for

the curvature gives a linear functionκ = ut + u0. If we substituteκ into the equation

τ̇κ− κ̇τ = w the solution for the torsion is another linear functionτ = αt + β, where

the constants satisfy,αu0 − βu = w and of coursëτ = 0. Standard results curves in
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3D tell us that there is a unit-speed curve with these curvature and torsion functions

and that, for a given choice of constants, it is unique up to a rigid transformation.

Finding the curve with given curvature and torsion functions involves solving the

system of differential equations given by the Frenet-Serret relations (94)–(96) above.

This is not straightforward and solutions are only known in a very few cases. However,

one classical solutions relevant here is the Cornu spiral. This is the curve that would

result ifα = β = w = 0 that is a plane curve. See S 10.6 of (Marsh 2005) for example.

Although there is no classical solution it is always possible to solve the equations

numerically. Figure 3 shows a numerically generated curve with curvatureκ = t/2+1

and torsionτ = t.

10 Bishop’s Move

In (Bishop 1975) Bishop gives an alternative method to associate a moving frame

to points on a curve in 3 dimensions. In the same way that the Frenet-Serret frame

determines a special rigid body motion determined by a curve the Bishop frame can

also be used to define a special motion. A point in the rigid body follows a curve and

an orthonormal frame in the body stays aligned with the Bishop frame. Such a motion

will be called a ‘Bishop’s move’ here.

There are some applications of the Bishop frame in Computer graphics to thicken

curves and display tubes. The Bishop frame is used because it doesn’t ‘twist’ about the

curve. This suggests that the Bishop’s moves defined above may be useful for robot

path planning.

In this section the velocity of such these Bishop’s moves will be computed and

stationary acceleration Bishop’s moves will be investigated. We begin with the frame

equations for the Bishop frame:

ṫ = k1n1 + k2n2, (103)

ṅ1 = −k1t, (104)

ṅ2 = −k2t. (105)

As usual we assume that the curvep(t) has unit speed and that its tangent vector is
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given byt = ṗ. The vectorsn1 andn2 are unit normal vectors and together with the

tangent vectort, they form an orthonormal frame. So for examplen1 ×n2 = t and so

forth. The parametersk1 andk2 are curvature-like functions. Unlike the Frenet-Serret

case, a curve does not uniquely determine a Bishop frame, there is a single rotational

freedom in defining the Bishop frame. But if we choose the unit normal vectorsn1 and

n2 at t = 0 then the Bishop frame for the rest of the curve is unique, (of course the

chosen normals must satisfy the frame equations (103)–(105) above).

The path in the group determined by a Bishop’s move will be,

G(t) =

(
R(t) p(t)

0 1

)
, (106)

as before, but now the rotation matrix will be given by,

R(t) =
(
t
∣∣n1

∣∣n2

)
. (107)

To compute the velocity of a Bishop’s move we need an analogue of the Darboux

vector. This is given by the vector,

a = −k2n1 + k1n2. (108)

It is easy to verify that,

ṫ = a× t, ṅ1 = a× n1, and ṅ2 = a× n2

The velocity is thus,

V =
d

dt
GG−1 =

(
A t− a× p

0 0

)
, (109)

where, as usual, capitalA represents the3 × 3 anti-symmetric matrics corresponding

to the vectora.

Proceeding as in the previous section we can compute the derivative of the velocity,

V̇ =

(
Ȧ −ȧ× p

0 0

)
, (110)

the second derivative of the velocity,

V̈ =

(
Ä −ä× p− ȧ× t

0 0

)
, (111)
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and finally,

G−1V̈ G =

(
RT ÄR −RT ȧ× t

0 0

)
=




0 −k̈1 −k̈2 0

k̈1 0 k̇1k2 − k1k̇2 −k̇1

k̈2 k1k̇2 − k̇1k2 0 −k̇2

0 0 0 0




.

(112)

Once again setting the above equal to a constant yields four differential equations in the

two unknown functions. Again the solution is that bothk1 andk2 are linear functions

of t provided some mild consistency conditions hold. Supposek1 = α1t+α0 andk2 =

β1t + β0 then if k̇1k2− k1k̇2 = w we get the consistency conditionα0β1−α1β0 = w

and of coursëk1 = k̈2 = 0.

One of the few things known about the functionsk1 andk2 is that if they lie on

a straight line, not containing the origin ink1-k2 space, then the corresponding curve

lies on a sphere, see (Bishop 1975). Therefore we can see that the curve determining a

stationary acceleration Bishop’s move lies on a sphere so long asw 6= 0.

11 Conclusion

Although it has not been possible to solve the equations for stationary acceleration in

general, several special cases have been found. Further, many of these special cases

correspond motions that are well know and used in practical situations. Many of these

motions can be realised with simple mechanical devices and hence are easily visualised.

Frenet-Serret motions have also been studied, these motions are uniquely deter-

mined by a curve in space. It has been shown above that these motions have stationary

acceleration if their curvature and torsion functions are linear functions of arc-length.

Such curves do seem to have been studied to any great extent.

These ideas led to the definition of a new ‘special motion’ where the rigid motion

follows the Bishop’s frame of a curve. These Bishop’s moves may be of some interest

in robotics since curves in space are well understood and easy to visualise. However,

if we impose the extra constraint that the rigid body motion should have stationary

acceleration then as we have seen the curve must lie on a sphere.
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As a theoretical exercise there is no real reason to prefer motion based on bi-

invariant metrics, as here, to those based on left-invariant metrics as in (Žefran and

Kumar 1998). Any difference will only be apparent when these ideas are applied to

practical problems.

In robotics canonical coordinates of the second kind are familiar from the product

of exponentials formula for forward kinematics. Given a particular robot it should

be possible to derive the equations for stationary acceleration inSE(3) in terms of

the joint angles of the robot and their derivatives. Together with a knowledge of the

dynamics of the robot, this might form the basis of a control method to guide the robot

along a stationary acceleration path.

In (Žefranet al1998),Žefran et al the jerk of a rigid-body motion is defined as the

covariant derivative of the acceleration along the curve. This seems to be by analogy

with their definition of the acceleration as the covariant derivative of the velocity along

the curve. However, there is another analogy that could be drawn. Along a curve of

stationary velocity; a geodesic, the acceleration or< V̇ , V̇ > is constant. As shown

above, along curves of stationary acceleration< V̈ , V̈ > is constant. So perhaps

V̈ = ∇V∇V V + (1/2)[∇V V, V ] would be a good candidate for the jerk of a motion.

At least this deserves further investigation.
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