Interpolated Rigid-Body Motions and Robotic

J.M. Selig
London South Bank University
and
Yuanqing Wu
Shanghai Jiaotong University.

Introduction

Interpolation of rigid motions important in robotics and graphics.
Many suggestions so far: Finite screw motions, spline rotations and translations independently, minimum jerk motions and several others.
Here introduce a couple more possibilities and show that two existing suggestions give the same results.

The Velocity Screw

Motion of a rigid body given by a sequence of rigid transformations $g(t)$, curve in the group $S E(3)$. Screws are velocities (Lie algebra elements),

$$
S=\left(\frac{d}{d t} g(t)\right) g(t)^{-1} .
$$

The Velocity Screw (cont.)

If the group elements $g(t)$ are given as 4×4 matrices then the Lie algebra element will have the form,

$$
S=\left(\begin{array}{cc}
\Omega & \mathbf{v} \\
0 & 0
\end{array}\right)
$$

Ω is angular velocity as 3×3 anti-symmetric matrix, v is linear velocity of the motion.

Product of Exponentials

Kinematics of serial robot can be written as product of exponentials. For a single joint,

$$
g(\theta)=e^{\theta S^{0}}
$$

θ, the joint parameter, an angle for a revolute joint. Superscript 0 refers to home position of the joint screw. Exponential of a matrix is given by the standard formula,

$$
e^{S}=I+S+\frac{1}{2!} S^{2}+\frac{1}{3!} S^{3}+\cdots
$$

Product of Exponentials (cont.)

Position of point p attached to end-effector given by,

$$
\binom{\mathbf{p}(t)}{1}=e^{\theta_{1} S_{1}^{0}} e^{\theta_{2} S_{2}^{0}} e^{\theta_{3} S_{3}^{0}} e^{\theta_{4} S_{4}^{0}} e^{\theta_{5} S_{5}^{0}} e^{\theta_{6} S_{6}^{0}}\binom{\mathbf{p}(0)}{1}
$$

Velocity of Point on End-effector

Velocity of point p given by differentiating,

$$
\binom{\dot{\mathrm{p}}(t)}{0}=\left(\dot{\theta}_{1} S_{1}+\cdots+\dot{\theta}_{6} S_{6}\right)\binom{\mathrm{p}(t)}{1} .
$$

Note: S_{i} is current position of joint screw. Standard result on Robot Jacobians.

Acceleration of Point on End-effecto

Differentiating again gives,

$$
\begin{aligned}
& \binom{\ddot{\mathrm{p}}(t)}{0}=\left\{\sum_{i=1}^{6}\left(\ddot{\theta}_{i} S_{i}+\dot{\theta}_{i}^{2} S_{i}^{2}\right)\right. \\
& \\
& \left.\quad+2 \sum_{1 \leq i<j \leq 6} \dot{\theta}_{i} \dot{\theta}_{j} S_{i} S_{j}\right\}\binom{\mathrm{p}(t)}{1}
\end{aligned}
$$

Error in Selig(2000), corrected here.

Inverse Kinematics

Knowing the velocity screw and acceleration are important for robot control. Here give application to inverse kinematics. Suppose want end-effector to follow given motion $g(t)$. Can turn inverse kinematics problem along the path into set of differential equation and use standard numerical methods to find joint angles.
Using 6×6 representation of the group the velocity screw of the end-effector is,

$$
\mathbf{q}_{6}=J \dot{\boldsymbol{\theta}}
$$

Inverse Kinematics(cont.)

where $\dot{\boldsymbol{\theta}}=\left(\begin{array}{c}\dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{6}\end{array}\right)$ and the Jacobian J has rows,

$$
J=\left(\mathbf{s}_{1}\left|\mathbf{s}_{1}\right| \cdots \mid \mathbf{s}_{6}\right) .
$$

Here \mathbf{s}_{i} is the 6-vector corresponding to the 4×4 matrix S_{i} above.

Inverse Kinematics(cont.)

Setting the end-effector velocity to the velocity of the curve and inverting the Jacobian get a system of 1st order ODEs,

$$
\dot{\boldsymbol{\theta}}=J^{-1} \mathbf{s},
$$

where s is the 6 -vector corresponding to $\left(\frac{d}{d t} g(t)\right) g^{-1}(t)$.

For most common robots J^{-1} can be computed symbolically.

Frenet-Serret Motion

Frenet-Serret motion has been suggested before in robotics (Wagner and Ravani 1997). Attractive because based on curves in 3D so easy to visualise.

Point on end-effector follows specified 3D curve, orientation of the end-effector fixed with respect to Frenet frame of the curve. That is, the tangent, principal normal and binormal vectors are fixed in the end-effector.

Frenet-Serret Motion (cont.)

Suppose the curve in 3D is given by $\mathbf{p}(t)$ then the velocity screw of the Frenet-Serret motion is,

$$
\mathbf{s}=\binom{\boldsymbol{\omega}}{v \mathbf{t}-\boldsymbol{\omega} \times \mathrm{p}}
$$

where $\boldsymbol{\omega}=v \tau \mathbf{t}+v \kappa \mathbf{b}$ is the Darboux vector, v, κ, τ are the speed, curvature and torsion and t, b are the tangent and binormal to the curve p .

Can also find second derivative, see paper.

Frenet-Serret Motion Example

A Frenet-Serret motion based on a cubic spline. Black lines-tangent vectors, blue-principal normals and red-binormals.

Bishop's Motion

"More than one way to frame a curve"-Bishop (1975)

Same as above but keep orientation fixed w.r.t Bishop's frame.

Projection Based Interpolation

Two recent approaches.

- Belta and Kumar (2002). Interpolate matrices, project to $S E(3)$, polar decomposition.
- Hofer, Pottmann and Ravani (2004). Interpolate points on a rigid body, project to rigid body motion using least squares.

Projection Based Interpolation (cont

Begin with a number of rigid body motions to interpolate, assume these are,

$$
\left(\begin{array}{cc}
R_{i} & \mathbf{t}_{i} \\
0 & 1
\end{array}\right), \quad i=1, \ldots, n
$$

Choose k points $\mathbf{a}^{(j)}$. Knot-points for interpolation then, $\mathbf{b}_{i}^{(j)}=R_{i} \mathbf{a}^{(j)}+\mathbf{t}_{i}, \quad i=1, \ldots, n$. Get interpolated curves, ($f_{i}(t)$ interpolating functions)

$$
\mathbf{p}^{(j)}(t)=\sum_{i=1}^{n} f_{i}(t) \mathbf{b}_{i}^{(j)}, \quad j=1, \ldots, k
$$

Belta and Kumar's method

Interpolate the matrices,

$$
X(t)=\left(\begin{array}{cc}
M(t) & \mathrm{d}(t) \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\sum_{i=1}^{n} f_{i}(t) R_{i} & \sum_{i=1}^{n} f_{i}(t) \mathbf{t}_{i} \\
0 & 1
\end{array}\right) .
$$

Clearly,

$$
\binom{\mathbf{p}^{(j)}(t)}{1}=X(t)\binom{\mathbf{a}^{(j)}}{1}, \quad j=1, \ldots, k
$$

Hofer et al's method

Find the rigid motion at time t by minimising the quantity $\sum_{j=1}^{k}\left|\mathbf{p}^{(j)}(t)-R \mathbf{a}^{(j)}-\mathbf{t}\right|^{2}$. Can show that minimal translation is given by, $\mathrm{t}=\mathrm{d}$, centroid of the points. Minimal rotation can be found from the polar decomposition of the matrix,

$$
P=\sum_{j=1}^{k} \mathbf{p}^{(j)}\left(\mathbf{a}^{(j)}\right)^{T}=M \sum_{j=1}^{k} \mathbf{a}^{(j)}\left(\mathbf{a}^{(j)}\right)^{T}
$$

The solution is the rotation R such that $P=R K$ where K is symmetric.

Belta and Kumar's method (cont.)

Project $X(t)$ to $S E(3)$, translation is $\mathbf{t}=\mathbf{d}$ as above and rotation comes from polar decomposition of $M W$ where W is any positive definite symmetric 3×3 matrix. If we choose,

$$
W=\sum_{j=1}^{k} \mathbf{a}^{(j)}\left(\mathbf{a}^{(j)}\right)^{T}
$$

then methods are identical. In particular can have $W=I_{3}$, identity matrix if $\mathbf{a}^{(j)}$ are chosen to be symmetrical.

Projection vs Bishop's motion

(a) a cubic projected interpolated motion based on the end-points of the Bishop's motion (b).

Conclusions

- Frenet-Serret and Bishop's motion simple and probably useful.
- Good idea to design Robot's control system to follow paths rather than point-to-point control.
- Cannot find the velocity screw for a projection based motion (yet!).

