Dynamics of Vibratory Bowl Feeders

J.M. Selig
London South Bank University
and
Jian Dai
King's College, London.

Introduction

- Bowl feeders are important industrial components.
- Most research on orienting of part, using gates and fences.
- Some work on hopping motion on vibrating plates.
- Here, look at the dynamics of the bowl itself.

The Stiffness matrix

Small displacement of the bowl described by a screw (twist),

$$
\mathrm{s}=\binom{\delta \theta}{\delta \mathrm{p}}
$$

Hooke's law,

$$
\mathcal{W}=K \mathbf{s}
$$

$K 6 \times 6$ stiffness matrix—leaf springs. Wrench $\mathcal{W}^{T}=\left(\mathbf{M}^{T}, \mathbf{F}^{T}\right)$ with moment \mathbf{M} and force vector F .

Equations of motion

Linearised equations for small motions.

$$
N \ddot{\mathrm{~s}}+K \mathrm{~s}=\mathcal{W}
$$

$N 6 \times 6$ inertia matrix of bowl. \mathcal{W} driving wrench.

Symmetry I

Assume bowl has cylindrical symmetry, symmetry axis along z-direction and origin at centre of mass then inertia matrix has form,

$$
N=\left(\begin{array}{cccccc}
m k_{1}^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & m k_{1}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & m k^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & m & 0 & 0 \\
0 & 0 & 0 & 0 & m & 0 \\
0 & 0 & 0 & 0 & 0 & m
\end{array}\right)
$$

m-mass, k_{1}, k-radii of gyration.

Symmetry II

Assume 3 or more leaf springs arranged symmetrically, then stiffness matrix has form,

$$
K=\left(\begin{array}{cccccc}
\xi_{11} & 0 & 0 & \gamma_{11} & \gamma_{12} & 0 \\
0 & \xi_{11} & 0 & -\gamma_{12} & \gamma_{11} & 0 \\
0 & 0 & \xi_{33} & 0 & 0 & \gamma_{33} \\
\gamma_{11} & -\gamma_{12} & 0 & u_{11} & 0 & 0 \\
\gamma_{12} & \gamma_{11} & 0 & 0 & u_{11} & 0 \\
0 & 0 & \gamma_{33} & 0 & 0 & u_{33}
\end{array}\right)
$$

Elements ξ, γ and u can be related to material properties of the springs, see paper.

Equations of motion again

Assume these symmetries and driving wrench,

$$
\mathcal{W}^{T}=(0,0, p A, 0,0, A) \cos \omega t
$$

oscillating pitch p wrench with force amplitude A. Then equations of motion decouple to give,

$$
\begin{aligned}
\left(\begin{array}{cc}
m k^{2} & 0 \\
0 & m
\end{array}\right)\binom{\ddot{\theta}_{z}}{\ddot{z}}+\left(\begin{array}{cc}
\xi_{33} & \gamma_{33} \\
\gamma_{33} & u_{33}
\end{array}\right) & \binom{\theta_{z}}{z} \\
& =\binom{p A}{A} \cos \omega t
\end{aligned}
$$

Solutions

Sinusoidal solutions,

$$
\begin{aligned}
\theta_{z} & =A_{1} \cos \left(\omega t+\phi_{1}\right) \\
z & =A_{2} \cos \left(\omega t+\phi_{2}\right)
\end{aligned}
$$

Solutions are 'elliptical' motions—verified experimentally.

Resonance

Common to talk about 'resonance' of the system. What does it mean here?
Possible interpretation-frequency for which area of ellipse is maximum.
Can find condition for this, see paper.
Note, can't really alter the frequency in a bowl feeder, tied to electrical supply frequency.

Part on a Spiral Track

Assume elliptical motion, $\mathbf{q}(t)=\binom{a \cos \omega t}{b \sin \omega t}$. Perpendicular to the plane,

$$
R=m_{0} g \cos \alpha-b \omega^{2} \sin \omega t
$$

m_{0}-mass of part, g-acceleration due to gravity.

Condition for Hopping

For no hopping the reaction R must be positive throughout motion,

$$
b<\frac{m_{0} g}{\omega^{2}} \cos \alpha
$$

For part of a few grams and driving frequency of $50 \mathrm{~Hz}, b$ the width of the ellipse must be less than a few microns.

Conclusions

- Need to confirm experimentally whether parts hop or stick-slip.
- Consider off-axis modes, nothing is perfectly symmetrical.
- What about damping?
- Study dynamics of hopping on inclined planes.
- Optimise the design, spring sizes and tilt angles, and pitch of the spiral track.

