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1 Introduction

1.1 Motivation

In May 2000 there was a meeting at the NSF in Arlington Virginia on “The Interplay
between Mathematics and Robotics”. The report of this meeting can be found at [1].
Many leading experts in the U.S. discussed the importance of Mathematics in Robotics
and also the role that robotic problems could play in the development of Mathematics.
The experts gave a broad overview of the problems they saw as important and worth
studying. Their list was long and touched on many branches of Mathematics and many
areas in Robotics.

This work is my contribution to the debate. Below I will outline four problems, or
rather areas which I believe deserve further study. The focus is quite narrow since this
is only intended as a personal opinion. The list is not intended as a list of ‘millennium’
problems more a list of my personal research problems. Hence, I would not be sur-
prised if these problems are quite straightforward to someone with a good background
in Mathematics.

1.2 History

Before beginning, it is worth recalling a little history. In modern times there has been a
distinct separation between practical disciplines like Engineering and theoretical ones,
in particular Mathematics. This was not always the case. Much modern Mathematics
was developed in response to the practical needs of Engineers. In particular the be-
ginnings of the modern theory of Algebraic Geometry seems to have been related in
part at least to problems in the design of mechanisms. Famous Mathematicians such as
Chebyshev, Koenigs, Darboux, Sylvester and many other worked in this area and wrote
about the curves described by mechanical linkages. Today’s Mechanical Engineers do
not know much about these researches but the Mathematicians have forgotten about
them almost completely.

Another example comes from control theory. Almost all introductory texts on con-
trol theory credit James Clarke Maxwell with writing the first paper in the subject, on
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the control of the Watt Steam Governor. But few realise that this paper treats the sys-
tem as a non-linear system and describes it using elliptic functions. On the other hand
no modern mathematical text on elliptic functions reports this application, possibly
because applications are hardly ever given in such books.

One possible explanation for this separation is the growth of Applied Mathematics
as a subject in itself. Pure Mathematicians can concentrate on the Mathematics and
let the Applied mathematicians worry about possible applications. In most colleges
and Universities Pure Mathematicians do not teach undergraduate Engineers. Modern
Engineers don’t usually have any other contact with Mathematicians and hence know
as much about current research in Mathematics as any educated layman. At the same
time, Applied Mathematicians do not see it as their function to bridge this gap. They
have their own discipline and follow their own research priorities.

These difficulties have been recognised in the UK by the EPSRC. In September
2001 a meeting was organised in Manchester to explore the possibility of collaboration
between Mathematicians and Engineers. However, the topics suggested for collabora-
tion seemed to be very heavily biased towards continuum mechanics.

1.3 Theoretical Robotics?

Robotics is a practical discipline. It grew out of Engineers ability to build very sophis-
ticated machines which combine computer control with electro-mechanical actuators
and sensors. Any theory in the subject must take account of what is practically possible
with real machines. Nevertheless, I believe that there is a place for a theoretical side to
the subject.

Of course, by definition theory is always useless, otherwise it wouldn’t be theory!
But surely all disciplines recognise the need for sound theoretical underpinnings. The
question really is whether the theoretical underpinnings of Robotics are distinct or
just a part of the general theory used in the disciplines that make up Robotics. One
cannot sensibly separate say, a theory of Robot mechanisms from the general theory of
mechanisms. However, there is something special about Robotics and that is the central
importance of the group of rigid body motions SFE(3). That is not to say that theory
not involving this group is not Robotics nor that other disciplines can’t profitably use
this group. Its just that I see this as a major theme running through much of Robotics:
The links of a robot are not really rigid, but to a first approximation they are. The
motions allowed by the joints of the robot are rigid body motions. The payload carried
by the robot’s end-effector is more often than not a rigid body. Standard analysis of the
kinematics, dynamics and control of these robots all reflect this rigid body approach.
In Robot vision a central problem is to find the rigid motion undergone by the camera
using information derived from the images.

With all this in mind I offer the following problems.

2 Geometry of Curves in SFE(3)

This problem concerns the differential geometry of curves in the group of rigid-body
motions, SE(3). In particular, what are the differential invariants for such curves? For



a curve in space the speed, curvature and torsion are differential invariants. Given these
three functions, or more usually, just the curvature and torsion the speed being assumed
to be unity, it is in principle possible to reconstruct the curve uniquely up to an overall
rigid transformation. What are the equivalent functions for curves in the group?

There are many potential applications for this. In robotics the trajectory of the
robot’s end-effector is a curve in SE(3), people often want to know what is the ‘best’
curve for the robot to choose. There is some existing work on this, an early suggestion
was, that given a pair of positions (with orientations) for the start and finish of a move,
there is almost always a unique screw motion which transforms one position into the
other, that is a rotation about a fixed axis followed by a translation in the direction of
the same axis. A more sophisticated approach has been to move the robot so that the
acceleration or jerk is minimised. There seems to be some evidence that humans and
animals move in such a way as to minimise jerk, which is roughly the third deriva-
tive of position, see [2]. The curves with stationary arc-length are called geodesics.
There are no bi-invariant positive definite metrics on the group but there are indefinite
ones. If we use one of these bi-invariant metrics then the geodesics turn out to be the
one-parameter subgroups, the screw motions again. On the other hand we could use a
positive definite metric that was only right-invariant with respect to the group action. In
this case the geodesics are the solutions to the equations of motion of a rigid body with
no external forces, the metric is the inertia matrix for the body. What are the differen-
tial invariants for these curves? It may not be possible to solve these equations and find
closed form expressions for the curves, but it may be possible to say something about
the differential invariants. Moreover, there will be special points on these curves de-
fined by the invariants. For example, on plane curves we have inflections and vertices,
these are characterised by the curvature function vanishing or having a stationary point
respectively.

Suppose that a desired trajectory for a 6R robot’s end-effector is given, how can
we control the robot to move along this curve? When the desired trajectory is a screw
motion it is possible to design a non-linear feedback control law such that the closed-
loop dynamics of the whole system are the geodesic equations, see [3]. Using this
law the robot’s end-effector cannot help but follow a screw motion. Notice that such a
scheme doesn’t need to compute the inverse kinematics of the robot and hence could
be applied to designs of robot for which the inverse kinematics are not known in closed
form. As we saw above these screw paths are not very practical so can these ideas be
extended to stationary acceleration and stationary jerk paths? More generally we might
also require this type of control along general paths specified by their invariants.

Another application of these ideas is to interpolation. Suppose we wanted to sim-
ulate numerically the dynamics of a robot or other system of rigid-bodies, perhaps as
part of the robot’s control system or simply to create a realistic animation. Rather than
solve the dynamic equations at every time-step we could solve at “key-frames” and then
interpolate between the key frames (“inbetweening” in the jargon of animation). There
have been several schemes suggested for this, unfortunately most of them seem to be
as computationally intensive as solving the dynamic equations at every step. Assuming
simple forms for the invariants provide a basis for a simple solution.

These ideas even extend to more abstract numerical methods, interpolation on a
Stiefel manifold has been investigated in connection with solutions of problems with



orthogonality constraints. That is finding eigenvalues of symmetric matrices.

The final application I want to mention here is to elastic rods and beams. These
are often used in robotics to simulate the links/members of the robot which are al-
ways slightly compliant. There is also a growing area of of continuum robotics, that
is machines with a flexible spine controlled by tensioning cables. These are tentacle,
serpentine or elephant’s trunk type robots. At first sight there doesn’t seem to much
connection with the curves in SFE(3) discussed above, but the standard theory of these
slender rods assumes that successive cross-sections along the beam only undergo rigid
transformations. Hence the deformed state of the beam can be described by curve in
the group SE(3), the parameter along the curve now is the length along the beam. In
fact under a static load the equations for the deflection of such a beam are precisely the
equations of motion for a rigid body, with external forces this time. The inertia of the
rigid body corresponds to the stiffness matrix of the beam, more precisely the stiffness
density. And the time corresponds to the arc-length along the beam. In other words,
the differential invariants might even have something to contribute to classical beam
theory.

One way of approaching the problem of determining the differential invariants
might be to look at the contact between the curves and one-parameter subgroups, (and
their translates). The guess is that the geodesic curves will have invariants which are
constant. As supporting evidence for this consider space curves again. The curves with
constant curvature and torsion are helices. To generate a helix, choose a point in space
and sweep it around a one-parameter subgroup, a screw motion. Now turn to the theory
of ruled surfaces, these are on-parameter families of lines. In other words curves in the
space of all lines, this space of all possible lines in 3D is usually identified with the
Klien quadric. For ruled surfaces there are three differential invariants, a kind of cur-
vature called the distribution parameter and two sorts of torsion, see [4]. When these
invariants are constants the surface is a ruled helichoid. To get such a surface, take a
line in space and sweep it around a one-parameter subgroup.

3 Solvability of Robot Kinematics

It is well known in Robotics that only certain arrangements of joints in a six-joint serial
manipulator have solvable inverse kinematics. If the joints are all revolute joints then
if any three consecutive joints axes meet at a common point or are parallel then the
inverse kinematics can be expressed in terms of inverse sines and inverse cosines of
the joint angles. The first part of this result is due to Peiper [5] and the part about the
parallel axes seems to be due to Duffy [6].

Many people wonder if there are other geometric conditions on the joint axes which
lead to solvable inverse kinematics. However, a more interesting question is: is it pos-
sible to show that for a general (generic) arrangement of joints the inverse kinematics
are not solvable?

This, of course, begs the question, what do we mean by solvable. One answer
might be, solvable in the sense of Galois theory. That is, the inverse kinematics will be
considered solvable if there are formulas for the sines and cosines of the joint angles
which lie in an algebraic extension of the field determined by the design parameters.



If we want to include helical joints into the discussion then the above definition
will not work. This is because the equation will contain the joint angles themselves
as well as their sines and cosines. So a better definition might be something simi-
lar to the familiar ‘integrable in terms of elementary functions’. This leads us to the
realm of differential rings and ideals. This area has also been suggested for studying
non-holonomic control problems, for instance trajectory planning for wheeled robots,
see [7].

The kinematic equations for a 6 joint robot are usually a system of algebraic equa-
tions, or transcendental equations if helical joints are used. However it is not too diffi-
cult to turn these into a system of differential equations. There are probably many ways
to do this but a simple method is to assume that the desired position and orientation of
the end-effector is a member of a one-parameter subgroup and then differentiate with
respect to the parameter. The result is a system of equations where the joint rates are
multiplied by the Jacobian matrix of the manipulator to give a constant element in the
Lie algebra of the group. Of course the Jacobian matrix will be a fairly complicated
function of the joint variables making the equations non-linear.

Notice that the differential equations discussed above give a good method of solv-
ing the inverse kinematics numerically. In most problems where the inverse kinematics
is required the robot is in some particular configuration and needs to move a nearby
configuration. If we set up the problem as an initial value problem starting in the known
present configuration then standard numerical methods could be used to find the joint
variables for the target configuration. In this way, so long as we avoid singularities,
we expect a unique answer. So this method circumvents a lot of the usual problems
arising from the multiple solutions to the algebraic equations. Newton-Raphson is the
numerical method most commonly chosen for such problems but this would require
evaluating the Jacobian matrix at configurations between the time-steps used. So per-
haps a predictor-corrector method could be used, then a good estimate of the Jacobian
will be produced automatically for the end of one time-step that can be used at the
beginning of the next step.

A better understanding of the structure of the differential ideal determined by the
equations will lead to better, that is faster and more robust methods of computing the
inverse kinematics. Even if the equations are not solvable there may be semi-numerical
methods that work. It is even possible that such methods will be better than simply
implementing the closed-form solutions for robots whose structure does have solvable
inverse kinematics. Perhaps this could also be extended to the forward kinematics of
parallel manipulators such as the Stewart platform.

4 Invariant Theory of SFE(3)

The theory of invariants, that is algebraic invariants, has a very long and distinguished
history. Classically, the problem was to find invariants of polynomials or systems of
polynomial in n-variables. These were invariants in the sense that they were unaffected
by general linear coordinate changes in the n-variables. A modern interpretation would
be that we have a linear action of a Lie group on a vector space, a representation, and
we seek invariant functions in the coordinates of the vectors which are invariant with



respect to the action of the group, see [8].

There is a large amount of modern invariant theory with very general and beautiful
results. Unfortunately, most of it only applies to semi-simple groups and SE(3) is not
semi-simple.

Nevertheless, in his classic work [9] Weyl worked out the invariant theory for the
Euclidean group in any dimension. However, this was only done for the standard rep-
resentation. For SE(3) this would be the 4-dimensional representation that in robotics
is called the homogeneous representation. More recently Donelan and Gibson [10]
worked out the invariants for the adjoint representation of SE(3).

In [11] von Mises claimed to have found a set of fifteen invariants that generate
all the invariants of a 6 x 6 symmetric matrix. This would be the invariant theory for
the symmetric square of the adjoint representation. These symmetric matrices can be
thought of as stiffness matrices for a rigid body in equilibrium. Although I have no
doubt that the claim is correct it would be nice to see a modern proof of this result.
Some progress has been made in connecting these invariants with more prosaic proper-
ties of the stiffness matrix, see [12, 13]. One might hope that given the full set of these
invariants it might be possible to reconstruct the stiffness matrix, up to an overall rigid
transformation. That is, any pair of stiffness matrices which are not related by a rigid
transformation should have different values for their invariants. Unfortunately this is
not the case, however, the cases where it fails may be quite minor and quite degenerate.
So there is some hope that for most practical stiffness matrices the invariants do indeed
determine the structure of the stiffness matrix.

Screw systems have an important place in robotics and the theory of mechanisms.
They relate to instantaneous freedoms and are also important when studying con-
strained motion. Essentially a screw system is a linear subspace in the Lie algebra
of the group SE(3). If we think of the elements of the group as points in a manifold
the Lie algebra can be thought of as the tangent space at the identity element. An older
way of looking at the Lie algebra is as the space of infinitesimal group elements. We
can represent the Lie algebra elements as 6-dimensional vectors combining the angular
velocity of the rigid body with a linear velocity. The Lie algebra has the structure of
a vector space so we can look at linear subspaces. A one dimensional subspace is a
1-system and corresponds to a line through the origin in the Lie algebra. There is just
one invariant for a 1-system, the pitch of the Lie algebra element or screw.

Two-systems correspond to planes in the Lie algebra. These planes can be coor-
dinatised using Pliicker coordinates and in turn we can think of these coordinates as
elements of a 6 x 6 anti-symmetric matrix. Imitating von Mises’ construction, we can
produce several invariants of the 2-system. It is not known if the invariants produced
in this way generate all the invariants of the 2-systems.

There is a classification of all possible screw systems due to Gibson and Hunt [14].
But given an arbitrary screws system it is quite a long process to identify the Gibson-
Hunt type of the system. It should be possible to do this quite easily by evaluating the
invariants of the system and comparing the results to those for the normal forms given
by Gibson and Hunt. So we need to know the invariants for the 3, 4 and 5-systems. In
terms of the representation theory, we are seeking the invariants for the exterior powers
of the adjoint representation of the group.

The dual of the Lie algebra is the space of wrenches. These are also 6-dimensional



vectors, this time composed of the torque and the force acting on a rigid body. The
representation of the group on this six dimensional vector space is called the coadjoint
representation. In robotics it is common to think of the forces exerted by the fingers
in a gripper as wrenches. Given a multi-fingered gripper and an object what is the
best grasp? Attempts at answering this question have introduced grasp metrics, these
are functions of the finger wrenches. Unfortunately most of the grasp metrics studied
have not been invariant, hence an arbitrary change of coordinates can affect the result
of an optimisation procedure to find the best grasp. A sensible grasp metric must be
an invariant for the coadjoint representation. The fingers will have to supply different
forces in order to balance different loads on the grasped object. So, the amplitudes
of the finger forces should not affect the grasp metric, we are looking for a function
that depends only on the relative positions and orientations of the fingers. We are
really seeking some kind of projective invariant, perhaps simply the ratio of a pair of
straightforward invariants. Moreover, this grasp metric, if it exists, should generalise
to different numbers of fingers.

Although invariants have been mentioned above the covariants are important too.
Much of the work on invariants may be expressed much more succinctly if we also
consider the covariants.

5 Statistics on SFE(3)

A large number of important problems in Robotics, both Robot vision and kinematics
seem to come down to finding a rigid body transformation given some data describing
its effects on points or lines and so forth. In many cases the geometrical problem is
quite simple if the data is accurate. In reality the data comes from measurements and all
measurements are subject to noise. The real question that these geometrical problems
pose is thus: What is the best estimate of the rigid transformation given noisy data?

Here is just a small selection of problems which fall under this category.

For mobile robots there are several navigation problems. A common method of
finding the position and orientation of a mobile robot is to set up some beacons in
its work area. The robot has sensors which can locate and distinguish the beacons, for
example sonar or radar sensors. In the simplest case these sensors will only measure the
bearing of the beacons, that is the angle between a fixed direction on the robot and the
line to beacon. It is reasonable to assume that the error in the measured angle obeys a
von Mises’ distribution. This distribution is defined on a circle, but has many properties
in common with the Gaussian distribution on a line. The distribution has a single mode
and a single parameter called the concentration parameter which determines the ‘width’
of the distribution. Given several measurements from the beacons how should the robot
best estimate its position and orientation?

Another method of navigation for mobile robots is ‘dead-reckoning’ — measuring
the movement of the wheels and then inferring the position of the robot. Here we
might demand a model of how the errors in position and orientation develop over time.
If this were known, it might be possible to predict when the robot will get lost! For this
method of navigation it is usually necessary to find the position and orientation of the
robot by a more accurate method every so often, a better understanding of the errors



could lead to an optimisation of this procedure.

There are also related problems for industrial robot arms. The forward kinematics
of the arm relates the angular positions at each of the joints to the position and orien-
tation of the robot’s end-effecter. Suppose that the errors at each joint are distributed
according to a von Mises’ distribution. What will the errors at the end-effector look
like? That is, what is the distribution of errors for the position and orientation of the
robot’s end-effector? Clearly we need to convolve the von Mises’ distributions in some
sense, however it is not entirely obvious what to do since we expect the end-effector
errors to die away very sharply outside the workspace of the robot. It is unlikely that we
can find a definitive answer to this problem but it may be possible to find out enough
about the error distribution to use in applications concerning the accuracy of these
robots.

In robot control it is common to compare several different control laws and try to
claim that one is more accurate than another. Since it is well known that there is no
bi-invariant positive definite metric on the group these comparisons tend to be rather
ad hoc. Often the comparisons are simply in terms of a particular set of coordinates.
Given a particular probability distribution on the group of rigid body motions we could
compare control laws which attempt to place the end-effector at a given position and
orientation, we could even compare rates of convergence. The success of this approach
would depend on there being ‘obvious’ choices for the probability distribution, other
wise the free choice of coordinates is simply replaced with a free choice of distribu-
tions.

In robot vision it is common to try to estimate the rigid motion undergone by the
camera from data about points in the image. If the absolute positions of some collection
of points is known then this problem is almost identical to the beacon navigation prob-
lem above. The differences are, first that it is the position in 3D that we are trying to
find here. Secondly, in the beacon navigation problem it seems quite natural to choose
the von Mises’ distribution for the errors in the bearing of the beacons. In 3D the bear-
ing to a fixed point is given by two angles but is essentially a point on a 2-dimensional
sphere. The analogue of the von Mises’ distribution here is the Fisher distribution, but
this might not be the appropriate distribution to choose, it depends on the main source
of errors. Indeed when this problem has been considered in the robot vision literature
the error distribution has usually been assumed to obey Gaussian statistics in the image
plane.

If the position of the image point is not known beforehand then the problem changes
radically in character. Suppose the camera undergoes a rigid transformation and we
have images before and after the move. If points correspondences can be found, that it
images points in both images which correspond to the same object point, then what is
the best estimate for the rigid motion experienced by the camera? In fact, this problem
cannot have a unique answer since a small rotation when the points are near the cam-
era cannot be distinguished from a large rotation viewing distant points. Usually this
difficulty is overcome by demanding that the translation part of the motion should have
unit length. A better approach might be to work in a space where points correspond to
equivalence classes of the solutions. Mathematically speaking we can quotient by the
ambiguity.

The final example here is camera calibration. The general idea here is to deduce the



camera parameters from information about the image points. The camera parameters
are such things as scale factors for the = and y-directions and so forth. One model for
the camera parameters represents them as a matrix of numbers belonging to the special
linear group SL(3). Once again, if the data is free from error then there are algorithms
which can reconstruct the calibration matrix of the camera. When the data is noisy,
however, it should be possible to estimate the calibration matrix.

The idea that unifies these examples is the notion that we should be considering
probability distribution which are defined on a Lie group or possibly a quotient space
of a group. In the mobile robot examples the group is SFE(2) the planar rigid motion
group. For the robot arms and vision problems the group is SE(3) the rigid motions in
space. In the camera calibration problem the group could be SL(3).

A large amount is known about distributions on SO(2) since the manifold of this
group is a circle. A fair amount is known about distribution on the rotation group
SO(3), the manifold in this case is the projective space PR3, this space is double
covered by the 3-dimensional sphere. So any distribution on the 3-sphere that has
antipodal symmetry can be considered as a distribution on SO(3), see also [15].

I am not aware of any work directly related to distributions on SFE(3). However,
since the manifold SE(3) is the Cartesian product of SO(3) with R®, the group of
translations, we can construct distributions on SF(3) as products of distributions on
the components. Of course this is equivalent to treating the rotations and translations
separately. This may not always be appropriate, in most problems we should expect
that the errors in the rotation and translation are not independent.

It would be useful to be able to employ Bayesian methods in these problems. As
usual we have the difficulty of choosing a prior probability on the group. Since the
rotation group SO(3) is a compact manifold there is a uniform distribution on this
space. But SE(3) is non-compact so has no uniform distribution. Using maximum the
entropy principle is also problematic, I am not aware of any well-founded definitions
of entropy on group manifolds, and again the non-compactness may be a problem
here. Nevertheless there may be sensible choices for prior distributions on these spaces
perhaps using group invariance to define them.

There are some advantages to working with these groups however. There is a well
established theory of Fourier transforms on Lie groups. The groups we are interested
in SO(3), SE(3) and for the mobile robot SE(2) are often standard examples used
in text-books. Hence there is some hope that computations could be carried out in
practice.

6 Concluding Remarks

I feel rather protective of these problems, there are essentially a list of my personal
research problems. I’m not sure that I should publicise them since its very likely that
other will solve most of them before I do. Then again there is more than enough to
go around here, and of course it is not who solves them but the consequence of their
solution that are important.

When all these problems have been solved the effect on the discipline of robotics
may not be earth-shattering. Moreover, if the problems turn out to be good ones then



they will give rise to more problems. However, I believe that working on these prob-
lems will produce a deeper understanding of what is possible and practical in robotics.
When people come to build new machines in the future I hope that they can be guided
by the knowledge generated by work on these problems. So I think the problems are
important for robotics but as I said in the introduction I don’t think they are very hard.
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