
THE FORMAL SPECIFICATION OF A

MICROPROCESSOR INSTRUCTION SET

by

Jonathan Bowen

._--'------'--"."..., _---
; "r-r r'::~· ..~ .<-~ , .' , [) "- ,

..'""" ~ it:I",~,,, -~:;.:' ",,_.
~2 FEB 2GU2 ,t

_.1 _

Ei ~:LF:1I,1A~·:~{ I
OXF'O. ()
 I

I IIIIIIIIII~II
Technical Monog"ph tRG.60 303387000P
January 1987 i

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX! 3QD
England

Copyright. @ 1987 Jonathan Bowen

Oxford Universit.y Computing Laboratory

Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

Electronic mail: bOHen@uk.ec.oxford.prg (JANET)

mailto:bOHen@uk.ec.oxford.prg

To Jane and Alice

11.1 only took the regular course ... the different branches of

Arithmetic·· Ambition. Distraction, Uglification and Derision."

-- Lewis Carroll

, O"'~·,-J 1H"ersity Computing le,fJerc:.tory
\.'_:' ,I L.' _"-1:1

~ i .::";:".J

U",v"J OX 1 :;Qi.i

The Pormal SpecificaUon of a

Microproeessor Instruction Set

Jonathan Bowen

Abstract

The specification language Z is used to define a microprocessor based s)'Btem in a
fonnal notation. The Motorola 6800 S-bii microprocessor is chosen as an example. Its
simplicity allows the entire instruction set to be covered. Memory configuration and
interrupts are also included. The use of a formal description language allows the
possibility of verification of the instruction set. Additionally I the use of Z combined with
infonnal text is sufficently readable for the specification to be used for documentation
purposes.

3 Microprocessor Instruction Set

CoDteDlo

1. Introduction

2. Basic: ConceptB
2.1 Word organisation

2.2 Bitwise Cunetions

2.3 Shirt runctiODB

2..4 Arlthm.etic: functions
2.5 Test eDnditions

2.8 Bexadecin:lal notation

3. State
3.1 Memory

3.2 Registers

3.3 System cloek

3.4 M6800 system

3.6 Power-up

4. Interruplo

5. Instruetions
6.1 Adclreosing mod..

5.2 Aecmnulator and Memory instructi0D8

6.3 Index Register and Stack iDstructiODB

6.4 Branch and Jump instruetions

6.6 Condition Code Register instrudions

6.6 Miscellaneous instructions

8. Overall operation

7. Conelnaion

4 Microproc:eS80r Instruction Set

8. Acknowledgements

D. Referen~e8

Appendix A. Example manual pages

Appendix B. MathematleaJ. and Schema notation

5 Microprocessor Instruction Set

1. IDtrodudiou

Currently, computer instruction sets are normally documented using tables,
semi-fonnal fonnulae and informal text. This monograph attempts to show that they
may be descdbed just a.s ea.sily and with more precision using formal specification
methods. Microproc.essol'8 have been formally specified previously [lJ. Often these
specifications have been difficult to understand since they have not been designed for
documentation purposes. The specification given here concentrates on presenting a
specification which is readable by humans a.s well as computel'8.

In this monograph, the specification language Z 12-n developed at the Programming
Research Group, is used to define the instruction set for an 8-bit microprocessor, the
Motorola 6800. As well a.s the instruction set, interrupts and memory configuration are
a.lso covered. Readers not familiar with the 6800 a.re referred to its progra.mming
manual IS] or instruction set summary card 191. These may also be used as acompa.rison
with the description given here.

It was felt that a complete microprocessor instruction set should be a.ttemp\ed in order
to detect any possible weaknesses in the use of Z for such a. task. The relalively simple
6800 processor was chosen because this allowed the entire instruction eet of a real
microprocessor to be specified. A processor such a.s one of the 68000 family was
deliberately not selected for a.n initial attempt a.t such a specification sin<e its greater
complexity would either require a good deal more workJ or for many features not to be
included.

Some of the mated,d covered here is generally useful for any micropro:essor based
system. Hence a.ny subsequent specifications could draw on this groundwork.

6 Microprocessor Instruction Set

2. Basic Coneepta

2.1 Word organisation

Machines such as microprocessors generally manipulate bits. These are organised inkl
non-zero length finite words. By convention, bit positions are numbered (rom zero up.

Bit e (D. 1 }

t.lord Q { I-l : N • Bit I _1-1 > 0 1\ dam H = O.......-1 }

Often the least significant bit (LSD) and most significant bit (MSB) of a word are of
particular interest.

L5B, M5B !-lord Bit

V	 I-l : lJord

LSB I-l = I-l 0 1'1

M58 I-l = I-l aw-l

Each bit pdtern in a. word uniquely maps to a particular numerical value.

val : lJord ~ N

Vw:t.lord
.1-1 = 1 ~ vel H = lSB I-l 1'1

.1-1 > 1 ~ val H = LSB I-l + 2 * va 1(suec aw)

It is sometimes useful to set all of the bits in a word to a particular value, whatever
their previous value.

set : (I-lord x Bit) -+ I-lord

Viol: !-lord; b : Bit·
w "-".t b = wl(D b,l b}

7 Microprocessor Instruction Set

A word contains its maximum unsigned value when all the bits are set to l's.

maxvel : Uord -+ N

Vw:Uord

maxval w :: val (w ~ 1)

For convenience, we define a function to generatoe a word of parlicular size and value:

wrd : Nt -+ N --t Uord

V size: Nt: value: N: w Uord
wrd size velue =w C9

IIw = s i ZB I't,

vel w :: value CD!2.d. succ(maxval w)

Sometimes it is useful to concatenatoe words together since processors can often handle
multiples of some base size of word.. These two words may be of differing sizes for
completoe generality.

(Uord x Uord) --t Uord

V wI. Wz : Uord •
1011'-' Wz :: w U pred tha

, Wzt

The number of bits in the resulting word is the sum of the number of bits in each of the
words being concatenated:

.. V w • Wz : Uord • lI(w1 -'w) :: IIW I + IIWZt z

The high and low halves of a word may be projected using two functions. These
projections CaD be concatenated to form the original word.

10. hi : Uord -+ Uord

Vw:Uord·
10(H) = (0 .• ("H<li.Y.2)-1)4 H ,
hi (w) :: succC'I.,. d.J.:i. ZJ. w

.. V w: Uord· w = lo(w) hi(w)

8 Microprocessor Instruction Set

2.2 Bitwise functions

Bitwise logical functions involve individual bits. A bit may be complemented:

.... : Bit >* Bit

• = (0.....1. IO}

We can al!o AND, (inclusive) OR and (exclusive) XOR pairs of bits by providing the
relevan t truth table in each case:

_.
-+ -'

• (Bit)(Bit) -+ Bit

.=«0.0) 0. (0.1) 0. 0.0) 0. (l.1) 1}
+ = «0.0) 0. (0.1) 1, (1.0) 1, (l,1) 1}
.. = «0.0) 0. (0.1) 1. (1,0) 1. (l.1) 0}

Most microprocessors allow bitwise Jogical operations on words. For instance, a word
may be (l's) complemented i.e. all 0 bits are changed to l's and all lis are changed to
D's. This is sometimes referred Lo as a bitwise logical NOT operation. We can upgrade
the definition for a bit to a function which applies to a word:

.... : ~ord >* Word

'fw:~ord

"""'=1011'"

Many bitwise operations take pairs of bits as input (e.g, those described above).

UordPair Q

{ H : N -4& (B j t JC Bj t) I 11101 > 0 '" dam H O......-1 }

Dair _

V HI> HZ : Word •

HI I2Il..i..c. H2

{ i : N liE dom HI n dom '"'z • i (HI i. HZ i)}

9 Microprocessor Instruction Set

The corresponding pairs of bits in a pair of words may now be ANDed., ORed, and
XORed, again by upgrading the equivalent bit functions:

_. -
-+

e (~ord x ~ord) ~ Uord

V	 loll_ H2 Uord •
H1- H2 = (H1IlD.ic.WZ)I(_e_) 11

H1~ HZ (H1= HZ" <- + _) A
loll- HZ = (H1= HZ)' <- e_)

2.3 Shift functions

A word may be shifted left or right. In this case, the bottom (LSB) or top (MSB) bit of
the word can attain a certain value, depending on the type of shift (e.g. arithmetic,
logical or rotation).

~ _ : (Uord x Bit) ~ Uord

~ : (Bit x Uord) ~ Uord

V	 H : Uord; b : Bit •
H« b = ({sHH pred'H) U {O h} A
b ~ 101 = {IH-l H b} U (SUCCIH)

10 Microprocessor Instruction Set

2.4 Arilhmetie tunetions

Microprocessors normally allow arithmetic operations. For example, a word may be
incremented or decremented. The result wraps around if there is overflow or underflow
in each c;u;e.

inc. dec: Word ~ Word

v ... : Word
inc w :::: wrd #101 ($ucc. {maxve1 H H O}) (va1 w) "

dec H :::: Hrd #1-1 ({O-+ msxval H) upred)(val w)

IncrementiDg and then decrementing a word (or vice versa) leaves it unchanged.

Additionally one is the inverse of the other.

.. inc J dec:::: dec 8 inc:::: id[J.lord]

.. dec:::: inc-1

This may be generalised for addition and subtraction by repeatedly incrementing or
decrementing a word:

+

(Word)(N) -+ Word

v w : Word: i : N

w+i=inc'wll.

H - i :::: dec i H

Similarly, a second word, possibly of a. different size, may be added to or subkaded

from a word. The size of the resulting word is determined by the first word.

+

(Word x Word) -+ J.lord

V wI' w2 : Word •

w1+ w2 = w1 + (val w2) 1\

w1- w2 = wI - (val w2)

11 Microprocessor Instruction Set

Some operations can return the 2's complement (negation) of a word:

- : L.lord >* L.lord

Vw:Uord
-~ = (~nlO)-~

Note that the l's complement (bitwise logical NOT) and 2's complement (negation) of a
word are related as follows:

...	 Viol: L.lord - -101 = inc(""W)

Sometimes it. is useful to "sign--extend" a word jnto another (normally longer) word.
This involves setting any extra. bits to the value of the most significant bit (the lII:sign"
bit) in the first word. The rest of the bits in the resulting word are set to the values of
the equivalent bits in the first word.

_signext _: (L.lord x L.lord) ~ L.lord

V	 HI' wz: L.lord •
"'1 sjgoext Wz = (Wz 3.l(MSB 1011» .1011

A word can be used as a signed relative offset. The value of the top bit determines
the direction of the offset.

_ t _ ; (L.lord)(L.lord) ~ L.lord

V loll_ wz: L.lord •

WIt Wz = WI + (wz signext WI)

This is particularly useful for branch instrudions which usually allow a relative branch
forwa.rds and backwards.

12 Microprocessor Instruction Set

2.5 Test conditions.

Most microprocessors contain a status word which contains bits related to the results of
previous operations. Different operations may affect different bits. Sometimes different

opera.tions affect the same bit in (possibly subtly) different ways.

Often we wish to test whether a word has a zero value) returning a '1' if it has and a. '0'
if not:

zero: Word -+ Bit

v w : !.lord •

ran w = {O} =* zero w = 1 A

ran w ~ {O} ~ zero w = 0

Conversely! we may wish to test whether a word contains alII's, returning a. '1' if it
does and 3. 40' jf not. This test ca.n not usually be performed by microprocessors
explicitly (unlike the test for zero above). However it can still be useful for the

specification of other test conditions (see later).

ones: Word -+ Bit

v w : Uord
ones w = zero(~w)

Testing for a negative value can be performed by most microprocessors, returning a'I'

i! it is negative and a 10' if not. Negative words have the top "sign" bit set. Hence this
function can be performed by the previously defined MSB function.

13 Microprocessor Instructlon Set

2.6 Hexadecimal notation

Most microprocessor documentation uses hexadecimal values for op-<:odes, addresses
and so forth, since this notation may easily be converted to the corresponding bit
pattern. Each digit is the equivalent of four bits. Hexadecimal digits are drawn from
the set of characters (CHAR) and consist of the decimal digits '0' to 'g' and the
letters 'A' to 'r·. Each of these hexadecimal digits uniquely maps to a numerical
value:

[CHAR]

he. , CHAR 1+ N

hex = {"D· O. ·1· 1. '2' 2, ·3· 3,
·4' 4. ·5' 5. ·6· 6. '7' 7.
·s· S. ·9· 9. 'A' 1O. ·S· l1.
'C' 12. 'D' 13. 'E' 14. 'F' IS}

We can define a function to handle i1 sequence of hexadecimal digits (Le. a
hexadecimal number). We shall employ the widely used notation of prefixhg Ox to the
hexadecimal string.

O. , (seq CHAR) 1+ N

Ox<> = 0
V	 9 : seq} CHAR I ran s ~ dom hex •

Oxs = l6*Ox(fronts) + hex(lests)

An alternative posibility would be to postfix the letter H (Le. to define a similar postfix
function, _H).

14 Microprocessor Instruction Set

3. State

We shall consider the state of a 6800 based system in three part9, covering static
conditions and then changes in state in each case:

1. Memory
2. Registers

3. System clock

We shall then combine these and consider changes in state of the entire system (as
defined above) when an instruction is executed or an interrupt occurs. Finally, the
state of the system when it powers up is detailed.

The 6800 operates on 8-bit bytes of data and 16-bit addresses:

Byte a {H l.Jord OH 8 }

Address a {H I-lord OH 16 }

The following functions convert values to data bytes and addresses respectively:

data Q (Hrd 8)

addr a (Hrd 16)

Some numerical values have known ranges. In particular, some numbers will fit into a
nibble (4 bits), a data byte (8 bits) and a word address (16 bits). [t is useful to define
these ranges.

Value1 a O.. 2'-1

Values a O.. 28-1

Va 1ue16 a O.. 2 '6_1

15 Microprocessor Instruction Set

3.1 Memory

The addrees space of the 6800 (and many other microprocessors) may be considered as
a totaJ function from Addresses to Bytes. We shall assume tbat ROM (Read Only
Memory) and RAM (Random Access Memory) make up the available real memory.
These two areas do not overlap.

Memory i

Mem : Address -+ Byte
ROM, RAM, F Addres.

RAM n ROM = ~

The memory may be updated by operations such as instructions and interrupts. In this
case, the ROM and RAM areas (i.e. their domains) do not change. The RAM contents
may be partially updated by an instruction or interrupt. Areas outside valid ROM and
RAM may vary unpredictably and are thus not defined by this specification. The
values in ROM do not vary. Only values in RAM may be updated reliably.
Additionally, some operations do not affect the RAM contents.

6Memory i

Memory
Memoryi
6Mem : Address -++ Byte

ROM" = ROM
RAM' = RAM
ROM ~ Mem' = ROM ~ Mem
RAM ~ Mem' RAM ~ (Mem e 6Mem)

EMemory Q !Memory I 6Mem = e

Note that the assumptions above are not strictly true in aJI cases. For example, it is
possible kl have software switehable banked memory. However tbey bold for the
majority of simple systems. In practice areas outside ROM and RAM [Day be used for
memory mapped I/O. This is not covered here since it is very system dependent. It
could be considered separately.

16 Microprocessor Instruction Set

3.2 Registers

The 6800 has a number of registers:

Regs " = A I B
PCH I PC l
SPH I SP l
XH I Xl

I CCR
I PC
I SP
I X

Most of these axe 8-bit registers:

RegsB e {A. B, CCR, PC", PCl' SPH• SPl , XH• XL }

Two of the 8-bit registers are general purpose accumulaton:

Accumulator e {A. B }

Some of the registers aN normally used in pairs, 80 that they may be used to hold 16
bit memory addresses:

Regs,. e {PC. SP. X }

The 8-bit registers always contain byte values and the 16-bit registers always contain
address values. The low and high bytes oC the PC, SP and X registers concatenate to
fOTm 16-bit registers. The top two bits oC the CCR are unused and are always set to 1.

Registers
Reg : Regs -+ Word I

RegORegsBD • Byte
Reg(Regs16D ~ Address
Reg(PC) = Reg(PCl) -Reg(PCH)
Reg(SP) = Reg(SPl) -Reg(SPH)
Reg(X) = Reg(Xl) -Reg(XH)

RegCCR 06 . .7D = {I}

17 Microprocessor Instruction Set

Any of the regiliters may be updated by an instruction (or interrupt). Every instruction
consilits of one or more bytes. (External interrupts have no bytes.) Norm~lly the next
instruction to be Executed is the instruction following the current instruction. This ma.y
be overridden, for example by a branch instruction (see later). Individu~l bits in the
Condition Code Register may be updated by the instruction depending on the result of
the operation. However the top two bits of the CCR rema.in set to I'B even if the
instruction attempts to overwrite them.

ARegisters

Reg i sters

Reg isters'

NBytes : N

Nex"t : Address

6Reg : Regs 1J0rd

SCCR ,(0•• 7)'" B;t

Nex"t = Reg(PC) + NByte.

Reg' Reg • {PC Next}

• SReg

• {CCR (Reg(CCR). SCCR

• {6....1. 7....1})}

Sometimes an operation does not affect the 6800 registers (apart from the Program
Counter which is automatically updated):

:Registers S ARegisters I 6Reg =B A 6CCR =0

18 Microprocessor Instruction Set

CQDditiQn~

The Condition Code Register bolds various single bit codes at different bit positions.
These are the carry, overflow, zero, negative l interrupt mask and half.carry bits:

C e o
V e 1
Z e Z
N e 3
I e 4

H e 5

The contentc! of the individual condition code bits are often of interest. We make the
following definitions for syntactic brevity:

Coo	 e (Reg CCR) C

e (Reg CCR) V
V"

Zoo - (Reg CCR) Z

e (Reg CCR) N
N"

1t : e (Reg CCR) 1

e (Reg CCR) H
H"

Condition code bits often depend on the values of bits in results of operations. For the
convenience of these specifications, we use the following short forms for i EO . . 7 ,
j EO .. IS and x E Accu"'-llator:

x,	 a (Reg x) i

M,	 a (Mem M) i

R,	 a R i

X	 a (Reg X) j
J

RR	 a RR j
J

3.3 System d~

The system conta.ins a clock which controls the timing of ~he system. This consists of a
sequence of pulses. This may be modelled as the Dumber of clock pulses which have
occurred since the sysLem was powered-up:

Clock ---,

[elk, N I

When an instruction is executed or an interrupt occurs, it takes a certain number of
clock cycles lo execute:

6Clock I

Clock
Clock"
Cycles: N

Clk" = Clk + Cycles

20 Microprocessor Instruction Set

3.4 M6S00 system

The system state consists of memory, registers and a clock:

M6800 ~ Memory ~ Registers ~ Clock

There are various types of 6800 addressing modes. Additionally, the 6800 may respond
to an external I nt errupt or execute an III ega 1 instruction.

Nodes :: =	 Immediate

oired

Indexed
Extended
Inherent
Relative
Interrupt
I II egel

Each of these modes is detailed later.

When an instruction is executed, the op-code is read from the nlemory location

indicated by the current value of the Program Counter. The instruction will have a
particular addressing mode. The state of the system will change when the instruction

has executed:

6"6800 ,
Memory
6Registers
6C1ock

Op : Values
Mode : Modes

Op = val Mem(PC}

Some operatltms do not affect the memory or registers (apart from the Program

Counter which is automatically incremented depending on NBytes):

E"6800 e 6~6800 A =~emory A =Registers

21 Microprocessor Instruction Set

3.6 Power-up

The clock starts from zero for convenience in this model, when the system is initialised
(Le. powered up). It is assumed that the ROM already holds the program to be

executed.

Interrupts are disabled and the Program Counter is loaded from the top two locations
in memory. Note that hexadecimal numbers are used, rather than decimal, for memory
addresses and op-<:ode values since this is more normal (and convenient) in
microprocessor documentation as discussed earlier.

M6800 INIT i

M6800'

Clk' = 0
Icc ~ = 1
Reg' (PCH) = Mem'(addr OxFFFE)
Reg' (PCL) Mem'(addr OxFFFF)

22 Microprocessor Instruction Set

4. Interrupts

When ail inlerrupt occurs, or if the SUI or UAI instructions are executed (see later),
all the 6800 registers are saved on the stack. program control is transferred to a new
address specified by the contents of memory at a particular vector address. The

interrupt mask bit is set in the Condition Code Register. This is defined by a framing
schema (denoted by lfl) which may be used in the subsequent definitions of these cases:

41Interrupt
6116800
Vector: Valuel5

6Mem = {Mem(Reg(SP)-6) Reg(CCR),
Mem(Reg(SP)-S) Reg(B),
Mem(Reg(SP)-4) Reg(A),
Mem(Reg(SP)-3) Reg(XH),
Mem(Reg(SP)-Z) Reg(XL),
Mem(Reg(SP)-I) hi(Next),
Mem(Reg(SP» lo(Next)}

6Reg = {PCH Mem(eddr (Vector)),
peL ~ Mem(eddr(Vector+l» •
SP Reg(SP)-7 }

6CCR= {I l}

There a.re three interrupts which roay be activated externally to the 6800
microprocessor. An external interrupt is not an instruction read frolll memory so it

may be considered to have a length of zero bytes. This will result in program control
returning to the current instruction when au RTI instruction (see later) is subsequently
executed at the end of the interrupt service routine, provided the stack is not corrupted.

It takes a. number of clock cycles to service the interrupt and stack the registers. The
exact number of cycles could not be found in the documentation used to fonnulate this
specifica.tion [B,9], so it is not given here. It is likely to be of the order of the minimum
number of cycles taken by the UAI instruction. If known, it could easily be inserted in
the following schemas.

The hardware interrupt (IRQ) can only be activated if the interrupt mask bit in the

CCR is dear:

IRU
tInterrupt

Icc = 0
Vector OxFFF8
WBytes = o

The non·maskabIe interrupt (NMl) may be activated at any time:

NMI

tInterrupt
WMI? : Bit

NMI? = 0

Vector

WBytes

= OxFFFC
o

When a reset occurs, the registers are not stacked and the memory is left unaffected,
but the «reset" vector is used to restart the program in the same way as occurs at
power·up:

Reset i

6116800

EMemory

8Reg = {PCH Mam(addr OxFFFE),
PCl Mam(addr OxFFFF) }

8CeR = { I I }

In conclusion, the system has three possible sources of external interrupt. Note that the
6800 interrupt vedors are all located at the top of memory. Hence it is normal for this
area ro be contained in ROM.

24 Microprocessor Instruction Set

S. Instructions

All microprocessors have a set of instructions which they can execute. These
instructions can affect the registers and/or the memory using a variety of addressing

modes l depending on the microprocessor involved.

5.1 Adm-eBBing modes

Many of the 6800 instructions use a selection of memory addressing modes. Each ba.6 a
memory address (M) of an operand calculated in a manner depending on the addressing
mode. The op-code for a given type of addressing mode is always and constant offset

(rom the op-code for a particular base addressing mode. The 6800 Ext ended
addressing mode may conveniently be selected for this base addressing mode. The
corresponding op-code for a particular instruction will be known as the base op-code

(OpBase). The value of OpBase is specified in subsequent schema.s defining specific
instructions.

The Dumber of clock cycles which an instruction takes to execute a\60 depends on the
addressing mode. Again this is easily calculated from a base number of cycles for a

particular addressing mode (CyclesBase). The number of execution cycles may be

defined in terms of an offset from the base number of cycles in subsequent schemas.

The infonnalion above may be combined together in a framing scheIlla for use when
defining each of the addressing modes covered in the rest of the section:

~ddrMode

6116800

" : Address
OpBase : Val ueB
CyclesBase : N

We shall now define the major addres!ling modes of the 6800 as framing schemas for
use by subsequent. achemas describing individua168lO instructions.

25 Microprocessor Instruction Set

Immediate mode addressing gives the address of the byte immediately following the
instruction op-<:ode b~:

lIJlmmediate
~ddrMode

Mode = Immediate

Op = OpBase - Ox30

M = Reg(PC)+!
NBytes = 3

Cye 1esBase = 2

Direct mode addresses are in the [iret Z56 bytes of memory. The byte following the
op-code specifies this address) the upper byte of the address being zero:

110 i rect
llJAddrMode

Mode = Direct
Op = OpBase - Ox20

M = Mem(Reg(PC)+1) - dete(O)

NBytes = 2

Cye , esBase = 3

Indexed mode address are calcula.ted by adding the contents of the byte following the
op-code (0-255) to the index register:

cIlIndexed I

tAddrMode

Mode = Indexed

Op = OpBase - Oxl0
M = Reg(X) + Mem(Reg(PC)+!)

NBytes = 2

Cye 1esBase = 5

26 Microprocessor Instruction Set

Extended mode addresses are specified Cully using the two bytes following the op-cooe,
high byte first, low byte second:

~xtended i

~Addrnode

Node = Extended
Op = OpBase
n = nem(Reg(PC)+2) -nem(Reg(PC)+l)

NBytes = 3
CyclesBase = 4

Several or all of these addressing modes may be used by a specific instruction. Hence
we shall combine them together into one schema.

~ode5 e ~Immedi8te V tDirect V tlndexed V ~xtended

There are two other addressing modes used by many instructions so these are also
defined separately here.

Some instructions use inherent addressing. In tbis case there is no memory address to
be calculated. The instruction consists of a single byte op-code.

iIIInherent i

~ddrnode

Mode = Inherent
NBytes = 1
eye 1esBase = 2

Note that the memory address (M) is left undefined in the above framiD.g schema since it
will never be u.sed in later specifications making use or this schema.

27 Microprocessor Instruction Set

Some IIbranch" instructions use relative addressing to calculate a new value for the
Program Counter if a branch occurs. The byte following the op-code is sign-extended
and added to the address of the next instruction. Hence a branch instruction may
transfer program control up to 127 bytes forwards or 12B bytes backwa.rds relative to
the stan of the instruction following the branch instruction.

~e 1 at i ve i

~AddrMode

Mode = Relet ive

Op = OpBase
M = Next ± Mem(Reg(PC)+!)

NBytes = 2

eye 1 esBese = 4

The complete instruction set of the 6800 is covered in subsequent sections consisting of
families of related instructions as designated by Motorola [BJ.

28 Microprocessor Instruction Set

5.2 Accnm.nlator and Memory instrndioDS

This family of instructions use one or both of the 8-bit accumulators and/or a byte in
memory. These can be further sub-divided into different types of instruction,
depending on the allowed addressing modes.

Inherent addressing

Some instructions use inherent addressing and operate OD accumulator A or B only.
The memory contents are unaffected. The instruction operation produces a byte refiult,

R, which is used to update the accumulator.

41SingleAcc
41Inherent
SMemory
x : Accumul atar
R , Byte

Cycles = CyclesBase
6Reg = {x R}

Accumulator addressigg

Either of the accumulators may be pusbed onto or popped off the stack. These
operations take four cycles to execute.

tstackAcc i

41Inherent
l(: Accumulator
OpBase : ValueS

(x = A A Op = OpBase) y

(x = B A Op = OpBase + 1)

Cycles eyc 1esBase + 2

29 MJcroprocessor Instruction Set

~~ addressing

Some instructions have a single operand. They can update a memory byte by
performing an operation on it, but only using a limited set of the available addressing
modes:

lIttemUpdate
lIfIodes i

Operand,

R , Byte

Mode E {Indexed, Extended}

eye 1 es :. eye 1esBase + 2

Operand = Mem(M)

5Mem={M R}

5Reg = 0

These can also perform the same operation on one of the accumulators. These replace
the op-codes which would have been used by the immediate and direct addressing
modes not used because of the limited number of addressing modes above.

lIlAccUpdate i

l!ISingleAce
Operand : Byte
OpBase : Values

(x = A " Op = OpBase - Ox30) v
(x = B " Op = OpBase - Ox20)
Operand = Reg(x)

The last two schemas may be combined to produce a framing schema which describes
single operand instructions with multiple addressing modes:

lIlSingle a ~emUpdate V tAccUpdate

30 Microprocessor Instruction Set

D..2Y.!2k ~ addressing

Some instructions ha.ve two opera.nds. One is in one of the two accumulators and the

other is extracted from memory using a. selection of addressing modes. The op-code
base offset5 are calculated from the op-code base of the instruction which uses
accumulator A. (OpBaseA). The value of OpBaseA is defined in subsequent schema
definitions for specific instructions.

tA,ccumulator
tModes
)(: Accumulator
OpBaseA : Values

(x = A A OpBase =OpBaseA) v
(x ~ B A OpBase :: OpBaseA + 0)(40)

These double operand instructions leave memory unaffeded and take the basic number
of clock cycles to execute. The instruction operation produces a byte result (R).

GJOouble
IllAccumulator
5Memory
R , Byte

Cycles CyclesBese
6Reg = {x R}

31 Microprocessor Instruction Set

~ instruction fra.ming ~

Some instructions Eimply perform tests on a byte value, T. In this case, the memory
and registers (apa.rt from the CCR) are left unaffected (or effectively updated with
existing contents). The top Gsign" bit of the byte may be of particular interest.

~Te5~

t/1odes
)(: Accumulator
T , Byte
T7 : Bit

SMem. {B, {M Mem(M)} }
SReg • { B, {x Reg(x) } }

T7 = MSB(T)

The accumulator and memory family of instructions can now be defined using the
framing schemas a.bove. All the instructions operate on 8-blt values in memory and the
two accumulators.

32 Microprocessor Instruction Set

Transfer instructiops

Some instructions 8imply transfer bytes between registers and/or memory without
modifying their contents. For example, an accumulator may be loaded from a memory
byte. The Condition Code Register bits are updated appropriately.

LDA I

lWouble

OpBaseA. = OxB6
R = Mem(M)

SCCR = {N R,.

Z....-oJ zero(R).
V D}

Conversely, there is an instruction to store the contents of an accumulator into a byte
in memory. This cannot use the immediate addressing mode. It take8 an extra clock
cycle to execute compared to most other similar instructions (e.g. LDA). The addressed
memory byte is updated with the result and the CCR bits are set appropriately.

STA
IIlAccumulator

OpBeseA = OxB7
Mode ~ Immediate
eye Ies =. eye 1esBase + 1
SMem = {M Reg(x) }

SReg = 0
SCCR = {N MSB(Reg xl.

:z-+ zero(Reg x).
v O}

33 Microprocessor Instruction Set

The accumulators may be transferred ba.ck and forth:

TAB I

ts i ngleAcc

Op , Ox16
SReg , {A Reg(B)}

seCR {N B7•

l t--+ zero(B),
V 0 }

TBA I

tsingleAcc

Op = Ox17
SReg {B Reg(A) }

seCR , {N A7•

Z t--+ zero(A).
V O}

The accumulators may be pushed on to the slack. In this Ci18e 1 the condi~ion codes are
not affected.

PSH I

tstackAcc

OpBase = Ox36

SMem = {Reg(SP) Reg(x) }

SReg {SP Reg(SP)-l }

SeeR, B

34 Microprocessor Instruction Set

The accumulators may also be restored from the stack. Again, the CCR is unaffected.
In this case the memory contents are also unaffeded.

PULA
1Il5tackAcc
EMemory

OpBese Ox32
6Reg = {x Mem(Reg(SP)+l).

SP Reg(SP)+l }

6CCR = 9

~ instructions

Some instructions perform bitwise logical operations aD the accumulators and memory
bytes. Forexarnple, a byte operand may be lIs complemented:

COM
tsingle

OpBase = Ox73
R = -.operand
6CCR = { N R7•

Z zero(R).
V O.
C l }

35 Microprocessor Instruction Set

There is a bitwise logical AND instruction:

AND
,zDoub 1e

OpBaseA = OxB4
R = Reg(x). Mem(M)

SCCR = (N R,.
Z too-+ zero(R).
V 0 }

a bitwise logical inclusive OR instruction:

ORA
,zDoub 1e

OpBaseA = OxBA
R = Reg(x) + Mem(M)

SCCR = (N R,.
Z t-+ zero(R).
V..... O}

and a bitwise logical exclusive OR instruction:

EOR
,zDouble

OpBaseA = 0)(88

R = Reg(x) e Mem(M)

SCCR = (N R,.
Z t-+ zero(R),
V 0 }

36 Microprocessor Instruction Set

Arithmetic instryctions

Some instructions perform simple arithmetic operations on bytes.

An operand may be incremented. The overflow bit in the CCR is set if the original
con tents of the operand had the top bit dear and the rest of the operand bits were set

to 1'8.

INC ~

tsingle I

OpBase = Ox7e
R :: Operand + 1
SCCR = (N R,.

I H zero(R).

V H "'Operand(7)-ones(7-40perand) }

Conversely, an operand may be decremented. The overflow bit in the CCR is set if the

original eontenf.8 of the operand had the top bit set and the rest of the operand bits
were zero.

DEC
~ingle

OpBase =" Ox7A
R :: Operand - 1

SCCR = (N R,.
Z zero(R),
V Operand(7).zero(740perand) }

There are three "add" instructions. They all update the half·carry bit in the CCR with
the cany from hit 3. The overflow bit is set if there was a 2'5 complement overflow.
The carry bit is get if there was a carry from the most significant bit of the result. The
standard "add" instruction simply adds a byte from memory to an accumulator.

ADD

lIiJoub 1e

OpBaseA = OxBB

R = Reg(x) + Mem(M)

seeR = {H H x3.M3+M3....R3+...R3.x3.
N H R7•

2 zero(R),

V t-+ xl.M7....R7+...x7 M7.R7.

C t-+ xl.M7+M7.....R7+ R7.x7 }

AccumulatoT B can be added to accumulator A (but not vice versa):

ABA

cIlSingleAcc

Op = OxlB
R = Reg(A) + Reg(B)

SReg = {A R)

SeeR = {H t-+ A3.B3+B3....R3+...R3.A3.
N t-+ R7•
l t-+ zero(R),

V t-+ A7.B7....R7+ ...A7 S7.R7.
C t-+ A7.B7~B7....R7+ R7.A7 }

The current value of the carry bit in the CCR may be added to the result as well:

ADe

4Qouble

OpBaseA = OxB9

R = Reg(x) + Mem(M) + eel:

SeeR = {H t-+ x3.M3~M3....R3~...R3.x3.
N t-+ R7•
l t-+ zero(R).

v t-+ x7.M7....R7~...X7 M7.R7.
C t-+ x7.M7+M7....R7+ R7.x7 }

38 MicroproceS90r lnstruction Set

There is a. "Decima.l Adjust Accumulator" instrudion for use when binary coded
decimal (BCD) operands a.re involved. The adjustment to be added to the a.ccumulator

is calculated from the ca.rry bit, upper half-byte value of the accumulator, half-carry
bit and lower ha,1f·byte va.lue of the accumula.tor as follows:

dee Bit x Value1lC Bit lC Value .. -++ Values

Vi: Bit XValue... XBit xVelue..

i E {O}x(OxO .. Ox9)x{0}x(OxO .. Ox9) ~ dee i = OxOO
i E {O}x(OxO.. Ox8)x{0}x(OxA .. 0xF) ~ dee i = Ox06
i • {O}x(OxO .. Ox9)x{l}x(OxO .. Ox3) ~ dee i = Ox06

i • {O}x(OxA .. 0xF)x{0}x(OxO .. Ox9) ~ dee i = Ox60
i E {0}x(Ox9.. 0xF)x{0}x(OxA .. 0xF) ~ doe i = Ox66

i E {O}x(OxA .. OxF)x{l}x(OxO .. Ox3) ~ dee i = Ox66

i E {O}x(OxO .. Ox2)x{0}x(OxO .. Ox9) ~ dee i = Ox60

i E {O}x(OxO .. Ox2)x{0}x(OxA .. 0xF) ~ doe i = Ox66
i E {O}x(OxO .. Ox3)x{l}x(OxO .. Ox3) ~ dee i = Ox66

En tries not included in the table are undefined. The overflow bit in the CCR i5 always
undefined after this instruction has been executed. It is intended tha.t this instruction
should be used immediately after a.n "add" instruction.

DAA I

~SjngleAcc

Adjustment : Byte
Undefined: Bit

Op = Ox16
Adjustment = date daa(Ccc' val hi (Reg A).

Hcc' val lo(Reg A»
R = A + Adjustment
6Re9 = {A R }
6CCR = {N R,.

l H zero(R).
V H Undef i ned,
C Hzero(h i Adjustment} }

39 Microprocessor Instruction Set

There are rnakhing ·subtract!! instrudions for each "add" instruction. Note however
that i;he half-earry bit in the CCR is left unaffected by these inatructions.

SUB
lIiloub1e

OpBaseA = OxBO
R = Reg(x) - Mem(M)

SCCR = {N R7•
:Z...-+ zero(R).

V ...-+ x7M7....R7+...x7.M7.R7'

C ...-+ ...x7.M7+M7.R7+R7....x7 }

SBA
tsingleAcc

Op = Oxl0

R = Reg(A) - Reg(B)

SReg = {A R}

SCCR = {N R7•

:z ...-+ zero(R).
V...-+ A7B7.""R7+...A7.B7.R7.
C ...-+ "'A7.B7~B7.R7+R7."'A7 }

SBC I
lIiloub1e

OpBBseA = OxB2

R = Reg(x) - Mem(M) - Coo
SCCR = {N R7•

:Z...-+ zero(R).

V ...-+ x7.owM7.""R7+""'X7.M7.R7'

C ...-+ "'x7.M7~M7.R7+R7'''''x7 }

40 Microprocessor Instruction Set

An operand may be negated (2'8 complemented). The overflow bit in the CCR is set if
the resull has the top bit set and the rest of the result bits are zero. The carry bit is set
to the opposite of the zero bit.

NEG
l1lSingle

OpBese = Ox70
R = -Operand
SCCR = {N R7,

Z t--+ zero(R),

V t--+ R7.zero(7~R>'

Cero(R) }

A memory byte or an accumulator may be cleared to all O's.

CLR I

46ingle

OpBase = Ox7F
R = data(O)

SCCR = {N 0,
Z 1,

V O.
C O}

No~ thaUhen!! is DO equivalent instruction to set a byte to all l's.

.5hill. jpstmetjQQS

Some 6800 instructions shift hytes by one bit position left or right. No1e tha.t the

overflow bi\ in the CCR is always set as the XOR of the resulting negative and ca.rry
CCR bits (or all 6800 shift instructions.

There are shift instructions which rotate a byte left or right by one bj~ through the

carry bit in the CCR:

ROL
~Single I

OpBase = Ox79

R = Operand« ec::c::

6CCR = {N R,}.

Z H zero(R).

V HNc::c::' eCc::c'.
C Operand (7) }

ROR i

~ingle

OpBase = Ox76

R = ec::c:::::!> Operand
6CCR = {N R,.

Z H zero(R).

V H Nee' e Cee '.

C Operend(O) }

42 Microprocessor Instruction Set

There are a.rithmetic shift instructions which shift a byte left or right by one bit. These
are equivalent to multiplying and dividing a signed byte value by 2.

ASL
~ingle

OpBase = Ox78
R = Operend < 0
6CCR = {N R7•

Z zero(R),

V ' eCce',Ncc
C Operand(7) }

ASR
~ingle

OpBase = Ox77
R = Operand (7) >0 Operand

6CCR = {N R7•

Z zero(R).

V Nee' • Cc:c'.
C Operand(O) }

There. a. logical shift right instruction j f1l1ing the result with a zero in its top bit:

LSR i

IJlSingle

OpBase = Ox74
R = 0:> Operand
6CCR = {N O.

Z zero(R).

V Nee' • Cc:c:'.
C Operand(O) }

Note that there is no matching LSL (logical shift left) instruction since this is

equivalent to an ASL instruction (see above).

~ instructiops

Some instructions only affect the condition codes by performing tests on byte values.

There is a bitwise logical AND test instruction which simply seb; the condition code bits
as if an AND instruction had been performed, but does not update the result:

BIT
lIiloub 1e
tTest

OpBaseA = OxB5

T = Reg(x) • Mem(M)

SCCR = (N T,.

Z "'"""" zero(T),
V 0)

A byte operand may be tested. The condition codes are set as if zero had been
subtracted from the operand.

TST
tSingle
tTest

Op8ase = Ox7D

T = Operand - 0
SCCR = (N T,.

Z H zero(T).
V o.
C 0)

44 Microprocessor Instruction Set

There is a lOcompare!l instruction which simply sets the condition code bits as if a SUB
instruction had been performed, but does not update the result:

CMP I

Wouble
il>Test

OpBaseA = OxBS
T = Reg(x) - Mem(M)

SCCR = {N T,.
t: zero(T).
V H x7....M7T7+""X7.M7.T7.

C "")(7.M7+M7.T7~T7."")(7}

The two accumulators may be compared in a similar way without changing the
contents of either:

CBA
tSingleAcc
il>Test

Op = Ox11

T = Reg(A) - Reg(B)

SCCR = {N T,.

l zero(Tj,

V A7....B? ...T7+"'A7.B7-T7

C "'A7-B7+B7• T7+17.....A7 }

45 Microprocessor Instruction Set

Instmetion ~

The 6800 includell the following transfer/logical/ariLhmetic/shift/test Lype accumulator
and memory instructions:

Daub 1eOp a	 LOA V STA V

AND V ORA V EOR V

ADD V ADC V SUB V SBC V

BIT V CMP

SingleOp •	 COM V
DEC V INC V NEG V CLR V
ROL V ROR V ASL V ASR V LSR V
TST

InherentOp e	 TAB V TBA V
ABA V DAA V SBA V
CBA

SteckOp •	 PSH V PUL

We can combine all these sub-types of instruction together:

AccMemOp S DoubleOp V SingleOp V InherantOp V StackOp

46 Microprocessor Instruction Set

5.3 Index Register and Stad. instruetioDB

These instructions manipulate the 16--bit index register and stack pointer. Some have
several addressing modes. These can be further sub-divided into lIJ.oad" and IIstore"

type operations, each of which produces a 16-bit result, RR. Loa.d operatioDS do not
affect memory:

iIlXLoed
tModes

:=Memory

RR : Address

eye 1es = eye 1esBase + 1

Store operatioDS cannot be used in immediate mode:

tXStore
lJtIodes
RR : Address

Mode ':# Immediate

eye Ies = eye1esBase + 2

Some of the instructions use inherent addressing. None of these affect the memory
contents.

tXInherent

lIlInherent

EMemory

Op = OpBase

eye1es = eye1esBase + 2

This family of instructions can now be defined using the framing schemas above.

47 Microprocessor Instruction Set

The index register and stack pointer ca.n be loa.ded from memory:

LDX
~XLoad

OpBase = OxCE
RR = Reg(X)
SReg = {XH Mem(M),

XL Mem(M+l) }

SCCR = {N RR ,S'
Z J-+ zero(RR).
V a}

LDS
~XLoad

OpBase = OxSE
RR = Reg(SP)

SReg = { SPH Mem(M),
SPL Mem(M+!) }

SCCR = {N RR ,S'
Z zero(RR),
V a}

and stored int.o memory:

STX

~XStore

OpBase = OxCF
RR = Reg(X)

SReg = 0

SCCR = {N RR ,S'

Z J-+ zero(RR).
V a}

SMem = {M Reg(XH), M+1 Reg(XL) }

48 M.icroproce880r Instruction Set

STS
lIlXStore

OpBase = Ox8F
RR = Reg(SP)

SReg = 0

SCCR = {N RR,s,

:z ~ zero(RR),

V O}
SMem = {M Reg(SPH), M+l Reg(SPL) }

They can also be transferred back and forth:

TXS

lIIXInherent

Op = Ox3S
SReg = {SP Reg(X)-1 }

SCCR = 0

TSX
lIIXInherent

Op = Ox30
SReg = {X Reg(SP)+l }
SCCR = 0

Note that the SP is loaded with one less than the contents of the index register and the
index register is loaded with one more than the SP in each case. This is for
programming convenience so that the index register can be pointed to the first entry on
the stack, not the next empty entry.

49 Microprocessor Instruction Set

The index register and stack pointer can both be incremented and decremenled. In the
case of the index register, the zero flag bit in the CCR is set appropriately. In the case
of the stack pointer, the CCR is not affected.

INX
4lXlnherent

Op = 0.08

6Reg = { X

6CCR = {Z

Re9(X)+!)

zero(Re9(X)-!»)

INS _

4lXInherent

Op = Ox3!

6Reg = {SP Reg(SP)+!)

6CCR = 0

DEX

4lXlnherent

_

Op =

6Reg

6CCR

Ox09

= {X

= {Z

Reg(X)-l)

zero(Reg(X)-!»)

DES _

lIIXlnherent

Op = Ox34
6Reg = {SP Reg(SP)-!)

6CCR = 0

50 Microprocessor Instruction Set

The index register can be compared with memory:

CPX
~XLo.d

OpBSS8 = O)(8C
RR = Reg(X) - Mem(M+l) -Mem(M)

6Reg = 0

6CCR = {N RR".

Z H zero(RR).

V H X1SeovM7.-RR1S+-X1SeM7eRR15 }

The 6800 includes 'he following instructions involving the index register and/or stack
pointer:

IndexOp a	 LOX V LOS V STX V STS V TXS V TSX V
INX V INS V oEX V DES V CPX

51 Microprocessor Instruction Set

5.4. Brandl. and J nmp inBtructions

All '"branch" instructions use the relative addressing mode. They leave the memory

unchanged and take (our cycles to execute. The CCR is not affected. If a branch

condition occurs, then the PC is updated with th"!! relative offseL Otherwise the

pragram procedes to the next instruction as normal.

4>flranch --,

~elat ive

:Memory
Cond : Bit

Cycles CyclesBase

SCCR o
Cond 1 => SRag {PC M}
Cond o => SRag o

The G800 has the following bra.nch instructions:

BRA = c1Branch Op = Ox20 A Cand =

BCC c1Branch Op ::: Ox24 A Cand = "'Cee
•
BCS c1Branch Op = Ox25 A Cand = C

•
ee

BEa c1Branch Op = Ox27 A Cand = :lee

BGE • c1Branch Op = Ox2C A Cand = "'(NeeElVee >

BGT • c1Branch Op = Ox2E A Cand = C:lee+(NeeIllVec))

BHI • 46ranch Op = Ox22 A (and = ... (Cee ~ Zee >

BLE c1Brench Op = Ox2F A (and = :lee+(NceEiVee)

•

•
BLS • 46ranch Op = Ox23 A (and = C + leeee
BLT • c1Branch Op = Ox2D A Cand = Nce@Vee
BMI c1Branch Op = Ox2B A Cand = Nee•
BNE • 46ranch Op = Ox26 A Cand =lee

BVC • 46ranch Op = Ox28 A Cand = -Vee

BVS c1Branch Op = Ox29 A Cand = Vee•
BPL • 46ranch Op = Ox2A A Cand = -Nee

52 Microprocessor Instruction Set

There is also a "Branch to Subroutine" instruction, which saves the return address on
the stack and calculates a new value for the PC:

BSR i

tRelative

Op = Ox8D
Cycles = 8
SMem = {Mem(Reg(SP)-I) hi (Next),

Mem(Reg(SP» lo(Next) }
SReg = {PC M.

SP Reg(SP) - 2 }
SCCR = 0

There is a lIJump" instruction. Indexed and extended addressing modes may be used.
The memory and CCR con~nts are unaffected.

JMP

lItIodes
EMemory

Mode E { Indexed. Edended}
OpBase = Ox7E
Cycles = CyclesBase-l
SReg {PC M}

SCCR = o

53 Microprocessor Instruction Set

There is a "Jump to Subroutine" instruction, similar t·? the JMP instruction, which save.s
the return address on the stack. The number of cycles taken to execute thi!: iastrvdion
does not obey the normal rules which apply to all other instructions with multiple
addressing modes.

JSR
lIttodes

Mode e { Indexed, Extended}
OpBase = axBD
Mode Indexed =} Cycles = 8
Mode Extended =} Cycles = 9

SMem = (Mem(Reg(SP)-I) hi(Next).
Mem(Reg(SP» lo(Next) }

BReg {PC M}
SP Reg(SP)-2 })

BCCR 9

The 6800 includes the following branch and jump instruetion.s:

BranchOp a BRA v BCC V BCS V BEU V BGE V
BGl V BHI V BlE V BlS V Bll V
BMI V BNE V Bve v BVS V BPl V
JMP V JSR

54 Microprocessor Instruction Set

0.5 Condition Code Regleter instruetions

This set of instructions use inherent addressing and do not a.ffect the memory contents.
Most of tbe instructions upda.te CCR fla.g bits, but not the rest of the registers.

ilJCCR I

4lInherent
:Memory

Cycles = CyclesBase
SReg = 0

The following instrucl.ioDs ma.y be performed to clear and set individual Condition
Code Register bits:

CLC s ilJCCR I Op =OxOC A SCCR ={C ~ O}

CLI Q ilJCCR I op = OxOE A SCCR ={I ~ O}

CLV s ilJCCR I Op = OxOA A SCCR ={V ~ O}

SEC S ilJCCR , Op = OxOD A SCCR ={C ~ I}

SEI e ilJCCR I Op = Ox OF A SCCR ={I ~ I}

SEV S ilJCCR I Op =OxOB A SCCR ={V ~ I}

The setable bits of the CCR ma.y be loaded from accumulatQr A:

TAP Q ilJCCR I Op =Ox06 A SCCR =Reg(A)

Coovef1lely, accumulator A ma.y be loaded with the CDDtent8 of the CCR:

TPA -,

~ingleAcc I

Op = Ox07
SReg = {A ~ Reg(CCR) }
SCCR = 0

These operations may be collected together as a. fa.mily of instructions:

CCROp e CLC VCLI VCLV VSEC VSEI VSEV VTAP V TPA

55 Microprocessor Instruction Set

5.6 Miscellaneous instructions

There is a ClNo Operation" instruction which does nolhing but pass program control to
lhe nexl instruction:

NOP
tIIInherent
=M6800

Op = OxOl

Cycles = CyclesBase

There is a "Return from Subroutine" instruction. The PC is restored from the slack.
The memory contents and the CCR are left unaffected.

RTS i

tIIInherent
EMemory

Op = Ox39

Cycles = 5
6Reg = {PCH Mem(Reg(SP)+!),

PCl Mem(Reg(SP)+2),
SP Reg(SP)+2 }

6CCR = B

There is a GSoftware lnterrupt" instruction. This simulates an interrupt using its

own vector.

SWI
tIIInherent
tIIInterrupt

Op = Ox3F

Cycles = 12
Vector = OxFFFA

56 Microprocessor Instruction Set

There is il. IIlWait for Interrupt"' instruction. This stacks the registers and then waits for

a.n IRQ (if the interrupt mask bit in the CCR is not set) or an NMI interrupt to occur,

or for the system to be reset. Unless a.n external interrupt is received, the program will

be suspended forever.

~AI

41Inherent
41Interrupt

Op = Ox3E
Cycles ;t 9
Vector • {OxFFF8. OxFFFC. OxFFFE}
Icc = 0 ::::> Vector ~ OxFFF8

There il!l a IilReturn from Interrupt" instruction. The registers a.re a.ll restored from the

stack. The memory contents are left una.ffected. The CCR is loaded from a. memory
byte on the stack but the individual bits are not subsequently a.ffeded by the
instruction.

RTI
I)Inherent
EMernory

Op =Ox38
Cycles = 10
6Reg = (CCR Mem(Reg(SP)+1l,

B Mem(Reg(SP)+2l.
A Mem(Reg(SP)+3),
XH Mem(Reg(SP)+4),
Xl Mem(Reg(SP)+S).
PCH Mem(Reg(SP)+6).
PCl Mem(Reg(SP)+7) •
SP Reg(SP)+7}

seCR = 0

The 6fO) includes the following miscella.neous instructions:

M;.cOp • NOP V RTS V S~I V ~AI V RTI

57 Microprocessor Instruction Set

8. Overall operation

Op·codes which have not so far been specified are considered illegal. The state of the
system alter the execution of such an op-code is undefined.

IllegalOp S M6BOO I Mode = Illegal

This specification could be tightened if more were known about an illegal instruction.
For example, at present this specification allows the contents of the registers and RAM
to be entirely changed after an illegal instruction. If more information were available,
predicates could be added to this schema.

The following groups of legal instructions discue:sed in previous e:ections may be

executed by the 6&10. We project the (change of) state of the 6800 since we are not
interested in any of the temporary components defined in each of the individual
instruction schemas for the convenience of the specification.

LegalOp a:
(AccMemOp V IndexOp V BranchOp V CCROp V Mi scOp) t AM6800

The system has three pose:ible sources of external interrupt:

Ext Int errupt ~ (IRQ. V NMI V Reset) I Mode = Interrupt

The priority of external interrupts bas not been defined above (i.e. if two interrupts

occur simultaneously eitber could be e:erviced first) since the documentation used 18,9J
did not make any ordering clear. Sucb details could easily be included in the formal
definition of the 68)0 by including the status of tbe external interrupts aa pari of the
state.

Each operation executjon of the 6800 consists of the execution of an instruction (legal
or otberwise) or an external interrupt:

Instruct ion IllegalOp • LegalOp

Exec ~ Instruction V Ext Interrupt

58 Microprocessor Instruction Set

When the 6800 is started, a sequence of such operations is executed depending on tbe
contents of memory and (non-detennini!tically in this specification) on the occurence of
external interrupts.

Given the specification of each of the instructions I it is possible to consider sequences of
instrudioD.s and prove (in tbe absence of any external interrupts) properties of such
sequencu. For example, often a decrement instruction is followed by a conditional
branch instruction at the end of a loop. We could prove the following properties of
sue b a construct:

DEXBNE Q DEXtAM6800 , BNEtAM6800

DEXBNE ~ Reg(X)~l => Reg' (PC) = (Reg(PC)+3ltMem(Reg(PC)+2)
DEXBNE ~ Reg(X)=l => Reg' (PC) = Reg(PC)+3

59 Microprocessor Instruction Set

7. Conclwlion

The instruction set of the Motorola 6800 microprocessor has been formally specified.
Enough experience has been gained so that more complicated and modern
microproce6sors such as the 68000 family could be specified in a similar ma.nner.
However such processors would require a larger document and more work in order to
cover them fully.

The specification of the instructions have been factored out using framingschemas to
reduce the overa.ll length of the specification given here. If Z where to be used to
present an in6tructioD set in the form of a manual, then it is anticipated that each
instruction would be allocated at least a page with an expanded schema allOWing easy
reference for the jnstruction on that page alone. A possible example layoutis Shown in

Appendix A.

Z has proved an excellent tool for specifying a microprocessor instruction set. The
length of the specification is very favourable with the more informal methods currently
used for instruction set documentation in industry and elsewhere. Not only that, but we
also gain a means of formally reasoning about the properties of the instruction set.
This could prove to be inva.luable, especially at the design stage. In the future,
computer-based tools should be available to check consistency and give assistance with
proofs. It is to be hoped that manufacturers will adopt such methods in due course.

8. Ad:nowledgementa

Thank you to the developers of the Z specification language at the PIG and the
inventors of the 6800 microprocessor at Motorola. Carroll Morgan, Tim Gleeson and
Brian Monahan at the PRG provided helpful comments on early drafls. Ruaridh
Macdonald at RSRE, Malvern and Stephen Murrell at the University of Miami also
gave some useful suggestions. Steve Heath of Motorola, UK and Rajit Chandra of
Intel, California commented on the paper from a manufacturer's point of v-iew. Roger
Gimson. Karen Paliwoda, Stig Topp-Jorgensen and Bernard SUfrin at the PRG kindly
checked iater drafts.

60 Microprocessor Instruction Set

9. Rererenees

1.	 Hunt, W. A. IIlFM8501: A Verified Microprocessor', Technical Report 47.
Institute for Computing Science, The University of Texas at Austin, (1986).

2.	 SUfrin, B. A. (Editor) liZ Handbook". Draft 1.1, Programming Research Group,
Oxford University, (1986).

3.	 Spivey, J. M. IIlUnderstanding Z: A Specification La.nguage a.nd its Forma.]

Sema.ntics·, DPhil Thesis, Programming Research Group, Oxford University,
(1986).

4.	 Spivey, J. M. -The Z Library - A Reference Manual", Programming Research
Group, Oxford University, (1986).

5.	 Woodcock, J. ·Structuring SpecifJCatioDs - Notes on the Schema Notation",
Prorramming Research Group, Oxford Univeni&Yr (1986).

6.	 King, S., 8IlJrenseo, I., Woodcock, J. ·Z: Concrete and Abstract Syntaxes",
VeI'lion 1.0, Programming Research Group. Oxford University, (1987).

7.	 Hayes, I. J. (Editor) ·Specification Ca.ae Studies", Prentice·Hall International
Series in Computer Science, (1987).

8.	 -M6800 Microprocessor Programming Manual", Motorola Semiconductor
Products Inc .• (1975).

9.	 -M6800 Microprocessor Instruction Set Summa.rT', Motorola Microcomputer
Applications Engineering.

61 Microprocessor Instruction Set

Appendix A

Example manual pages

An example layout for two instructions in a 6800 microprocessor instruction set manual
are given overleaf. It is suggested that each instruction should be given a page like this
in such a manua.l k> allow quick reference for a particular instruction without the
necessity for cross reference , once the framework of the specification has been
assimilated by the reader.

62 Microprocessor Instruction Set

Brand. if Greater Than lero BGT

Operation

BGT i

M16800
Cand : Bit

Op
Mode
NBytes
Cycles
Cand
Cand
Cand
6CCR
6Mem

=
=
=

Ox2E
= Relatie

= 2
4

Zcc~(Ncc·Vcc)
O=06Reg=B

1 =0 6Reg = {PC'" NexttMem(Reg(PC)+l)}

B
B

Description

Causes a branch if 1.. is !let or one of N and V (but not both) is set.

If the BGT instruction is executed immediately after execution of any of the instructions

CBA, CMP j SBA, or SUB, the branch will occur if and only if the two's complement

number represented by the minuend (Le. accumulator A or B contents) WaB greater
than the two's complement number represented. by the subtrahend (i.e. memory
contents).

Only the PC is affected. If a. branch occurs, then the PC is updated with the relative
offset, otberwise the program. procedes to the next inatruction as Donna!.

Microprocessor Instruction Set 63

Jump to Subroutine JSR

Operation

JSR
AM6800

(Op = OxAD
Mode Indexed

NBytes 2

Cycles 8

6Reg (PC Reg(X)+Mem(Reg(PC)+l»,

SP Reg(SP)-2})
v
(Op OxSD
Mode = Extended

NBytes = 3

Cycles 9

6Reg = (PC, Mem(Reg(PC)+I),

PCl Mem(Reg(PC)+2),

SP Reg(SP)-2})

seeR = e
6Mem = {Mem(Reg(SP)-I) hi(Next),

Mem(Reg(SP)) lo(Next) }

DeeaiptioD

The program counter is incremented by 2 or by 3, depending on the addressing mode,
and is then pushed onto the stack, eight bits at a time. The stack pointer points to the
next empty location on the stack. A jump occurs to the instruction stored at the
numerical address, obtained according to the addressing mode.

64 Microprocessor Instruction Set

Appendix B

MathematkaJ and Sehema notation

A glossary of the Z malhematical and schema. no\alion UBed in this monograph is
included here for easy reference. Readers should note 'hat the definitive concrete and
abstract syntax for Z is available elsewhere [SI_

Z Reference Glossary

Mathematical Notation

1. net"mitions and dedarationa.

Let x,)(I be identifiers and let T,T I sets.

[Tl' T2] Introduction of generic sets.
LHS Q RHS Definition of LHS as

syntactically equiva,lect ~ RHS.

T :: = xl I xz ' ••• I xn
Data type definition.

x: T	 Declaration of x as type T.
xl:	 T1 ; xz: 1z; ... ; xn: Tn

LUit of declarations.

Xl'	 xz. •)en: T
Q Xt:Ti X2: Ti •. , x :1.n

2. LogIe.

Let P. Q be predicates and 0 declarations.

~ P Negation: -Dot P".
P A Q Conjunction:"P and QIt,

P v Q Disjunction:" or 0":
.-(_PA -U).

P'" Q Implication: "P implies U" or
"if P then 0": Q ... p Y Q.

P .. Q Equivalence: "P is logically
equivalent toO";
.(P"'Q) A(Q"'P),

true Logical constant.

false Q .. true

'f x : T .. P Universal quantification:

&for all x of type T,P holds".
3 x : T .. P Existential quantification:

"there exists an x of type T such
that Pll.

31 x T	 .. P)C Unique existence:

"there exists a. unique)C of type
T such that P".

~ (3)C : T • Px "

Glossa.ry 65

-(3y,r I y" • Py }).

'ttl xl:Tl' x2:T2' ... ; xn:Tn • P

"For all Xl of type TI'

)(z of type Tz•••. , and
x n of type Tn' P holds."

3)(1:11;)(2:T2; •.. : xn:Tn • P

Similar to V.

3 1 xl: T1;)(2:T2; ... :)(n:Tn· P

Similar to 'ttl •
Y 0 I P • Q • (Y 0 • P .. Q).

3 0 I P • Q • (3 0 • P A Q).

D t- P Theorem: Q t- V D • P.

a. Seta.

Let 5, T and X be setsj t , tl,: tenns; P a
predicate and D declarations.

t 1 = t 2 Equality between terms.

t 1 1- t z Inequality: Q (t 1 = t z).

t • 5 Set membership: 4t, is an element

of 5".
t , 5 Non-membership: Q ... (t E 5).

e Empty ,.1: • {"X I f.lse}.

5 ~ r Set inclusion:

• (Yx'S·x'T).
5 c r Strid set inclusion:

Q sl;TASPT.

{t1• t z..... to} The sel
containing t 1• t z•... and tn'

{xdlP}
The set containing exactly those
)(of type T for whic::h P holds.

(tl' t z•...• t) Ordered n~tuplen

oft l.t2•··· and tn'
T1)(T2)(...)(Tn Cartesian product:

the set of all n·tuples SUch that

the k th componen I is of type Tk'

{)(l: Tl: x2:T2: '" • xn:Tn I P}

The set of n-tuples

(Xl')(2' ...• xn) with each
xk of type TI,: such tbat P bolds.

66 Glossary

{DIP.t}
'The set of t 's such that given
the declarations D, P holds.

{D • I}. {D I Irue • I}.
P 5 Powerset: the set of all subsets

015.
PIS Non-empty powerset:

P, 5 • P 5 \ {~}.

F 5 Set of lillite subsets of 5:
• {T, P 5 I Tisfinile}.

F1 5 Non·empty finite set:
F,5"F5\{~}.

5 n T Set intersection: given 5. T: P X,

• {., X I x E 5 A X E T}.
5 u T Set union: given 5. T: P X,

• {., X I x E 5 v x E T}.
5 \ T Set difference: given 5. T: P X,

• {., X J x E 5 A X _ T}.
n 55 Distribuled set intersection:

gi,en 55, P (P X),
i {.,X I (V5,55 ' xE5)}.

U 55 Distribu\ed set union:
gi,en 55, P (P X),
• {.,X I (35,55 • x E 5)}.

as SiJe (number of distinct
elements) of a finite set.

p 5 Arbitrary choice from a set.

4. Relations.

A relation is modelled by a set of ordered
pain hence operaton defined for sets can
be used on relations.

Let X, V,andZ besetsjx: X; y: V; and
R, X Y.

X 4-+ V The set of relations from X to V:
"P(XxY).

x R Y x is related by R to y:

" (x. y) • R. (R is olteo
underlined for clarity.)

x y
{xl yl.

dom R

ran R

R1 I Rz

RIo RZ

R-1

j d X

Rk

R·

R+

ReS)

5 ct R

5 4 R

R ~ T

R .. T

" (x, y).
xz yz, ...• xn~Yn}

The relation
{(x,.y,) (xo,Yo)}
relating Xl to Yl' ... , and

X n ~ Yn •

The domain of a relation:

o{.,X 13y,Y·xRy}.

The range of a relation:

" {y,Y I 3.,X • x R y}.

Forward relational composition:

given R1: X 4-+ V; R : V 4-+ Z,
z
" {.,X; z,Z 13y'Y'

x RI Y " Y Rz Z }.

Relational composition:
Q Rz , RI ·
Inverse of relation R:

• {y,Y, ",X I x R y}.
Identity function on the set X:
a{x:X·x x}.
The relation R composed with
itself k times: given R: X4-+ X,

RllRO Q id X, Rk+ 1 Q 0 R.

Reflexive transitive closure:

" U {n' N ' RO
}.

Non·renexive transitive closure:
o U {n' N, • RO

}.

Relational image: given 5: P X,

° {y,Y r 3., 5, xRy}.

Domain restriction to 5:

given 5: F X.

° {.,X, y'Y I xE5 A xRy}.

Domain subtraction:

given 5: F X,

° (X \ 5) 4 R.
Range restriction to T:

given T: F V,

o{.,X,y'Y I xRy A yET}.

Range subtraction of T:

given T: F V,

" R ~ (Y \ T).

5. Fnnctions.

A function is a relation with the properly
that for each element jn its domain there is
a unique element in its range related to it.
A!J functions are rel.a.tions all the opera~ors

for rel.a.tions also apply to functions.

X -H Y	 The set of partial functions from
X to Y:

•	 {f : X.... Y I V.: dom f·
(3, y: Y •• f y)}.

X	 -+ Y The set of total functions from

X 10 Y:

• {f : X -++ Y I dom f =X}.
X	 >4+ Y The set of partial injective (one

to-one) functions from X to Y:
• {f : X-++ Y I V Y : ran f •

(3, x: X·f.=y)}.
X ~ Y The set of total injective

functions from X to Y:

• (X-Y) n (X Y).
X	 Y The set of partial surjective

functions from X to Y:

• {f : X -++ Y I ran f = V}.
X ... Y The set of total surjective

functions from X to Y:
• (X Y) n (X Y).

X	 ~ Y The set of total bijective

(injective and surjective)
functions from X to Y:

• (X-y) n (X>-+y).
X	 ~ Y The set of finite partial

functions from X to Y:

• if:	 X-++ Y I
f • F (X x V)}.

-H>4+ ,.. Partial functions.
-+~ ~	 Tota.l functions.

.....,....--- Finite functions.
fl. f z Functional overriding: given

f 1,fz :X......Y,

• (dom f Z ~ f,) u f 2.

Giossary 67

Prefix function (default).

Infix function (often underlined

for clarity).

f POfitfix function.
f t The function f applied to t.
f(1) • f t.

(X x , X I P • t) Lambda-abstraction:
the function that, given an
argument x of type X such
that P holds, the result is t.
• { • : X I P t }.

(Xx,:T,: ... : '"T, IP· t)
Q {><l:T I : '" ; xn:T n I p.

(Xl' ...• x n) ~ t}.

6. Nnmbera.

Let m, n be natura.l numbers.

N The set of natural numbers
(non.negative integers).

HI The set of strictly positive
natural numbers: a N \ {O}.

Z The set of integers (positive,

zero and negative).

succ n Successive ascending natural

number.

pred n Previous descending natural
1number: a succ- n.

m ... n Addition: a succ n m.
m - n Subtraction: a predn m.

m * n Multiplication: Q (_ ... m)n O.

m d...i..Y. n Integer division.
m mod n MOdulo arithmetic.

nm Exponentiation: Q L * m)n 1.
m ~ n Less than or equa.l, Ordering:

'li; Q succ·.

m < n	 Less than, Strict ordering:
iii m'li;.n"miiln .

m ~ n Greater than or equal: Q n ~ m.
m > n Greater than: Q n<m.

m.. n	 Range: Q {k:N I m~k" k~n}.

68 Glossary

min S	 Minimum of a finite set;
forS:F 1 N,
min 5 E 5 II

(Vx.:S • x ~ min 5).
max. S	 Maximum of a. finite set;

for 5 : F1 N,
max.SES II

(Vx.:S • x. :(m8X 5).

7. Sequenc::es.

Let a, b be elements of sequences, A, B be
sequences and m, n be natural numbers.

seq X	 The set of sequences whose
elements are drawn from X:
_{A, N-X I

domA=!,.oA}.
<> The empty sequence e.
seq1 X The set of non-empty sequences:

_ seq X \ {<>}

<a 1• ••• • an>
a {1""-+81' ...• n....-+an }.

<e1• .•. • en>'-' <b 1• ... • bm>
Concatenation:

Q: <a 1.....	 an' bt •.•.• bm>,
<>-A = A-<> = A.

head A	 The first element of a
non-empty sequence:
A ~ <> ...	 head A = A(I).

1ast A	 The final element of a
non-empty sequence:
A ~ <> ... las' A = A(oA).

t ail A All but the head of a sequence:
h;]«x>-A) = A.

front A	 All but the 1ast of a sequence:
fron'(A-<x»= A.

rev <aI'	 82' • 8 n> Reverse:
Q <an 8Z' al>'
rev <> =	 <>.

-1M	 Distributed concatenation:
givenAA: seq(seq(X»,
- M(I)- ... -M(oM),

-1<> = <>.
liAR	 Distributed relational

composition:
given AR : seq (X H X),
- AR(I)	 •... I AR(oAR>,
I 1<> = i d X.

_/AR	 Distributed overriding:
givenA : seq (X ~ Y),
• AR(l) •... _ AR(oAR),
_I <> = e.

squash f	 Convert a finite function,
f: N.... X	 into a sequence by J

squashing its domain. That is,

squash " = <>,
and if f iI- iJ then
squash f =

<f(j» -squash({j}~ f)

where i = min(dom n.
S 1 A Index restriction:

• squash(S 4 A).
A t T	 Sequence restriction:

- squash(A ~ T).
d i sjo i nt	 AS Pairwise disjoint:

given AS, seq (P X),
Q (V i.j	 : dom AS • i~j

... AS(i) nASU) = e).
AS pert it ions S

~ disjoi nt AS II

U ran AS = S.
A .in B Contiguous subsequence:

• (3C, D, seq X •
C-A-D=8).

Schema Notation

Axiomatic definition: introduces global
declarations which satisfy one or more
predicates for use in the entire document.

Ldedaration(s)

I predicate(s)

Schema definition: a schema groups
klgether some declarations of variables and
a predicate relating these variables. There
are two ways of writing schema.s: vertically,
for example

r;:~, · ·

x , Ity

---------',
or horizontally, for the same example

S • I X' N; y; seq N I x<Oy J.
U.se in signatures after V, A. { ..• }, etc.:

(VS • y ~ 0) • (Vx;N; y; seq N
x<oy • y~O).

&hemas as types: when a schema name 5
is used as a type it stands for the set of all
objects described by the schema, {S}. For
example, w : 5 declares a variable H wjth
components)((a natural number) and y (a
sequence of natural numbers) such that

)(" Ity.

Projection functions: the component names
of a schema may be used as projection (or
selector) functions. For example, given
H: 5, H.xis H'S)(cornponentand H.y is
its y componentj of course, the following

GIDssary 69

predicate holds: H. x, 8tH. y. Additionally,
given 101 : X ~ 51 HI (>'5. x) is a function
X~N, etc.

as	 The tuple formed from a
schema's variables: for example,
as is (x. y). Where there is
no risk of ambiguity, the e is

someiimes omitted, so that just
"5" is written for ~(x. y) ...

pred S	 The predicate part of a schema:
e.g. pred S is x ~ lIy.

Inclusion	 A schema S may be included
within the declan.tions of a
schema T, in which case the
declarations of S are merged
with the other declaratioDs of T
(variables declared in both S
and T must be of the same type)
and the predicates of 5 and T
are conjoined. For example,

T~~;N i

z < X
---1

'

is

I
x. Z : N
y : seq H

x~ltyl\z<x

SIP	 The schema S with P conjoined
to its predicate part. E.g.,
(S I x>O) is

[x:N;y:seqN J xOyl\x>O).

70 Glossary

S ; D The schema S with the
declarations D merged with the
declarations of S. For example,
(5 : z : N) is

[x, z: N; y: seq N I x~ay].

5 V T The schema formed from
schemas 5 and T by merging
their declarations and disjoining
(or-ing) their predicates. For
example,S V T is

S [new/o 1dl Renaming of components:
the schema S in which the
component old has been
renamed to ne... both in the
declaration and at its every free
occurrence in the predicate. For
example, S[z/x] is

x : N
y : seq N

z P N

x~l:tyvxez

[z:N: y:seq N I z ~ ay 5 - T The schema fonned from
..d5[yfx.xfy} is schemas 5 and T by merging
[y: N 0 x; seq N I y 'SO ax]" their declarations and taking
In the second case above, the pred 5 .. pred T as the
renaming is simultaneous. predicate. E.g., 5 T is

Decoration Decoration with subscript,
superscript, prime, etc.;
systematic renaming of the
va.riables declared in the
schema. For example, S' is
[x':N; y':seqN I x':li:ay'].

.....S The schema 5 with its predicate

x N
y seq N
z : P N

X~I:tY"'XEZ

p:ut negated. E.g., "'S is 5 .. T The schema formed from
["N: y:,eo N ["(x.'y»). schemas Sand T by merging

SAT The schema formed from their declaratioI18 and taking
schemas 5 and T by merging pred S .. pred T as the
their declarations (see inclusion predicate. E.g., 5 ~ T is

above) and conjoining (and-ing)
their predicates. Given T Q [x: x N
No z: P N I xEz], SAT is Y seq N

z P N

x N
y seq N x:li:I:tY"'xEz

z P N

x~ayAxEz

5 \ (v 1• Vz. ... • vn)

Hiding: the schema 5 with the

variables v l' vz•. ··• and vn
hidden: the variables listed are
removed from the declarations
and are existentially quantified
in the predicate. E.g.,S \ x is
[y'Seq N I (3X'N· x,"y)].

(We omit tbe parentbeses when
only one variable is bidden.) A
schema ma.y be specified instead
of a list of variables; in tbis case
tbe variables declared in that
scbema are bidden. For
example, (S A T)\5 is

z , P N

(3 X' N, y' seq N •
x ':!iO .y II X E z)

S t (v1'	 vz• ... • vn)

Projection: Tbe schema S witb
any variables tbat do not occur
in tbe list v1' vz. ...• vn
hidden: the variables removed
from the declarations are
existentially quantified in the
predicate.
E.g., (S A T) t (x, y) is

x : N
y seq N

(3 z , P N

x EO #y /I, x E z)

As for hiding above, we may
project a single variable with no
parentbeses or tbe variables in a
scbema.

Gl088ary 71

The following conventions are used for

variable names in those scbemas which

represent operations - that is, which are

written as descriptions of operations on

some state:

undasbed state before,

dashed ("'") state after,

ending in Cl?lII inputs to (arguments for),

ending in II!" outputs from (results of)

tbe operation.

The following schema operations only
apply to Bchemas following the above
conventions.

pre S	 Precondition: all tbe state after
components (dasbed) and the
outputs (ending in II! It) are
hidden. E.g. given

S	 I

x?, s, 5'. y! N

s = s-x? II \J! = 5

pre S is

x?, s N

(3s',y!'N.

5' = s-x? II \J! = 5)

post S	 Postcondition: tbis is similar to
precondition except all tbe state
before components (unda.sbed)
and inpuls (endin& in "'?") are
hidden. (Note tbat this
definition diffen from some
otben, in which the
"postcondition" is the predicate
relating all of initial state,
inputs, outputs, and final state.)

72 Glossary

S • T

S , T

Overriding:
, (S A "pre T) V T.

For example, given 5 above and
T

x?, 5, 5' N

5 < x? II 5' = 5

5 • T is

x?, 5, 5', y! N

(5' ~ 5-X? II y! = 5 II

~(3 s', N
5<X?II5'=5))

v (5 < x? II 5' = 5)

Because (given the declaration
s: N above):

(35': N • 5'=5 II 5<X?) ..

(s E N A 5 < x?) ..

s < x?,

the predicate can be simplified:

x? 5. 5'. y! : N

(5' = 5-X? II y! = 5

II 5 ~ x?)
v

(5 < x? II 5' = 5)

Schema composition: if we
consider an intermediate state
that is both the final state of the
operation 5 and the initial state
of the operation T then the
composition of 5 and T is the
operation which relates the
initial state of 5 to the final
state of T through the
intermediate state. To fonn the
composition of 5 and T we take

the state-after components of 5
and the state-before components
of T that have a basename l in

common, rename both to new
variables, take the schema which
is the uand" (A) of the resulting
schemas, and hide the new
variables. E.g., 5 , T is

X?5, 5', y! H

, N(3 So
50 = s-x II y! = 5 II

50 < x? II 5' = 50)

• basename is the name with
any decoration (,...., OI! ", ll?tI,

etc.) removed.
5	 » T Piping: this schema operation is

similar to schema composition;
the difference is that, rather
than identifying the state after
components of 5 with the state
before components of TI the
output components of 5 (ending
in cr.! tI) are identified with the
input components of T (ending
in U?tI) that have the same
basename.

The following conventions are used for
prefixing of schema names:

~s change of before and after state,
=5 no change of state,
¢6 framing schema for definition of

fuI1her operations.

For example
~s • 5 " 5'
55 • ~s I as = as'

~S I y = y'
4>5 •5 0p Q 4>S I x'	 = 0

