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Abstract Software systems continuously evolve to accommodate new features
and interoperability relationships between artifacts point to increasingly rel-
evant software change impacts. During maintenance, developers must ensure
that related entities are updated to be consistent with these changes. Studies
in the static change impact analysis domain have identified that a combina-
tion of source code and lexical information outperforms using each one when
adopted independently. However, the extraction of lexical information and the
measure of how loosely or closely related two software artifacts are, considering
the semantic information embedded in their comments and identifiers has been
carried out using somewhat complex information retrieval (IR) techniques. The
interplay between software semantic and change relationship strengths has also
not been extensively studied. This work aims to fill both gaps by comparing
the effectiveness of measuring semantic coupling of OO software classes using
(i) simple identifier based techniques and (ii) the word corpora of the entire
classes in a software system. Afterwards, we empirically investigate the inter-
play between semantic and change coupling. The empirical results show that:
(1) identifier based methods have more computational efficiency but cannot
always be used interchangeably with corpora-based methods of computing se-
mantic coupling of classes and (2) there is no correlation between semantic
and change coupling. Furthermore we found that (3) there is a directional re-
lationship between the two, as over 70% of the semantic dependencies are also
linked by change coupling but not vice versa.
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1 Introduction

Software Change Impact Analysis (CIA) is an essential technique for identi-
fying the potential ripple effects caused by software changes during software
maintenance and evolution [9,70]. CIA techniques can be typically static or dy-
namic [62], depending on how the information is collected to analyse its change
impact. Dynamic techniques rely on information gathered during program ex-
ecution to compute the change impact set while static techniques are centred
around the source code, semantic information and change dependencies. Be-
cause of the many false positives and the effort required in dynamic analysis
(collecting data during execution and analyzing data during execution), static
techniques have gained popularity [62].

Most studies on static impact analysis have shown that certain classes,
identified by patterns or metrics, are more likely to be impacted by a change
and, hence, practitioners will need to invest extra effort in their future main-
tenance. Other studies, specifically addressed at establishing a link between
coupling and co-change, have found that the set of co-changed classes was
much larger compared to the set of structurally coupled classes [21,25,46,47].
This implies that not all of the change dependencies are related to structural
dependencies and there could be other reasons for software artefacts to be
change dependent [47]. High coupling between classes in an OO design can
increase system complexity by introducing multiple inter-dependencies among
the classes [61]. Moreover, excessive coupling can complicate testing, make ad-
ditional changes problematic and limit possibilities for reuse [54]. Software that
is not flexible or tolerant to modification is usually destined to abandonment
or replacement [45].

Kagdi and Maletic have estimated that there is a hidden dependency (HD)
between two classes or two methods if the classes or the methods are changed
at the same time in the past [33]. As Yu et al. stated [76]: ‘hidden dependencies
among software artefacts make both understanding and maintenance difficult ’.
Briand et al. showed that if developers are required to handle a large set of
dependencies, they would miss a significant number of them [9]. Poshyvanyk
and Marcus detected dependencies using information retrieval techniques [52].
In a similar way to HD, complex dependencies are captured by semantic infor-
mation which is hard to detect by traditional program analysis techniques [65].
Some CIA tools do not discover HD, and it is the responsibility of the program-
mer to correctly identify and trace HD during change impact analysis [51].

In the last few years, a new dimension has been identified as a hidden
dependency, termed “semantic” coupling, that could have an influence on cou-
pling and co-change. Simply defined, semantic coupling is a measure of how
loosely or closely related two software artefacts are, by considering the se-
mantic information embedded in the comments and identifiers. According to
Bavota et al. [6]:

‘the peculiarity of the semantic coupling measure allows it to better
estimate the mental model of developers than the other coupling mea-
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sures. This is because, in several cases, the interactions between classes
are encapsulated in the source code vocabulary (...)’.

In the conceptual framework for software dependency management pro-
posed by Oliva and Gerosa [45], semantic coupling is not considered as one
of the dependencies to be measured. They state that software dependencies
are the ‘primary’ subject of management, and the identification of dependen-
cies involves capturing structural and logical dependencies. Nonetheless, the
same authors claim that there is still a need to study the interplay between
semantic and logical coupling in OO software as well as the interplay between
structural and semantic coupling [46, 47]. They identified a small intersection
between the sets of structural and logical dependencies after analyzing commits
from the Apache Software Foundation repository. When directly assessing se-
mantic coupling, researchers in the software evolution and dependency domain
have demonstrated that semantic coupling metrics can outperform structural
metrics in identifying classes that might be impacted by a given change re-
quest [53]. Semantic and logical coupling metrics have also been combined in
change impact analysis [35,40].

Researchers have suggested that frequent change coupling indicates a strong
structural coupling between the corresponding modules, sub-modules, or files
as well as possible shortcomings in the design of a software system [21]. How-
ever, the frequency of change couplings have not yet been studied in relation
to semantic coupling. The computation of semantic coupling in studies in this
domain have been done by using information retrieval techniques such as la-
tent semantic indexing (LSI) and vector space modelling (VSM) [34,52,53] to
analyze the corpora of OO software classes (after transforming the semantic
information from source code into a text or words corpus).

In a pilot study, we observed that the extraction of word corpora can
be time-consuming, especially when systems are large and many classes are
involved [2]. With the goal of identifying how the computation of the semantic
coupling of classes can be improved, we statistically compared the metrics
derived from analyzing the corpora of classes against an analysis of only their
identifiers. Results revealed that identifier based metrics reflect the corpora
based measurements. In addition, identifier based measurements were more
efficient in terms of computation time, especially when analyzing large software
classes (e.g., > 1000k lines of source code). It is important to further validate
results derived from the pilot study with a larger sample of projects to improve
generalizeability. In addition, the results will further contribute to knowledge
on how to ease semantic coupling measurement in further studies that rely on
semantic coupling information of classes in OO software.

Given the current state of the art in the area of software coupling, and
extending our previous work, we shift the focus of the change impact analysis
to the semantic link between object-oriented (OO) software classes in 79 OSS
projects (written in Java). This paper examines the strength of semantic cou-
pling [52] between pairs of classes, through the evolution of various software
systems, and correlates it with the likelihood of their future co-change.
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Establishing whether there is an interplay between logical and semantic
coupling has several applications in software engineering including:

1. Co-change inferred by semantic coupling: understanding the influ-
ence of semantic coupling on co-change can also help to infer the co-change
frequency of software classes based on semantic coupling strengths, i.e., se-
mantic coupling metrics can be used to directly inform practitioners about
potential unplanned co-changes of classes in OO software projects.

2. Improving software tools to detect hidden dependencies: "hidden"
dependencies not detected by software maintenance tools during change
impact analysis that cause co-change would be detected with significant
precision.

3. Minimizing historical data extraction and analysis efforts: seman-
tic coupling metrics will be used to inform or predict the strength of the
logical dependencies between classes without the need to analyze historical
data of software projects, thus reducing the effort required (i.e., compu-
tation time and data storage) in the detection of logical dependencies via
mining software repositories. The semantic similarity between class iden-
tifiers will also be used in the ranking of classes that might be impacted
by a given change request without having to analyze software evolution
or historical data, thus minimizing the effort required in change impact
analysis [34].

This work is articulated as follows: in Section 2 we describe the definitions,
research goals and steps taken to carry out this study, with the help of a worked
example to show the empirical approach. Sections 3 and 4 highlight the results
of our study, followed by a discussion on the importance of these findings.
Section 5 highlights the threats to validity and in Section 6 we summarise
the related work. Finally, our conclusions and areas for further research are
presented in Section 7.

2 Research Methodology

In this section, we present the definitions for the different types of coupling
(2.1), the motivating scenario (2.2) and the goals of this research (2.3). Addi-
tionally, we highlight, with the use of worked examples, the steps performed
in the methodology: data collection (2.4); computing the coupling types (2.5);
evaluating their intersection (2.6); and performing the statistical tests (2.7).

2.1 OO Software Dependencies

A dependency is a semantic relationship that indicates that a client element
may be affected by changes performed in a supplier element [47]. In sections
2.1.1 and 2.1.2, we introduce semantic and logical dependencies and discuss
how they can be operationalised in an OO context.
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2.1.1 Logical Coupling

According to Wiese et al., "change coupling is a phenomenon associated with
recurrent co-changes found in the software evolution history" [68]. Co-evolution
of classes can be represented with their change, logical or evolutionary cou-
pling [75,77] (as shown in Figure 2). Therefore, the logical coupling of any two
classes is based on their change history, and is a measure of the observation
that the two classes always co-evolve or change together [15, 23, 24, 67]. They
are commonly treated as association rules [78], which means that when X1 is
changed, X2 is also changed [47]. Furthermore, X1 and X2 are called the an-
tecedent (i.e., left-hand-side, LHS) and the consequent (i.e., right-hand-side,
RHS) of the rule, respectively. For example, the rule {A, B}Ñ C found in
the sales data of a supermarket indicates that a customer who buys A and B
together, is also likely to buy C [47].

Two classes change at the same time when changes in one class A are
made in response to a change in another class B. Kagdi et al. [34] state that
logical coupling captures the extent to which software artefacts co-evolve and
this information is derived by analysing patterns, relationships and relevant
information of source code changes mined from multiple versions (of software
systems) in software repositories (e.g., Subversion and Bugzilla). According to
Lanza et al. [14] it is useful to study logical coupling because it can reveal
dependencies not revealed by analyzing the source code [75] only. These sort
of dependencies are the most troublesome and are the source of many defects
in software. In this study, we adapt the methods proposed by Zimmermann et
al. [77] to represent logical dependencies.

Operationalisation The logical dependency between classes and its degree, is
evaluated in this work using the support and confidence metrics. By doing
so, we evaluated the significance of the association rules between classes [47],
and across the lifespan of a software project (i.e., taking all versions of the
software system into consideration).

The support value counts the number of revisions where two software ar-
tifacts (i.e., classes) were changed together. In other words, the probability of
finding both the antecedent and consequent in the set of revisions. For example,
in Figure 1, class A was modified in 3 transactions (where 3 is the "Transac-
tion Count" [75]). Out of these 3 transactions, 2 also included changes to the
class C. Therefore, the support for the logical dependency A Ñ C will be 2.
By its own nature, support is a symmetric metric, so the AÑ C dependency
also implies AÐ C. The support value of a given rule determines how evident
the rule is [69].

On the other hand, the confidence1 value of a dependency link measures
the degree of the logical dependency and normalizes the support value by the
total number of changes of the causal class, or the antecedent of the association
rule. Numerically, it is the ratio of the support count to transaction count: from

1 Also called the support ratio [75]
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Fig. 1: Association rule example for confidence and support metrics

Figure 1, the confidence value for the association ruleAÑ C (which states that
C depends on A) will have a high confidence value of 2/3 = 0.67. In contrast,
the rule C Ñ A (which states that A depends on C) has a lower confidence
value of 2/4 = 0.5. In other words, the confidence is directional, and determines
the strength of the consequence of a given (directional) logical dependency. The
confidence value is the strength of a given association rule [69].

Logical coupling is directional, thus A Ñ C (changes made to class A
resulted in changes in C) and C Ñ A (changes in C caused changes in A)
will have different meanings. As a result, the confidence for these two cause
ÝÑ effect rules can be different.

2.1.2 Semantic Coupling

Some studies have used the term "semantic" [4,6–8,26,35,53,55], while others
have used the term "conceptual" [26] to describe the same concept. Poshyvanyk
et al. [53] state that conceptual coupling captures the degree to which the
identifiers and comments from different classes relate to each other [4,6–8,35,
55]. Gethers et al. [26] add a twist to the definition and state that conceptual
coupling captures the extent to which domain concepts/features and software
artefacts are related to each other. However, both definitions have things in
common. They are limited to the underlying meanings of unstructured text
in the source code of software entities (e.g., classes) and how these underlying
meanings relate to each other. Furthermore, this relationship is derived in the
form of metrics (-1 to 1, where 1 = high semantic coupling [52]).

Identifiers used by developers for names of classes, methods, or attributes
in source code or other artifacts contain important information and account
for approximately half of the source code in software [34]. These names often
serve as a starting point in many program comprehension tasks. Hence, it is
essential that these names clearly reflect the concepts that they are supposed to
represent, as self-documenting identifiers decrease the time and effort needed
to acquire a basic comprehension level for a programming task [34].
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2.2 Motivating scenario

Figure 2 shows a simplified scenario that underlies our motivation: previous
research [75] (pictured inside the grey box) has shown that the structural cou-
pling between classes causes them to be co-changed, and it plays an important
role in the measurement of co-evolution [75]. However Yu [75] has used corre-
lation to infer a causal relationship and research has shown that correlation
does not always mean causality [18]; there are different ways to identify causal
relationships. In addition to correlation studies which investigate linear rela-
tionships, we have also investigated the presence of a directional relationships
between semantic and logical coupling. Our contribution, expressed in this re-
search, includes semantic coupling in the picture: we posit that the semantic
coupling of classes leads to their co-change and logical coupling (evolutionary
dependencies).

Fig. 2: Motivating example: structural coupling Ñ co-evolution [75] and se-
mantic Ñ co-evolution (to be checked in this work)

2.3 Research goals

The work we present is based on the three following goals:
G1: to establish with a larger sample of OSS projects whether the semantic

coupling between classes using the class names of Java files produces compa-
rable results to using the corpora of the classes content (i.e., the class own
source code) [2];
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G2: to investigate how the semantic coupling strength between classes
has an impact on their future co-changes;

G3: to investigate the directionality of the relationship between logi-
cal and semantic (as motivated by Figure 2) by identifying the proportion
of logical dependencies that involve semantically related elements ("hidden
dependencies" [65]) and vice-versa.

Research questions were derived from each goal, and testable hypotheses
formulated for each question, as summarised in Table 1.

Table 1: Research Goals and Questions

Goals Research Questions Null Hypothesis H0

G1 [Q1] Can semantic coupling between classes be
captured via class names, rather than with source
code corpora?

There is no association between
the semantic similarity measures
of the corpora and identifier based
techniques

G2 [Q2] Is there a linear relationship between logical
and semantic coupling?

No linear relationship between the
strengths of logical and semantic
dependencies

G3 [Q3] Is there a directional relationship between se-
mantic and logical coupling?

No directional relationship

2.4 Empirical Data collection

In the next subsections, we present how and what kind of data we collected
from the repositories of the studied sample of OO software projects.

2.4.1 Selection of a sample of OSS projects

Leveraging the FlossMole project, we used its latest available data dump to
determine the population of GoogleCode: a total of 2,593,222 projects are
listed in the November 2012 dump.2 Given their language descriptions, we
extracted the subset of Java projects from that population, obtaining 49,459
Java projects. Each project in the subset was given a unique ID: using a 95%
confidence level, and a 5% confidence interval, a random sample of 380 IDs
were extracted, and linked to the Java projects’ names.

2.4.2 Storage of projects metadata and revisions

The first phase of this activity was centered on obtaining the metadata (e.g,
name of developers, date and time of changes, etc.) of each project in the
sample. The repository of each project was downloaded and stored, with its

2 Data dump is available at http://flossdata.syr.edu/data/gc/2012/2012-Nov/
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metadata, using the CVSAnalY set of tools.3 The process to obtain the meta-
data for all the projects took around 48 hours: sleep statements were inserted
in a routine not to overload the online servers, and to make sure that the latest
versions of the files were downloaded. The metadata allowed us to obtain the
list of revisions for each class, and for the whole project. The second phase was
to get all the revisions of each project; from this we could identify the trivial
projects (with < 20 revisions) and exclude these from the study. As a result,
we ended up with 79 non-trivial Java open-source software projects with 117
revisions on average.

There is a chance that re-sampling to retrieve a larger sample of projects
could result in a larger number of trivial projects with less than 79 left. Pre-
vious studies have also excluded a number of OSS projects after their initial
sampling. Samoladas et al. [58] and Gousios et al. [27] applied certain selection
criteria to exclude projects from their initial selection. Midha and Palvia [44]
based on certain project selection criteria, reduced their initial sample from
887 to 283. Haefliger and Spaeth [28] reduced their selected sample of projects
to 6 OSS projects with variance on their sampling criteria. The studied sample
included a wide variety of software products such as office software, games, a
hardware driver, and an instant messenger client and this reduced sampling
bias [60]. Similarly in this study, the resulting non-trivial sample of 79 OSS
projects are of different domains, sizes and levels of activity. The sample se-
lection criteria widely used in OSS research [13, 56] and adopted by Haefliger
and Spaeth, includes: 1) the project is under active development, allowing the
tracking of its development activity 4, 2) the source code modifications of the
project need to be available online, and 3) the project should have been in
existence for at least a year.

Because the process of analyzing the correlation between identifier and
corpora based methods of computing semantic coupling is labour-intensive 5,
we focused our attention on a subset of this sample of projects when answering
RQ1 [12] while ensuring that the subset consists of projects of varying sizes
representative of the overall sample.

3 http://metricsgrimoire.github.io/CVSAnalY/
4 Prior research [36] shows that 75% of OSS projects on Github have over 20 commits

and 90% have less than 50 commits. We selected projects with above 20 commits to retrieve
a variety of projects with varying levels of development activity in our sample, improve
generalizeabiliy of the study as well as extract substantial change history to understand
logical coupling.

5 To answer RQ1, it becomes imperative to compute VSM using a Java tool to parse
the corpus of classes after the stemming of words, converting class identifier names from
camel case to snake case with a Shell script, and computing correlations in the R statistical
environment
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2.5 Identifying class dependencies (RQ1)

In the following subsections, we present how the class dependencies were calcu-
lated with examples. We also present assumptions and decisions made during
this task.

2.5.1 Logical Coupling

For each project, we extracted the number of revisions, based on the tables
built by CVSAnalY. This task was a pure SQL extraction task, so it did not
pose a time issue. For all revisions, we extracted the list of pairs of classes
that were co-evolving in that revision and stored this data in a .CSV file. An
example of the co-evolution data is provided in Table 2, detailing an excerpt
of the Java classes that co-evolve in the UrSQL project in its 4th revision.
The first column shows the project name, the third and fourth columns show
classes that were co-changed, through association rules.

Table 2: Co-evolution data for Project UrSQL (excerpt)

Project Name Rev class A class B
UrSQL 4 UDO Filio
UrSQL 4 UDO Main
UrSQL 4 UDO UrSQLController
UrSQL 4 UDO UrSQLEntity
UrSQL 4 UDO UrSQLEntry
UrSQL 4 Filio UDO
UrSQL 4 Filio Main
UrSQL 4 Filio UrSQLController

Using the arules 6 library in the R 7 environment for association rule min-
ing [30], we were able to compute the Confidence metric for each pair of classes
with an established logical dependency. Similar to prior research, the support
and confidence thresholds have been set to 0.01 and 0.1 respectively [37]. This
is because increasing the support and confidence increases precision but low-
ers recall (i.e., only a small number of association rules are identified when
the minimum confidence value is higher than 0.01). The number of identified
co-evolving class pairs reduces based on increase in confidence and such prun-
ing looses important information [78]. Oliva and Gerosa classified confidence
metrics as: [0.00-0.33] low logical coupling, [0.33-0.66] medium logical cou-
pling and [0.66-1.00] high logical coupling and identified that highly logically
coupled classes suffered slightest influence from structural coupling. In addi-
tion, the arules library in the R statistical environment has been used with
a high precision and minimal false positives in prior research across different
disciplines [29,31,37] when mining frequent item sets from data.

6 https://cran.r-project.org/web/packages/arules/index.html
7 https://www.r-project.org/
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2.5.2 Semantic Coupling

In a previous study [2] described in Section 1, we compared two sentence
similarity techniques (based on N-Gram 8 and Disco Word synonym9 cate-
gories methods) against a corpus or text document cosine similarity based
technique (VSM)10 11 for computing semantic similarity between Java classes.
The study was conducted using two software projects and identified by means
of Chi-squared independence tests that measuring the semantic similarity be-
tween classes using (only) their identifiers is similar to using the class corpora.
This is because using identifiers was more efficient in terms of recall, and com-
putation time [2]. The study also identified that English based word similarity
techniques such as WordNet do not perform well on software terminologies
(e.g., export Ø dump). The steps taken to compute the semantic similarity
between Java classes using the three techniques is explained in detail in [2].

In addition, the N-Gram technique is based on the edit distance and shared
sub-strings of length n between sentences [38]. An example is the semantic
similarity between two class identifiers ’Ur S Q L Controller’ and ’Ur S Q L
Entry’ which returns a value of 0.6 for shared sub-strings between 0 and 4. We
have used n-grams of size 4 in this study based on prior information retrieval
research [38, 43] that shows that n=4 increases the precision when analyzing
words or terms in various languages. The N-Gram technique also performs
better on text from other languages [2] apart from English [38, 43] compared
to English based text similarity methods like WordNet. The Disco technique
although with low precision on non-English words has been compared to other
text similarity techniques and proven to perform well when its outputs were
manually checked. According to Despotakis et al. [17] “although the precision
for Disco was low, it did provide additional valuable concepts, which were ap-
proved by both experts. We also manually checked the outputs of the semantic
similarity measurements to minimize the effects of false positives.”

In this study, we extend the previous study with a larger sample of OO
software projects written in the Java programming language. The statisti-
cal methods applied in investigating the association between the corpus and
identifier-based techniques are described in subsections 2.7.1 and 2.7.2. We
also compare the techniques with three semantic dissimilarity thresholds (t =
0.1, 0.2, and 0.5) based on what has been used previously in the literature
(0.195 [38]; between 0.1 and 0.2 [63], 0.2 [19,59]; and 0.5 [10,11]).

8 A Java implementation of the N-Gram distance algorithm is available at https:
//github.com/tdebatty/java-string-similarity#n-gram

9 The Disco sentence similarity measures the semantic similarity between sentences ac-
cording to the synonyms of their words. A Java implementation of the tool is publicly
available at https://sourceforge.net/projects/semantics/?source=directory
10 We have developed a tool that uses the VSM method to automate the corpus based
technique. It can be downloaded at: https://github.com/najienka/SemanticSimilarityJava
11 Two out of the studied projects have also been added to the online repository for repli-
cation.

https://github.com/tdebatty/java-string-similarity#n-gram
https://github.com/tdebatty/java-string-similarity#n-gram
https://sourceforge.net/projects/semantics/?source=directory
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2.6 Evaluating the intersection of sets (RQ2)

Once pair-wise semantic and logical dependencies were identified and the asso-
ciated coupling values were calculated, we then built a spreadsheet per project
based on the data with the following columns; LHS (antecedent), RHS (con-
sequent), semantic similarity, and confidence. Using a Shell script, we could
parse the data and identify the proportion of semantic dependencies that in-
volved non-logical dependencies (i.e., A ´ B from the sets in Figure 3), the
proportion of logical dependencies that involved non-semantic dependencies
(i.e., B ´ A from Figure 3) as well as the intersection set of pairs of classes
that are both semantically and logically related (i.e., AXB from Figure 3).

A B

Semantic dependencies Logical dependencies

Fig. 3: Intersection of semantically and logically coupled classes

2.7 Statistical tests

Both RQ1 and RQ2 are linked to formal statistical testing. Below the two tests
(Chi-Squared for RQ1 and Spearman for RQ2) are illustrated in the context
of the analysed systems.

2.7.1 Chi-Squared (X2) Test (RQ1)

To answer RQ1, we performed a Chi-square statistical test to discover if
the similarity measures from one class identifier-based technique (say, the N-
Gram) produces similar results to the corpus-based technique (VSM). For each
project, we populated a 2X2 contingency table, composed of row (i.e., groups)
and column (i.e., outcomes) variables. The first contingency table visible in
Table 3 is a generic 2x2 contingency table, with the corpus-based outcomes
(VSM) as the outcomes variable, and the identifier-based outcomes (N-Gram
and Disco) as the groups variable. For the statistical test, we used three se-
mantic dissimilarity thresholds t = 0.1, 0.2, and 0.5.
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If s is the semantic similarity between pairs, and using a similarity thresh-
old t (with a lower t implying a weaker similarity), the items of the contingency
table are:

– A: pair of classes with s ě t for both Corpora-based and Identifier-based
techniques;

– B: pair of classes with s ă t for one technique but ě t for the other;

The following are the possible outcomes observed for the threshold t – for
the Identifier-based technique:

– C: pair of classes with s ě t for one technique but ă t for the other;
– D: pair of classes with s ă t for both techniques.

Generic Contingency Table
Corpora-Based (VSM)

Identifier-Based A B
C D

VSM vs N-Gram Comparison - UrSQL project (p=.000532)
ě 0.1 ă 0.1

ě 0.1 3 0
ă 0.1 0 3

VSM vs Disco Comparison - UrSQL project (p=.000532)
ě 0.1 ă 0.1

ě 0.1 3 0
ă 0.1 0 3

Table 3: Contingency Tables: generic (top) and populated (middle and bottom)
with Identifier (either N-Gram or Disco) vs Corpus Based (VSM) techniques

The other two tables (middle and bottom of Table 3) report the values and
results for (i) VSM as the column variable, and N-Gram as the row variable
and (ii) VSM as the column variable, and Disco as the row variable for the
UrSQL Project, with t = 0.1.

After populating the contingency Tables, we tested for the association be-
tween the semantic similarity measures derived from the pairs of techniques
(the identifier and corpus based) using the Chi-square test method (chisq.test)
in R12. This test is used to compare categorical data. It asserts the indepen-
dence of the two techniques, with a null hypothesis H0 of no association be-
tween their outcomes. We set the p-value at 0.05 as the threshold to reject the
null hypothesis and compute the Chi-square tests for each project.

12 http://courses.statistics.com/software/R/Rchisq.htm
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2.7.2 Spearman’s Rank Correlation ρ (RQ1 and RQ2)

This section describes the computation of Spearman’s rank correlation statis-
tical tests for RQ1 and RQ2.

To further answer RQ1, using the semantic dissimilarity thresholds (0.1,
0.2, and 0.5) described in Section 2.5.2, we will in addition to the Chi-square
test compute the linear correlation between the corpora based semantic sim-
ilarity measurement technique and the identifier based techniques to verify
whether the semantic coupling metrics reported by the different techniques
for the same pairs of classes co-vary.

The intersection of dependency sets (from 2.6) is used to evaluate the re-
lationship between the coupling types. All the values of the logical coupling
strength (i.e., the confidence metrics) and all the values of the semantic cou-
pling strength, are pulled together, per pair of classes, per project and along
their string of revisions. Given a project, we created two vectors 13, one with
the values of ‘semantic similarity‘ between classes; the other with all the values
of co-change confidence between classes.

Each observation in both vectors contain the semantic coupling between
two classes and the confidence of their co-evolution or logical coupling metric.
Notwithstanding, the semantic coupling metric is a symmetric metric whereby
the semantic coupling is the same in both directions (for example a pair of
classes A and B in a software project Y, A Ñ B will have the same semantic
coupling metric as B Ñ A). The logical coupling metric however is not sym-
metric. The association rule A Ñ B measures the strength of the following
observation: “when A is modified, there will always be a change in B” [77].
Therefore, A Ñ B and B Ñ A are not treated as the same association rule
(the confidence metric could be different but the semantic coupling metrics is
the same) and are considered as different observations in the created vectors.

Computing a linear correlation between the strengths of the semantic and
logical coupling of classes will help to further answer questions such as: “What
is the strength of the relationship between semantic and logical coupling of
classes?”, “are classes with a high degree of semantic coupling likely to co-evolve
frequently?”. Various correlation coefficients have been considered including
Pearson, Kendall and Spearman. However, for Pearson’s to be valid the data
has to follow a normal distribution [49,75] (the mean, median and mode have
to be the same) while Kendall tau is used in small sample sizes and where
there are multiple values with the same score [20] and interpreted based on
the probability of concordant and discordant observations. Finally, p-values
derived from Kendall tau are more accurate with smaller sample sizes.

The null hypothesis H0 to be tested for RQ2 is as follows:

– H0: No linear relationship between the strengths of logical and semantic
dependencies.

13 By the term vectors we refer to the distribution of values for the logical and the semantic
coupling for the analyzed pairs of classes
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The correlation between the two vectors is evaluated using the Spearman’s
rank correlation coefficient [75]. The Spearman’s metric (non-parametric) was
chosen because it is unlikely that either the semantic or logical coupling val-
ues will have a normal distribution [49]. Additionally, some classes might not
be changed in all the revisions in which they are semantically coupled. Nev-
ertheless the vectors will be of the same size or contain the same number
of observations with the confidence metric in one and the semantic coupling
metric in the other.

We adapt the categorization of correlation coefficients by Marcus and
Poshyvanyk [42] as follows: (r0 ´ 0.1] to be insignificant, r0.1 ´ 0.3s low,
r0.3 ´ 0.5s moderate, r0.5 ´ 0.7s large, r0.7 ´ 0.9s very large, and r0.9 ´ 1s
almost perfect) if the rank correlation coefficient proves to be statistically
significant.

We reject the null hypothesis for all the projects studied at the 95% con-
fidence level. In other words, if the rank correlation coefficient proves to be
statistically significant at the α “ 0.05 level, we will reject the null hypothesis
and fail to reject the alternative hypothesis H1: There is a linear relationship
between the logical coupling and semantic coupling of OO software classes. The
results derived for all projects are described in Section 3.2. The α “ 0.05 level
was chosen as suggested in Yu’s study [75]. One of the threats to the statistical
validity to their study was the selection of the significance level. In that study,
they chose α “ 0.1 which might have resulted in a type I error - mistakenly
rejecting a null hypothesis. To reduce this threat, they planned in future re-
search to decrease the α value to 0.05 for more accuracy (which we have done
herein).

3 Results

Following the methodology outlined above, this section presents the results of
the three analyses, as performed on the selected projects. The aim is to answer
the research questions outlined in Table 1.

3.1 RQ1. Can semantic coupling between classes be captured via class
identifiers, rather than with source code corpora?

A Chi-squared test of independence was carried out to investigate the inde-
pendence of the semantic coupling metrics measured using:

1. A corpora based technique (VSM) and
2. A couple of identifier based techniques (N-Gram and Disco word synonym

category-based)

The measurement was done at the class level of granularity as mentioned
in Section 6.1 and based on the results derived from the statistical test we
could either reject or fail to reject the null hypothesis (H0) presented in Table
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1 for RQ1 : There is no association between the semantic similarity measures
of the corpora and identifier based techniques.

Figure 4 shows the distribution of the p-values per studied OO software
project derived from the Chi-squared test of independence. The box-plot also
shows that we considered three semantic dissimilarity thresholds (t = 0.1, 0.2,
0.5) based on previous studies [10,11,19,38,59,63] on text similarity, whereby
any class pairs with a measure below the threshold were not considered as
semantically coupled.

Fig. 4: RQ1- Chi-square association test results for class corpora (VSM) vs
identifier (N-Gram, Disco word synonym category) based semantic similarity
techniques (box-plot distribution of p-values for threshold t = 0.1, 0.2 and 0.5)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

vsm <-> ngram

vsm <-> disco

Corpora vs N-Gram Spearman's Rank 
Correlation Coe cients

Fig. 5: RQ1- Spearman’s rank correlation results for class corpora (VSM) vs
identifier (N-Gram, Disco word synonym category) based semantic similarity
techniques (box-plot distribution of Spearman’s rank correlation coefficients)

We reject the null hypothesis at the 95% confidence level with only a 5%
error margin. In other words, we consider results as statistically significant
where the p-value is below or at α “ 0.05 level.

Figure 4 shows that when the threshold is set to 0.1, not all the p-values
fall below 0.05. Therefore, we cannot reject the null hypothesis. When the
threshold is set to 0.2, a similar condition for 0.1 also applies for the VSM
Ø N-Gram tests with many outliers above the 0.05 mark. However, when the
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threshold is set to 0.5 all the p-values are less than or equal to 0.05 for the
VSM Ø N-Gram tests. Yet the VSM Ø Disco tests revealed only two outliers
while the rest of the p-values are less than or below 0.05.

In addition to Chi-square independence test, we have used Spearman’s rank
correlation to further verify the linear correlation between the metrics derived
from the corpus based technique against the identifier based techniques. Spear-
man’s correlation results showed generally a statistically significant and weak
correlation in at least half of the projects and between a moderate to large
positive correlation (0.3 - 0.8) in another half of the projects with some out-
liers (negative correlation coefficients) as shown in Figure 5. However, these
negative correlation coefficients are statistically insignificant; the p-values are
greater than 0.05 meaning the negative correlation was identified by chance.

Based on the Spearman’s correlation coefficient results, the semantic cou-
pling metrics derived from IR techniques based on class identifiers and class
corpora do not covary. However, the use of thresholds when testing for their
independence shows a significant association at a semantic dissimilarity thresh-
old of 0.5. This is expected as using a higher dissimilarity threshold of 0.5 for
the semantic coupling means that only a subset of all pairs of classes will be re-
ported as semantically coupled. Therefore, the Chi-square independence tests
only reveal a significant association between identifier and corpora-based IR
methods for a subset of classes – classes that are highly semantically related
(semantic coupling ě 0.5).

Based on the overall results, we cannot reject the null hypothesis and fail
to reject the alternative hypothesis H1 for these tests - There is an associ-
ation between the semantic similarity measures of the corpora and
identifier based techniques, as semantic coupling metrics that exploit class
identifiers [34] capture different information with respect to semantic coupling
metrics using the entire class corpus.

3.1.1 Summary on RQ1 and its results

Similarly to the results derived in our pilot study [2], the Chi-square inde-
pendence test results indicate the association between the semantic coupling
metrics derived when measuring the semantic similarity between OO software
classes based on their identifiers and the whole source code corpus. However,
this association only applies to classes which as highly semantically related
(semantic coupling ě 0.5). This is an important result for further studies that
wish to consider only highly semantically coupled classes, also considering the
efficiency of both approaches (corpora and identifiers) in terms of computa-
tion time. The fifth column in Table 4 in Appendix A shows that time was
saved when we computed the semantic similarity between classes using their
identifiers in all but the first project. For example, the semanticdiscoverytoolkit
project highlighted in Table 4. Extracting the corpus is time consuming as well
as computing the semantic coupling metrics compared to using the identifiers
alone. Especially for ‘large’ projects with hundreds of thousands of lines of
source code, these results are essential for both researchers and practitioners.
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On the other hand, the Spearman’s correlation coefficient results confirm
that the semantic coupling metrics derived from identifier and corpora-based
IR techniques do not covary. Therefore, to recap the identifier-based metrics
and corpora-based cannot be used interchangeably apart from when consider-
ing highly semantically linked classes (semantic coupling ě 0.5) .

Notwithstanding, there are cases or software activities for which one sen-
tence similarity measurement technique will be more useful compared to the
other two. For example, in a scenario whereby two class identifiers are similar
but these classes do not have related comments, the corpora based method will
return a low similarity while identifier based methods will return a high seman-
tic similarity metric. For example, considering the class identifiers Geocoder-
Geometry and GeocoderIT in the geocoder-java OSS project. The following
metrics are returned by the corpora (VSM), N-gram and Disco techniques re-
spectively: 0.0, 0.5 and 0.7. To make use of identifier based techniques, class
identifiers are split into short sentences or phrases before adopting the identi-
fier based techniques. The N-gram technique returns a metric closest to that
returned by the corpora based technique in comparison to Disco because Disco
relies on the English dictionary and will not scale well on non-English terms.
For example, considering the class identifiers Data and AnzeigeSpielfield in
the 4-connect OSS project. The following metrics are returned by the corpora,
n-gram and disco techniques respectively: 0.1, 0.1 and -1.0. At 0.5. The Disco
technique compares words based on the similarities of their synonyms while
the N-Gram technique is based on the edit distance and shared sub-strings
of length n between sentences and has been widely used in the literature on
text analysis [38]. We have used n-grams of size 4 in this because research in
the area of text mining [38,43] has shown that n=4 maximizes precision when
analyzing words or terms in several languages including English, French, Ger-
man, Italian and Swedish. To add to that, long lengths of n increase lexicon
size, will not represent short words well and processing N-grams sizes larger
than 10 is very slow [38].

While identifier based techniques are more efficient when measuring seman-
tic coupling between classes in terms of computation time, the corpus based
technique is useful when recovering traceability links between source code and
design documents [41, 71]. Identifier based techniques are unable to extract
the meaning or semantics of the documentation and source code to produce
similarity measures that can be used to identify traceability links. This is be-
cause the identifier of a design document will be too vague and will likely be
unrelated to a number of class identifiers. But when parts of the documents
are parsed and compared with the terms embedded within the comments and
source code of classes, then parts of design documents can be linked to classes
in an OO software. Traceability is particularly useful when a developer is trying
to comprehend someone else’s code and following any provided documentation
as is usually required during maintenance and evolution. This is usually done
manually and can be time consuming (especially with large systems consist-
ing of millions of lines of code) without tools that can automatically recover
traceability links between source code and documentation.
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3.2 RQ2. Is there a «linear» relationship between semantic and logical
coupling?

In order to answer RQ2, it is necessary for us to compute the Spearman’s
rank correlation (ρ) between the strengths of the logical and semantic coupling
between related class pairs in the studied projects. The strength of the logical
coupling is measured in terms of the confidence metrics of identified association
rules or frequently co-changed class pairs. Similarly to the confidence metric
for logical coupling, the semantic coupling metric range between 0 and 1.

The measurement of how loosely or closely two classes are semantically
coupled is based on the corpora-based method (VSM), having identified that
identifier-based metrics and corpora-based metrics do not share a linear re-
lationship or covary in Section 3.1. Answering RQ2 will shed more light on
whether or not the strengths of the semantic and logical coupling of OO soft-
ware classes covary. For instance, if they do covary, such statistical results
will enable the prediction of the co-change frequency of class pairs based on
the strength of their semantic coupling. To recap, the linear relationship be-
tween both semantic and logical coupling metrics is investigated using the
Spearman’s rank correlation coefficient in this section and the results are now
presented.

The charts in Figure 6 show the correlation results including the p-values
obtained. While Figure 7 further gives a clearer picture of the distribution of
the p-values. Similarly to the correlation tests explained in Section 3.1, we
reject the null hypothesis at the 95% confidence level with only a 5% error
margin for the Spearman’s rank correlation.

3.2.1 Summary on RQ2 and its results

Figure 6 shows that there is no substantial evidence to infer a particular type of
correlation (+ve or -ve) exists between semantic and logical coupling strengths.
There is a positive correlation in some projects, while a negative correlation in
others. The p-values in 7 further show that the correlations might have been
identified by chance and are not statistically significant. This is because most
of the p-values are above 0.05 except for only a very few out of the sample of
studied projects.

Therefore, due to the lack of any considerable evidence to suggest that there
is a correlation between semantic and logical coupling strengths or related OO
software classes, we fail to reject the null hypothesis (H0) for RQ2 presented
in Table 1: No linear relationship between the strengths of logical and
semantic dependencies.

In summary, to answer RQ2 we have computed the linear correlation be-
tween the strengths of the semantic and logical coupling class pairs. We have
used the semantic similarity of class identifiers and the confidence of their co-
evolution. The results indicate that these coupling strengths do not covary,
so they should be considered independent. A pair of classes with a higher
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Fig. 6: RQ2- Correlation between VSM based semantic similarity measures
and confidence
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Fig. 7: RQ2- Correlation between VSM based semantic similarity measures
and confidence (box-plot distribution of p-values)

co-evolution frequency are not necessarily bound to be linked by a semantic
link.

This overall observation has two effects:
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1. inferring the co-evolution degree or frequency of class pairs based on the
strength of their semantic coupling and vice versa will produce a lot of
false positives.

2. Using only semantic coupling information to predict co-evolution will pro-
duce a prediction model with low precision.
Previous research by Abdeen et al. [1] has shown that combining seman-

tic and structural coupling information when predicting change impact sets
outperforms using either of them individually. However, semantic coupling
metrics produced better recall values compared to structural coupling met-
rics. Research has also shown that the lack of a linear correlation does not
imply a lack of causation [50]. In RQ3, we investigate the possibility of a
causal relationship between the semantic and logical coupling of classes.

3.3 RQ3. Is there a «directional» relationship between semantic and logical
coupling?

With the aim of contributing to the interplay between semantic coupling and
logical coupling we went a step further to empirically investigate the presence
or absence of a (bi-)directional relationship between these types of software
dependencies. In Section 3.1, we identified that identifier and corpora-based
semantic coupling metrics do not covary. Consequentially, similarly to Section
3.2 in this section the semantic coupling metric is calculated using the corpora
technique (VSM).

In order to answer RQ3, it is imperative to gain an understanding of the
overlapping or intersection of the logical and semantic class dependencies per
project. The intersection set per project is defined as the proportion of class
pairs linked both logically and semantically. Classes linked logically have either
been co-changed once or more while classes linked semantically share are all
class pairs excluding those without any semantic similarity whatsoever. The
intersection set of class pairs is represented by the shaded area in Figure 3.
Depending on the size of the two sets, the Venn diagram could be far from
symmetric.

Equations 1 and 2 are at the core of RQ3. Two formulas are presented:
the Co-changed Semantic Dependencies (CSD, measured in percentages) and
Semantic Logical Dependencies (SLD, also a percentage). These two formulas
are used as a measure of the class dependencies that belong to the intersection
set (both logically and semantically related classes). The CSD(%) represents
co-changed semantic dependencies, these are class pairs that share a semantic
and modification relationship (frequently co-changed). The SLD(%) represents
classes that are logically or change related and also share a semantic relation-
ship. Some classes might only share either a semantic relationship only or a
logical relationship only and these classes do not belong to the intersection
set.

CSDp%q “
SemanticX Logical

Semantic
(1)
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SLDp%q “
SemanticX Logical

Logical
(2)

Figures 8 shows two summary plots with the CSD and SLD proportion
extracted from the studied sample of OO software projects:

0 10 20 30 40 50 60 70 80 90 100

CSD %

SLD %

CSD and SLD Percentages per OSS Project

Fig. 8: CSD and SLD Percentages per OSS Project (KEY: CSD = Co-changed
Semantic Dependencies; SLD = Semantic Logical Dependencies)

While the proportion of co-changed semantic dependencies (CSD) is high
(ě 70%), the proportion of semantic logical dependencies (SLD) tends to also
be high. Table 5 in Appendix B reveal for each project the number of distinct
semantic dependencies in the third field, the number of distinct logical depen-
dencies in the fourth field, the number of dependencies in the intersection set
– pairs of classes that co-change and are semantically related, the percentage
of semantic dependencies in the intersection set shown in the sixth field (see
equation 1), while the last field shows the percentage of logical dependencies
in the intersection set (see equation 2).

Table 5 is sorted by the project IDs and names for readability. The table
shows that there is a directional connection between co-change and semantic
coupling. When classes contain terms with similar meanings (i.e., the classes
are semantically related) they require modifications at the same time. This
also holds in the opposite direction.

From Table 5 in Appendix B, we know for instance, that the project with
ID=56 has a proportion of 60% of its semantic class dependencies including
logical dependencies (as shown in the 6th column). On the other hand, all of
the pairs that co-changed include semantic dependencies, in the same project.
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This is a recurring pattern: in all of the projects as shown in Table 5, we
have evidence to indicate that very often, semantically related classes involve
logically related classes. In 17 of these projects, all the semantic dependencies
are reflected into logical dependencies. In both Venn diagrams (left and right)
in Figure 9, the smaller circle represents the set of semantic dependencies
while the larger circle represents the set of logical dependencies. Using the
Venn diagram on the left (weighted) in Figure 9, all the semantically coupled
pairs of classes in the alleywayreinvented project (project ID = 12) need also
co-changes. On the flip side, not all the pairs that co-change are semantically
coupled.

Fig. 9: Venn Diagrams (weighted) showing the two sets of coupling in two
scenarios: project ID=12 (left) and project ID=69 (right)

The second most common scenario identified in the results is illustrated
using the Venn diagram in Figure 9 (right), showing the guitarjava project
(project ID = 69). A subset of pairs of semantically coupled classes do not
need co-change, while the majority of the others still do. Again, in this project
most of its other co-changes are not conducive of semantic links.

3.3.1 Summary on RQ3 and its results

The results mentioned above are illustrated with two box-plots each in Figure
8. The figure shows the distribution of class pairs belonging to the intersec-
tion set (classes with both semantic and logical dependencies; see equations
1 and 2). The results indicate a bi-directional relationship between semantic
relationships and co-change, as in Figure 8 where both distributions are rela-
tively high in the overall sample of studied OSS projects. Therefore, we reject
the null hypothesis (H0) for RQ3 presented in Table 1 and fail to reject the
alternative hypothesis: There is a directional relationship between the
semantic and logical dependencies among OO software classes.
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In summary, after identifying the lack of a linear relationship between
two identifier based techniques in relation to a corpora based information re-
trieval (IR) technique in semantic coupling measurement (in Section 3.1), we
went further to investigate whether there is a linear relationship between the
strengths of semantic and logical dependencies of OO software classes. Results
presented in Section 3.2 revealed the absence of a linear relationship between
the strengths or degrees of the two software dependency types (semantic and
logical) at the file or class level. Lastly, as motivated by previous research by
Yu [75] and Figure 2 where it has been shown that structural coupling of classes
leads to their co-change, we wanted to identify where there was a bi-directional
relationship between semantic and logical dependencies. Other results in Sec-
tion 3.3 revealed the presence of a bi-directional link from semantic to change
dependency (semantic Ø logical coupling).

4 Discussion

In Section 3, we presented the results of a three-fold empirical study on the
interplay between semantic and logical coupling among classes in OO systems.
Previous studies have shown that a number of coupling measures, related to
aggregation and invocation coupling, are related to a higher probability of
common changes. This indicates that these coupling measures should be good
indicators of ripple effects and are used as such in a decision model for ranking
classes according to their probability to contain ripple effects associated with
given change requests [9, 62,70]. According to Briand et al. [9], it is also clear
that a substantial number of ripple effects are not covered by the selected
highly coupled classes. Thus, such models can be used to focus dependency
analysis and help reduce the impact analysis effort. Nevertheless, other impor-
tant dependencies are clearly not measured or accounted for, and may not be
measurable from code alone.

The main findings from the analysis carried out in this study include:

RQ1 Identifiers vs Corpora – Firstly, identifier-based techniques (N-gram
and Disco) yield similar results to analysing the whole corpora of software
classes only for highly semantically related classes (semantic coupling ě
0.5) and as such cannot always be used interchangeably when computing
semantic coupling. Secondly, N-gram and Disco are much more compu-
tationally efficient than corpora-based techniques, time-wise. Finally, the
N-gram technique is more efficient than the Disco technique, precision-wise:
the latter is heavily dependent on the English dictionary, as it considers
words with similar English synonyms as semantically related. This study
has shown that over 50% of the software projects analyzed do not con-
tain classes with only English identifiers, therefore the Disco technique will
produce a lot of false negatives.

RQ2 Strengths of coupling – There is no linear correlation between the degree
or strengths of the semantic similarity between classes and the frequency
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of their co-change. Statistical results prove that not all highly semantically
related class pairs will require frequent co-changes.

RQ3 Direction/Causality of Coupling – There is a large overlapping be-
tween semantic and logical (change) class dependencies. If two classes are
semantically coupled, there is a high chance that they will co-evolve in
the future. However, from RQ2 we have shown that the degree of these
dependency types do not show a linear correlation.

The last result is particularly important: for example, two (semantically
similar) class pairs A Ø Â and B Ø B̂ could share a semantic similarity of
0.7, but not the same degree of co-change: the pair AØ Â could change much
more often than B Ø B̂. Even so, what we have shown is that it is highly
likely that the pairs AØ Â and B Ø B̂ will co-change at least once or more.

In addition, Spearman’s rank correlation coefficient only assesses linear
relationships but some relationships can be curvillinear [3]. Earlier research
has shown that lack of correlation does not imply lack of causation [32,66,72].

Other researchers have emphasized the need to study the interplay between
semantic and logical coupling in OO software as well as the interplay between
structural and semantic coupling [46, 47]. It is noteworthy that this study
has presented three novel results in (Sections 3.1, 3.2 and 3.3) the software
dependency and maintenance domain. These results will be useful and can
guide software developers when building software maintenance tools for change
impact analysis (CIA).

Studies on the relationship and interplay between structural and logical
coupling have shown that a majority of co-evolving classes are not structurally
linked. According to Geipel and Schweitzer [25], this indirectly means that
any model that tries to infer structural coupling from logical coupling or co-
evolution will produce a lot of false positives. On the other hand, using the
structural coupling information between pairs of classes to infer their future
co-change is a more realistic objective [46]. Differently from previous studies,
this study has shown that over 70% of semantically related classes will usually
co-change and the same proportion of change related classes will usually share
a semantic relationship. Reflecting back to Section 1, these results are backed
by the argument by Bavota et al. [6]: “the peculiarity of the semantic coupling
measure allows it to better estimate the mental model of developers than the
other coupling measures. This is because, in several cases, the interactions
between classes are encapsulated in the source code vocabulary”. However we
cannot firmly assert that using the semantic coupling metrics between classes
to infer the strength of their co-change is a realistic objective as our empirical
study did not show a linear relationship between the strengths of semantic
and logical coupling. But we believe that using a combination of structural
and semantic information to predict co-change patterns [1] might be a more
feasible objective.
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5 Threats to Validity

In this section we present the threats to validity of this study, dividing them
in external, internal and construct threats.

External validity This paper presents the results of an empirical analysis that
should be applicable to all open-source projects. We cannot generalise our
findings on any other sample of projects, or from any other repository but the
lessons learned from this study can be instructive and transferred to similar
studies carried out by others. Nonetheless, in order to make the findings from
our study more generalisable and representative of open-source projects, we
have carried out our analysis on a random sample of projects, with different
sizes.

Internal validity Our selection of the semantic dissimilarity threshold when
investigating the association between the corpora-based technique and the
identifier-based IR techniques for semantic coupling measurement is based on
dissimilarity thresholds used in previous text mining and information retrieval
studies. Therefore, to prevent any form of bias during the Chi-squared in-
dependence tests we have used three different values (t = 0.1, 0.2 and 0.5)
and compared results. This is because different thresholds will reveal different
results as shown in Section 3.1.

For measuring logical coupling, we have used the arules package in the
R statistical environment [30]. We set the confidence threshold to 0.01 and
this might have affected the results. While this is a low threshold, it results
in a higher recall [16] (i.e., identified a larger set of frequently co-changing
classes). We further conducted a manual check on the returned association
rules in the smaller projects to ensure that class pairs returned by the arules
tool actually co-changed and to validate its accuracy. We also adopted 2x2
contingency tables when investigating the association between the identifier
and corpora-based IR techniques using the Chi-squared independence test.
This test results in false positives when one or more cells have no observations
but this was not the case in our data set as each project had at least one class
pair in each contingency table cell.

For parsing the corpora of classes and computing semantic coupling, we
have adopted the vector space model (VSM) IR technique and we acknowledge
that this can have an impact on our results. We also acknowledge that other
text document comparison techniques exist, one of which is the latent semantic
analysis (LSI); an extension of VSM [5] used in other domains apart form
software engineering.

LSI uses an approach called singular vector decomposition (SVD) to reduce
text documents (dimensionality or noise reduction to reflect semantic associ-
ations between words - latent semantic space) 14 by representing synonyms
with topics in a latent semantic space before computing document similarity.

14 https://matpalm.com/lsa_via_svd/intro.html

https://matpalm.com/lsa_via_svd/intro.html
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1 ...
2 public class setzeStein {
3 ...
4 dbConnector DBConnect = new dbConnector ();
5 ...
6 // DBConnect.insertMove(data.getAktSpieler (), eingabespalte);
7 ...

Listing 1: SetzeStein.java

As such, the dimensionality of a corpus is the number of distinct topics rep-
resented in it. Dimentionality reduction allows LSI to index or compare text
documents based on topics/concepts instead of similar words. This means that
LSI requires the use of fine tuned models.

However, in the context of semantic coupling the reduction of words in
documents by grouping them into topics is time consuming as well as prone
to low accuracy especially in cases where software teams or comments are
multi-lingual (i.e., software built by developers who speak different languages
and write comments in their native language). An example of this scenario
is the two classes in Listings 1 and 2 both from the same software project
(4-connect). Line 7 of Listing 2 contains English words while other comments
in the class contain non-English words. The identifier of the class in Listing 1
is also not an English word. In such a case, it becomes imperative to translate
words from one language to another before building a textual model for LSI
to rely upon.

Prior research has demonstrated that text similarity is based on the notion
that the meaning of a sentence is made up of not only the meanings of its
individual words, but also the structural way the words are combined [48].
Measuring the similarity between non-English documents based on models
trained with the Wikipedia corpus for example will yield a low accuracy in
the software domain. In Section 3.1.1, we have demonstrated using the Disco
word synonym technique that text similarity methods based on the English
dictionary does not perform well in the software domain.

In a different study [5] on software traceability link recovery, VSM outper-
formed LSI. But in an earlier study on the same topic the authors preferred the
use of LSI over VSM. According to Marcus et al. [41] “our main assumption is
that developers use the same natural language (e.g., English, Romanian, etc.)
in writing internal documentation and external documentation”. However, our
examples and results have shown that the reverse is the case. A feasible re-
search topic for future work will be to investigate or build techniques for the
measurement of semantic coupling between multi-lingual OO software classes.
Lastly, the performance of LSI depends on the contents of the documents used
to build the model. As such, LSI is also not scalable when new documents,
not analyzed during model building are parsed using pre-built models, as the
concepts in such documents is not captured in the model which also has to be
re-built.
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1 ...
2 // Benutzt Methode insert um den Array players in Tabelle

tbl_player zu speichern
3 insert("tbl_player", players);
4 }
5 public void insertMove(String Player , int Spalte) throws
6 Exception {
7 //fullt Array moves
8 String [] moves = new String []{
9 String.valueOf("(SELECT␣NEXT␣VALUE␣FOR␣seq_move␣FROM␣

tbl_id)"),
10 String.valueOf(Spalte),
11 String.valueOf(Player)
12 // String.valueOf(move.getSet ()),
13 };
14 // Benutzt Methode insert um den Array moves in Tabelle

tbl_move zu speichern
15 insert("tbl_move", moves);
16 ...

Listing 2: DbConnector.java

Construct validity The scope of our sample of projects was limited to open-
source software projects written in the Java programming language (object-
oriented), thus we encourage investigating projects written in other program-
ming languages and non-object-oriented software projects. The study was also
conducted at the class level of granularity. This is because overall,the mea-
surement of semantic coupling is more affected by the difference in granularity
than logical or evolutionary coupling. A previous study has shown that for
the semantic dependencies, going from the coarse granularity of classes to the
finer granularity of methods results in the reduction of the sizes of the docu-
ments [34]. The documents are reduced in terms (and frequency). That is, a
corpus for a class is typically much “bigger” than a corpus for a method [34].
For logical coupling some commits do not contain changes made to methods
while some do not contain changes made to classes, so there is not way to map
changes made to classes and methods. This informs the choice of the class level
of granularity.

6 Related Work

Structural and logical (evolutionary) dependencies are at the core of software
engineering. However, the study of semantic coupling is still evolving and rel-
atively new compared to the number of studies undertaken on the structural
and logical coupling of software classes. In the following section, we summarise
the main results of related work on both aspects separately and jointly.
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6.1 Semantic Coupling

Poshyvanyk and Marcus [52] defined a coupling metric for classes based on tex-
tual information extracted from source code identifiers and comments. Their
conceptual coupling metric, CoCC (Conceptual Coupling of Classes), captures
a new dimension of coupling not addressed by structural or dynamic measures.
More recently, Ujhazi et al. [64] extended the CoCC, defining the new CCBO
metric (Conceptual Coupling between Object Classes).

Fluri et al. use a set-based similarity metric to explore how comments and
code evolve over time [22]. Kuhn et al. [39] proposed the use of IR techniques
to exploit linguistic information found in source code, such as identifiers (i.e.,
class or method) names and comments. Revelle et al. [57] define new feature
coupling metrics based on structural and textual source code information.

Kagdi et al. [34] in their study on integrating conceptual and logical cou-
pling metrics for change impact analysis suggest that measurement of concep-
tual metrics is better employed at the class level than at the method level. A
corpus for a class is typically much "bigger" than a corpus for a method [34].
This informs our choice of conducting this study at the class level of granular-
ity. In most of these studies, the semantic similarity between software classes
using the LSI or VSM approach was adopted.

6.2 Logical Coupling

In comparison to the broad research on structural coupling, the study of logical
coupling, evolutionary or change dependencies [47, 75, 78] only began a few
years ago because of the advances in data mining techniques [75] used to
extract co-evolution data. However, despite its short history, there have been
several interesting studies published with promising results. Xia [73] argued
that the most widely used design metrics for the inter-module relation were
based on information flow rather than the coupling or cohesion criteria, and
proposed a metric to compute coupling complexity of modules of a system.
Ying et al. [74] proposed an approach for predicting source code changes by
mining the change history of software systems. Zimmermann et al. [78] applied
data mining to version histories to guide programmers on related changes using
the idea that "Programmers who changed these functions also changed...." [78].
Given a set of existing changes, the mined association rules 1) suggest and
predict likely further changes, 2) show up item coupling that is undetectable
by program analysis, and 3) can prevent errors due to incomplete changes.

6.3 The Link Between Semantic and Logical Coupling

Recent studies [21,25,46,47] have shown that it is possible that structural and
logical coupling are caused by other types of relationships (e.g., conceptual
dependencies); some logically coupled classes were without structural coupling
links between them and vice versa.
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Kagdi et al. [34, 35] demonstrated that finer granularity decreased the ac-
curacy of all approaches; however, it does not prevent the combination of the
two from outperforming the standalone techniques. That is, the gain acquired
by combining conceptual and evolutionary coupling exists regardless of the
granularity (file-level and method-level) considered in the study. Additionally,
they did not analyze the relationship between the coupling types and their
information retrieval technique (LSI) or take into consideration “common En-
glish words and programming language keywords”. Since this study has shown
that not all OO software contain only English words, this could have had an
effect on the accuracy of their findings.

Related work shows that only a few studies have combined semantic and
logical coupling to support software engineering activities and none have stud-
ied their correlation and interplay. Our study fills this gap by examining the in-
terplay between semantic and logical coupling in OO software systems. Bavota
et al. [6] investigated how class coupling as measured by dynamic, logical,
structural and semantic coupling aligned with developer perception of cou-
pling. They concluded that coupling was an important quality attribute of a
software system which could not be captured by structural information such as
method calls. More sophisticated approaches, and different source of informa-
tion need to be analyzed to provide a better evaluation of developer perception
of coupling. To this end, semantic coupling seems to reflect a developer’s men-
tal model when identifying interaction between entities.

Poshyvanyk et al. [53] propose new semantic coupling metrics based on the
degree to which the identifiers and comments from different classes relate to
each other at the class and method level of granularity. They suggest that their
metrics capture new dimensions in software dependency measurement, com-
pared with existing structural dependency metrics. For example, indicating
change ripple effects better, compared to existing structural coupling mea-
sures and the new metrics can be used to rank classes in the course of impact
analysis in large OO systems.

7 Conclusions and Future Work

We have presented two methods of measuring the semantic coupling of soft-
ware classes using only their identifiers. We further compared each of these
methods to measuring the semantic coupling of classes using their corpora.
Results showed that using only the class identifiers is a more efficient ap-
proach but not in all cases (only when considering highly semantically similar
classes). As such, identifier and corpora-based IR methods for computing se-
mantic coupling cannot be used interchangeably in all studies. For projects
with hundreds of thousands of lines of code, the extraction of text from all
the classes to build their corpora can be time consuming and complex. Hence,
the results derived from this study on class identifier-based semantic coupling
metrics have some significance in the software dependency and maintenance
domain and can be further explored.
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On the interplay between semantic and logical dependencies, in 79 object-
oriented and open-source software projects we could not detect a linear rela-
tionship between the strengths of semantic and logical dependencies. However,
we identified a bi-directional link between semantic to logical dependencies.
In other words, over 70% of classes that are semantically related will usually
co-evolve and classes that are change related will usually share some degree of
semantic coupling. Based on empirical results derived from a significant num-
ber of software projects, we conclude that identifying more efficient methods
of semantic coupling computation as well as a directional relationship between
semantic and change dependencies can help to improve CIA techniques that
integrate semantic coupling information.

This will speed up the process of revealing ‘hidden dependencies’ not cap-
tured by source code dependencies. Our results can also guide software devel-
opers and researchers in developing future generations of tools for supporting
program comprehension. Future work will involve comparing the change im-
pact set identified when adopting identifier-based methods for semantic cou-
pling measurement to class corpora-based methods based on precision and
recall. Other future work will focus on the interplay between structural and
semantic coupling as well as the measurement of semantic coupling between
classes in OO software projects built by multi-lingual developers with com-
ments written in several natural languages (e.g., English, French, German,
etc.).
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Table 4: RQ1- Characteristics of the software systems analyzed for semantic
coupling measurement comparison

Project Classes Class Pairs LOC (with
comments)

Time to An-
alyze Corpora
(mins)

Time to Ana-
lyze Identifiers
(mins)

∆ mins

4-connect 10 45 1,160 0.003 0.005 <1%
alexo-chess 119 7,021 22,986 1.01 0.07 143%
alto 315 49,455 101,379 20 1 19%
audao 152 11,476 20,347 1.1 0.1 10%
bitlyj 22 231 1,255 0.002 0.002 0%
bluecove 390 75,855 75,237 18 1 17%
daedalum 68 2,278 10,172 0.2 0.01 19%
dbmigrate 7 21 1,337 0.003 0.00005 598%
echo-nest-java-api 36 630 6,903 0.1 0.005 19%
fdelimitedtextutilities 11 55 1,769 0.003 0.001 2%
geocoder-java 27 351 1,732 0.006 0.003 1%
google-voice-java 56 1,540 10,078 0.3 0.02 14%
gp-net-radius 25 300 2,469 0.01 0.002 4%
guitarjava 87 21 18,331 0.5 0.03 16%
jangod 127 8,001 10,789 0.4 0.02 19%
java-chess-web 111 6,105 7,983 0.2 0.04 4%
java-weather-api 35 595 2,041 0.01 0.004 2%
jbal 109 5,886 21,285 2 0.04 49%
jbandwidthlog 13 78 2,472 0.01 0.001 9%
jiopi 22 231 2,260 0.003 0.001 2%
jmemcache 14 91 1,035 0.002 0.001 1%
kryo 52 1,326 6,356 0.1 0.01 9%
migrator-postgresql 29 406 2,282 0.01 0.002 4%
monome-pages 158 12,403 64,942 9 0.08 112%
powermock 673 226,128 73,985 21 3 6%
prettyfaces 229 26,106 26,104 2 0.08 24%
projet-qcm-java 53 1,378 4,661 0.04 0.01 3%
ps3mediaserver 189 17,766 39,816 6 0.05 119%
restfb 75 2775 16,041 0.8 0.06 12%
scikit 109 5,886 18,224 1 0.03 32%
semanticdiscoverytoolkit 1,421 1,008,910 268,564 695 7.2 98%
seoma 280 39,060 37,007 2.4 0.3 7%
sjava-logging 19 171 1,514 0.002 0.001 1%
tabuvrp–study 28 378 2,524 0.01 0.002 4%
usemon 1,090 593,505 219,546 980 4 244%

78. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to guide
software changes. Software Engineering, IEEE Transactions on 31(6), 429–445 (2005)

Appendix A Summary of the software systems analyzed for
semantic coupling measurement comparison
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Appendix B Summary of the Intersection of Semantic and
Logical Dependencies

Table 5: RQ3- Intersection of Semantic and Logical Dependencies in the stud-
ied 79 OSS Projects. (KEY: Sem. Dep. = Semantic Dependencies; Log. Dep.
= Logical Dependencies; CSD = Co-changed Semantic Dependencies; SLD =
Semantic Logical Dependencies)

ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)
1 2dtetris 213 166 166 78 100
2 4-connect 55 80 54 98 68
7 ahs-scheduling 144 118 118 82 100
8 aima-java 190694 190432 189812 100 100
10 alexo-chess 9759 9603 9603 98 100
11 algmusic 3867 3812 3812 99 100
12 alleywayreinvented 668 680 668 100 98
13 alto 77600 78481 77505 100 99
14 amock 3508 2969 2969 85 100
18 apjava 202 196 196 97 100
20 appletbomberman 1307 1255 1255 96 100
22 ascrblr 1429 1396 1396 98 100
24 audao 6957 6838 6838 98 100
26 bitlyj 1068 1036 1036 97 100
28 bluecove 63358 63404 63212 100 100
30 castanea 681 624 624 92 100
31 catchnthrow 180 164 164 91 100
41 daedalum 4855 4854 4852 100 100
45 dbmigrate 29 26 26 90 100
51 echo-nest-java-api 1132 1116 1116 99 100
56 fdelimitedtextutilities 57 34 34 60 100
60 fyllgen 14316 14318 14298 100 100
64 geocoder-java 441 379 379 86 100
65 google-voice-java 767 724 694 90 96
66 gorobot 89362 88731 88627 99 100
67 gp-net-radius 537 522 522 97 100
68 guavatools 6923 6899 6879 99 100
69 guitarjava 3412 3681 3351 98 91
71 hobbylinkchecker 35890 35923 35887 100 100
79 jangod 15126 15220 15030 99 99
81 jaque 1228 1065 1065 87 100
84 java-chess-web 2902 2596 2590 89 100
86 java-weather-api 231 220 216 94 98
88 javacoder 104 104 104 100 100
92 javastepbystep 1945 1795 1795 92 100
96 jbal 12903 12986 12884 100 99
97 jbandwidthlog 468 468 468 100 100
99 jease 40346 39842 39842 99 100
103 jeudi-tech-spring 343 310 310 90 100
107 jiopi 553 532 532 96 100
109 jmemcache 97 94 94 97 100
112 jnoob 426 417 417 98 100
113 jothelo 137 148 124 91 84

Continued on next page
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Table 5 – Continued from previous page
ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)
115 jprg2-assg 336 332 332 99 100
118 jroguedps 6394 6255 6253 98 100
119 jsbe 70 70 70 100 100
122 jtowerdefense 2212 2191 2191 99 100
123 jugile-util 3175 3088 3082 97 100
124 jutf8search 152 152 150 99 99
127 kryo 5465 5372 5370 98 100
130 lemyriapode 10732 10520 10496 98 100
136 migrator-postgresql 478 476 476 100 100
140 mobs 703 672 672 96 100
141 mocrap 100 74 74 74 100
142 monome-pages 10462 10362 10354 99 100
148 ngamejava 1246 1196 1196 96 100
149 object-procedural-bridge 27983 27343 27309 98 100
152 onslaught 5747 5739 5739 100 100
157 p2ploan 10476 10041 10041 96 100
164 powerjava 168 150 148 88 99
165 powermock 105828 105733 105291 99 100
166 prettyfaces 12968 12987 12949 100 100
168 product-center 7708 7220 7220 94 100
169 project-armageddon 88 68 68 77 100
170 projet-qcm-java 937 868 868 93 100
172 ps3mediaserver 29497 29313 29303 99 100
179 restfb 4139 4045 4035 97 100
180 robust-coupe 1833 1648 1648 90 100
183 scikit 11489 10958 10956 95 100
184 semanticdiscoverytoolkit 179777 177962 177928 99 100
185 semweb4j 69401 68309 68009 98 100
186 seoma 17166 16929 16929 99 100
188 simplenamingservice 1662 1593 1593 96 100
189 sjava-logging 408 408 408 100 100
195 squabble 4687 4578 4578 98 100
197 subitizer 188 176 176 94 100
201 tabulasoftmed 58497 58420 58218 100 100
202 tabuvrp–study 491 442 442 90 100
211 usemon 529180 529590 528932 100 100
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