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Abstract 

The present study investigated differences in postexercise hypotension (PEH) after continuous versus 

accumulated isocaloric bouts of cycling. Ten pre-hypertensive men, aged 23 to 34 yrs, performed two 

bouts of cycling at 75% oxygen uptake reserve, with total energy expenditures of 400 kcal per bout. One 

exercise bout was performed continuously (CONTIN) and the other as two smaller bouts each expending 

200 kcal (INTER1 and INTER2). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean 

arterial pressure (MAP), and cardiac autonomic control were monitored in a supine position for 10 min 

before and 60 min after each exercise bout, and during a control session. Compared to control, blood 

pressure was significantly reduced after CONTIN (SBP: ∆-3.4 mmHg, P < 0.001; MAP: ∆-2.5 mmHg, P 

= 0.001), INTER1 (SBP: ∆-2.2 mmHg, P = 0.045) and INTER2 (SBP: ∆-4.4 mmHg, P < 0.001; DBP: ∆-

2.7 mmHg, P = 0.045; MAP: ∆-3.3 mmHg, P = 0.001). The PEH was similar in CONTIN and INTER2, 

while INTER2 elicited greater PEH than INTER1 (SBP and MAP: ∆-2.0 and ∆-1.8 mmHg, respectively, 

P < 0.05). Increases in sympathovagal balance from baseline were inversely related to changes in SBP 

and DBP after CONTIN and INTER2 (r = -0.64 to -0.71; P = 0.021 to P = 0.047). These findings indicate 

similar amounts of PEH are observed when exercise is performed as a single 400 kcal exercise bout or 2 x 

200 kcal bouts and that the exercise recovery pattern of cardiac autonomic activity may be important in 

eliciting PEH. 

Keywords: postexercise hypotension, cardiovascular physiology, heart rate variability, caloric 

expenditure, fractionation of exercise. 
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INTRODUCTION 

Hypertension is a serious public health problem associated with increased risk of developing other 

cardiovascular diseases (CVDs) (30), and the observation that one in five people with prehypertension 

tend to progress to hypertension within an average time frame of 4 years (44) is of particular concern. 

Physical activity level also has been shown to be strongly associated with the development of CVD (6). 

Paffenbarger et al. (31), for example, showed that among 14,998 Harvard male alumni that initially 

presented without hypertension in 1962 or 1966, 681 (5%) developed hypertension by 1972, with those 

not engaging in vigorous sporting activities at 35% greater risk of developing hypertension than those 

who did. Regular physical exercise, especially aerobic exercise, has therefore often been recommended 

for the prevention, treatment, and control of hypertension (36, 41). Indeed, current evidence suggests that 

chronic reductions in blood pressure from engaging in long-term aerobic exercise programs are due 

largely to the summative effects of the blunted blood pressure response observed after single acute bouts 

of aerobic exercise (23). These blunted responses occur for several hours after exercise compared to the 

immediate pre-exercise period, or a non-exercise control day, and is a phenomenon known as 

postexercise hypotension (PEH) (37). 

Although the optimal exercise prescription to maximize PEH remains unknown, research has established 

that the magnitude of PEH, and whether it occurs, largely depends on several basic components of 

exercise prescription such as intensity, duration, and mode (see 35 for a review). Another component that 

has received less attention is whether the exercise is performed continuously or cumulatively. Some 

studies support the idea that accumulated bouts may be a better strategy for prescribing aerobic exercise, 

by providing greater PEH than continuous bouts (2, 5, 22, 32, 33), while others suggested continuous and 

accumulated acute exercise bouts elicit similar blood pressure reductions (13, 27). A question therefore 

arises as to what could explain these conflicting findings? Cunha et al. (14) investigated PEH after short-

duration cycling (105 ± 29 kcal), walking (113 ± 19 kcal), and running (141 ± 42 kcal) maximal exercise 

tests. Only running, which was the exercise mode associated with the greatest energy expenditure, elicited 

a significant reduction in blood pressure compared to a control session. From a practical perspective, the 

magnitude of PEH seems to be dependent on exercise volume, as reflected by energy expenditure. 

Notably, among seven previous studies that directly compared the effects of continuous versus 

accumulated exercises on PEH, five equated total work from the external work completed (2, 5, 22, 32, 
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33), while two studies employed isocaloric conditions, and concluded that accumulated exercise elicited 

similar reductions in blood pressure to continuous exercise (13, 27). How work is equated is an important 

methodological issue that confounds the interpretation of studies that compared the acute effects of 

continuous versus accumulated exercise on PEH. The studies that used cycle ergometry (2, 22) did not 

apply isocaloric bouts and therefore susceptible to such confounding. Considering that cycling is 

frequently used in aerobic training, knowledge about the impact of multiple short bouts of cycling on 

PEH could have clinically important implications and further research is warranted. 

Changes in autonomic cardiac control, as measured by heart rate variability (HRV) and reflecting beat-to-

beat changes in HR and the sympathovagal interaction obtained by the variation of both instantaneous HR 

and R-R intervals within the cardiac cycle (42), seem to influence blood pressure after exercise (7, 43). It 

is known that blood pressure is determined by the relationship between cardiac output (Q) and systemic 

vascular resistance (SVR), cardiac (central) or vascular (peripheral) mechanisms that reflect changes in 

central regulation (8), leading to attenuation of the blood pressure response in the postexercise recovery. 

Evidence about the role of cardiac autonomic control in PEH is controversial, however. Some studies 

suggest decreased sympathetic activity and increased parasympathetic activity concomitant to PEH (33), 

while others suggest a compensatory increase in sympathetic activity would occur to offset the blood 

pressure reduction and baroreflex resetting (13, 14, 39, 43), or that no changes would occur (3, 32). The 

extent to which PEH accompanies a shift in cardiac autonomic balance therefore remains unclear and 

requires further investigation. 

The main aim of the present study was to compare the effects of continuous and accumulated bouts of 

cycling, matched by intensity and energy expenditure, on PEH in prehypertensive men. A second aim was 

to investigate the relationships between changes in blood pressure versus changes in sympathovagal 

balance after each acute exercise bout.  

METHODS 

Experimental approach to the problem 

Each participant visited the laboratory five times. During the first visit participants were familiarized with 

the equipment and experimental procedures, then they completed a pre-participation questionnaire for 
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assessment of cardiovascular risk, and then had their blood pressure measured to ensure they met the 

study inclusion criteria. On the second visit, anthropometric measurements were taken followed by 

resting oxygen uptake (VO2), blood pressure and HRV assessments for 60 min (‘control’ condition). On 

the third visit, a maximal cardiopulmonary exercise test (CPET) on a cycle ergometer was performed to 

determine VO2max. Approximately 72 h after the CPET, two isocaloric exercise bouts were performed at 

75% of oxygen uptake reserve (VO2R). During one of the visits the exercise bout was continuous and 

expended a total of 400 kcal. During the other visit the exercise bout was accumulated and consisted of 2 

x 200 kcal bouts, separated by 1 h of passive rest, during which blood pressure and HRV were assessed. 

Allocation of test order for the continuous and accumulated exercise bouts was randomized and counter-

balanced across participants. The exercise bouts were separated by 48 to 72 h. Before the exercise and 

control conditions, baseline assessments were performed during 10 min of bed rest in a quiet darkened 

environment with the final 5 min used for data collection. Within 5 sec of exercise (or control session) 

termination, participants were placed in the supine position, and data collection began 5 min after exercise 

for a period of 60 min in a quiet room kept at a relatively constant temperature and relative humidity 

(ranging from 21 to 23°C and 50 to 70%, respectively). The participants were instructed not to engage in 

any physical activity during the 48 h before and after each laboratory visit. All visits were conducted at 

approximately the same time of day (between 07:00 and 11:00 a.m.). Exercise bouts were performed on a 

cycle ergometer (Cateye EC-1600, CateyeTM, Tokio, Japan), with the seat height individually set and 

standardized across all exercise bouts for a given participant. 

Participants  

Ten apparently healthy prehypertensive men, aged 23 to 34 yrs, participated in the study. Inclusion 

criteria consisted of a mean screening SBP of 120-139 mmHg and/or DBP of 80-89 mmHg (21). All 

participants were recreationally active, performing 20-60 min exercise per session on 2-5 days per week, 

for at least 6 months prior to the study. The exclusion criteria were: a) cardiovascular disease and 

diabetes; b) use of drugs that could affect the cardiovascular responses, or any ergogenic substances; c) 

smoking; and d) bone, joint, or muscle problems that could limit the performance of exercise. The study 

gained approval from the institutional ethics committee (reference 3082/2011) and participants were 

informed of the benefits and risks associated with the study prior to providing written informed consent to 

participate. 
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Blood pressure screening was performed by a single evaluator using a calibrated mercury column 

sphygmomanometer (Heidji, São Paulo, Brazil) and a stethoscope (Sprague Rappaport, Omron, USA), 

after participants remained seated for 10 min, in accordance with American Heart Association 

recommendations (34). Participants were instructed to remain relaxed and avoid talking during the 

measurements. The cuff was placed on the right arm so that the inferior extremity remained at a level 

within 2.5 cm of the antecubital fossa. The arm was supported at heart level and the bladder of the cuff 

encircled at least 80% of the arm circumference. The mercury column was deflated at 2-3 mmHg/s until 

Korotkoff sounds were heard that corresponded to systolic (first sound) and diastolic (fifth sound) values. 

The readings were registered to the nearest 2 mmHg. The blood pressure used for screening participants 

was calculated as the mean of three readings taken at 5 min intervals. 

Experimental blood pressure assessment 

Resting blood pressure determined before and after each exercise bout and the non-exercise control 

session was assessed by an oscillometric device (Spacelabs MedicalTM model 90207; Spacelabs Inc., 

Redmond, WA, USA). Blood pressure monitoring followed standard procedures (38) using the criteria of 

the British Hypertension Society (29), including a calibration check before each experiment according to 

the manufacturer’s instructions. Blood pressure recordings after exercise bouts and the non-exercise 

control session were obtained during 60 min at 20 min intervals in a quiet environment and in a supine 

position. The control session mimicked the exercise bouts in that participants remained seated at rest for 

20 min and blood pressure was assessed using the same protocol as that used before and after the exercise 

bouts in a supine position. 

Heart rate variability assessment 

The HR and HRV were recorded concomitantly with blood pressure using a telemetric HR monitor 

(RS800cx, PolarTM, Kempele, Finland). The R-R intervals were downloaded by Polar Precision 

Performance Software (PolarTM, Kempele, Finland) and averaged for each 30-sec window using a 

sampling frequency of 1000 Hz. Before analysis, all R-R intervals were visually inspected for artifacts in 

order to make interpolation corrections on the sequences (42). This was necessary in less than 1% of the 

sequences for each participant. A Fast Fourier Transform (Welch’s method) with a Hanning window and 

50% overlap was used to estimate the power density spectrum of R-R interval variability using a 
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customized routine (MathworksTM, Natick, MA, USA). The beat-by-beat R–R interval series were then 

converted into equally spaced time series with 200 ms intervals using cubic spline interpolation (42). 

The ratio between low frequency and high frequency bands (LF:HF) was used as an index of 

sympathovagal balance, with the LF band (0.04-0.15 Hz) being considered as a marker of sympathetic 

predominance, and the HF band (0.15-0.50 Hz) as a marker of parasympathetic predominance (10). The 

spectral values were expressed as normalized units (n.u.). To meet the stability requirement for 

performing spectral analysis, the first 5 min interval after each exercise bout was omitted from all HRV 

analyses. The HRV analyses for the control session and following exercise were then used to calculate 

HRV indices according to previously established guidelines (42). 

Resting VO2 assessment  

Resting VO2 was determined prior to calculation of %VO2R using well-controlled procedures 

recommended by Compher et al. (9). These included abstentions from physical exercise, alcohol, soft 

drinks and caffeine in the 24 h preceding the assessment, and fasting at least 8 h prior to the assessment. 

In the laboratory, participants remained awake in a quiet environment for 10 min, after which the VO2 

was measured for 40 min in the supine position. The resting VO2 was recorded as the average of the last 5 

min of steady-state data assessed during 35 to 40 min (within-subject coefficient of variation ≤10%) (12). 

The resting VO2 was always measured at the same time of the day between 07:00 and 11:00 a.m. 

Maximal and submaximal exercise tests 

The ramp-incremented maximal CPET was performed as described elsewhere (11). The power output 

increment was individualized to elicit each participant’s limit of tolerance in approximately 10 min. The 

criteria for test termination followed the recommendations of the ACSM (1). The test was considered to 

have elicited peak capacity when at least three of the following criteria were observed (18): a) maximum 

voluntary exhaustion defined by attaining a 10 on the Borg CR-10 scale; b) ≥ 90% predicted maximal 

heart rate (HRmax) [220 – age], or presence of a HR plateau (HR between two consecutive power outputs 

≤ 4 beats·min-1); c) presence of a VO2 plateau (VO2 between two consecutive power outputs < 2.1 

mLkg-1min-1); and d) respiratory exchange ratio > 1.10. 
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Based upon the VO2max achieved during the CPET and the resting VO2, values corresponding to 75% 

VO2R were calculated to determine the intensity of the two isocaloric exercise bouts. The absolute VO2 

values obtained from the %VO2R equation were used to calculate the associated cycling power outputs 

[mean ± SD, 257 ± 55 W] by applying the ACSM metabolic equation (1). Each exercise bout was 

preceded by a 5-min warm-up at 30 W and 65-75 rev·min-1. Expired gases were collected during exercise 

bouts via the metabolic cart. The exercise bouts were terminated when each participant had achieved a 

total energy expenditure of 400 or 200 kcal in continuous or accumulated acute exercise bouts, 

respectively, and followed by 60 min of recovery in the supine position to measure blood pressure and 

HRV. 

Pulmonary gas exchanges were determined using breath-by-breath analyses with a VO2000 metabolic 

cart (Medical GraphicsTM, Saint Louis, MO, USA). Gas exchange data were calculated, averaged, and 

recorded every 30 sec, which provided a good compromise between removing noise in the data while 

maintaining underlying physiological trends (24). Prior to testing, gas analyzers were calibrated according 

to the manufacturer’s instructions, using a certified standard mixture of oxygen (17.01%) and carbon 

dioxide (5.00%), balanced with nitrogen (AGATM, Rio de Janeiro, RJ, Brazil). Flows and volumes of the 

pneumotacograph were calibrated with a syringe graduated for 3 L capacity (Hans RudolphTM, Kansas, 

MO, USA). 

Statistical Analyses  

All statistical analyses were performed using IBM SPSS Statistics 22 software (SPSSTM Inc., Chicago, IL, 

USA). Descriptive statistics are presented as mean ± SD. The effect of Condition [control, continuous 

exercise (CONTIN), first intermittent exercise bout (INTER1), and second intermittent exercise bout 

(INTER2)] and Time [baseline and 60 min postexercise period (time-averaged at 20, 40, and 60 min)] on 

blood pressure and HRV indices were analyzed using marginal models using the SPSS MIXED 

procedure. The best fitting covariance structure was identified as that which minimized the Hurvich and 

Tsai’s criterion value. Where there was a statistically significant main effect for Condition or a significant 

Condition x Time interaction effect, post hoc pairwise comparisons with Sidak-adjusted P values were 

obtained. Pearson correlations were used to determine the relationships between changes in SBP and DBP 

versus changes in the LF:HF ratio for the 60 min following the exercise bouts. Two-tailed statistical 

significance was accepted as P ≤ 0.05. 
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RESULTS 

Participant characteristics 

Table 1 shows descriptive statistics for age, anthropometrical variables, resting physiological variables, 

maximal CPET responses, and HR, absolute VO2, and time to achieve 400 kcal during CONTIN and 

accumulated (i.e. INTER1 and INTER2) isocaloric exercise bouts of cycling at 75% VO2R. On average, 

participants were overweight, had prehypertension, and above average physical fitness for men of their 

age (1). 

Acute blood pressure responses to cycling bouts  

Figure 1 shows the average blood pressure responses during 60 min following the control session and 

each exercise bout. There were main effects for condition (SBP: F = 28.9, P < 0.001; DBP: F = 10.9, P < 

0.001; MAP: F = 27.8, P < 0.001) and time (SBP: F = 229.2, P < 0.001; DBP: F = 7.9, P = 0.009; MAP: 

F = 110.3, P < 0.001). A significant condition x time interaction showed that the differences between 

control and the exercise conditions decreased over time for SBP (F = 4.1, P < 0.001), DBP (F = 4.0, P = 

0.001), and MAP (F = 3.9, P = 0.001). For example, the largest reductions in blood pressure postexercise 

occurred during the first 20 min, with significant differences of 3.9-6.2, 2.8-3.6, and 3.5-4.4 mmHg 

observed between control and the postexercise periods for SBP, DBP, and MAP, respectively. Compared 

to control, on average, CONTIN, INTER1 and INTER2 elicited reductions in SBP of 3.4 ± 2.5 mmHg 

(95% CI = 1.7 to 5.1 mmHg, P < 0.001), and 2.2 ± 2.4 mmHg (95% CI = 0.6 to 4.0 mmHg, P < 0.001), 

and 4.4 ± 2.5 mmHg (95% CI = 2.5 to 6.0 mmHg, P < 0.001), respectively. No significant differences in 

SBP were observed between CONTIN and INTER2 (mean difference = 0.9 mmHg, 95% CI = -0.9 to 2.6 

mmHg, P = 0.934), or between CONTIN and INTER1 (mean difference = -1.1 mmHg, 95% CI = -2.8 to 

0.6 mmHg, P = 0.652); however, SBP was significantly lower after INTER2 than INTER1 (mean 

difference = 2.0 mmHg, 95% CI = 0.2 to 3.7 mmHg, P = 0.015). Unlike SBP, on average, there was no 

significant difference in DBP reduction after CONTIN [(P = 0.320); except the mean difference of -2.8 

mmHg between control and CONTIN at 20 min (P < 0.05)] and INTER1 compared to control (P = 

0.985), while a significant difference was observed between INTER2 vs. control (mean difference = -2.7 

mmHg, 95% CI = -0.3 to 5.2 mmHg, P = 0.045). There was no significant difference between DBP 

responses among the exercise conditions (P = 0.771 to P = 0.999). MAP was 2.5 ± 2.1 and 3.3 ± 2.1 
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mmHg lower after CONTIN (95% CI = 0.7 to 4.3, P = 0.001) and INTER2 (95% CI = 1.6 to 5.1, P < 

0.001) compared to control, while there was a non-significant difference between INTER1 vs. control (P 

= 0.177) [except the mean difference of -2.2 mmHg between control and INTER1 at 20 min (P < 0.05)]. 

Comparing the exercise conditions, there was no significant difference between CONTIN vs. INTER1 (P 

= 0.832) or CONTIN vs. INTER2 (P = 0.968), except a significant reduction after INTER2 compared to 

INTER1 (MAP: mean difference = 1.8 mmHg, 95% CI = 0.3 to 3.6 mmHg, P = 0.043).  

INSERT FIGURE 1 

Acute cardiac autonomic responses to cycling bouts 

Figure 2 shows the average cardiac autonomic responses at baseline and during 60 min following the 

control session and each exercise bout. There were significant main effects for condition (HR: F = 10.9, P 

< 0.001; LF: F = 46.4, P < 0.001; HF: F = 50.6, P < 0.001; LF:HF ratio: F = 23.1, P < 0.001), time (HR: 

F = 7.9, P = 0.009; LF: F = 4.0, P = 0.010; HF: F = 5.1, P = 0.008; LF:HF ratio: F = 4.4, P < 0.022), and 

a significant condition x time interaction only for HR (F = 4.0, P = 0.001). On average, HR was 12.8 ± 

2.9 beats·min-1 (95% CI = 4.4 to 21.1 beats·min-1, P < 0.001), 11.5 ± 4.2 beats·min-1 (95% CI = 3.2 to 

19.8 beats·min-1, P = 0.001), and 10.9 ± 4.1 beats·min-1 (95% CI = 2.6 to 19.2 beats·min-1, P = 0.002), 

higher after CONTIN, INTER1, and INTER2 compared to control, respectively. Findings from time-

frequency spectral analysis of HRV, for example, showed that CONTIN elicited a 25.3 ± 8.0-unit increase 

in LF compared to control (95% CI = 18.1 to 32.5 units, P < 0.001), whereas INTER1 and INTER2 

elicited increases of 23.9 ± 8.9 units (95% CI = 17.1 to 30.7 units, P < 0.001) and 26.6 ± 3.5 units (95% 

CI = 19.8 to 32.8 units, P < 0.001), respectively. Unlike LF, HF was 26.2 ± 9.6 units (95% CI = 18.4 to 

34.0 units, P < 0.001), 23.4 ± 11.0 units (95% CI = 16.2 to 30.5 units, P < 0.001), and 26.2 ± 5.9 units 

(95% CI = 20.1 to 32.3 units, P < 0.001) lower after CONTIN, INTER1 and INTER2 compared to 

control, respectively. Like HR and LF, the LF:HF ratio was significantly higher after CONTIN (P < 

0.001), INTER1 (P < 0.001) and INTER2 (P < 0.001) compared to control. However, in all HRV indices, 

no significant differences were observed among exercise conditions (P > 0.05). 

INSERT FIGURE 2 
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Relationships between changes in blood pressure and changes in LF:HF ratio 

Figure 3 shows the relationships between ΔSBP and ΔDBP vs. ΔLF:HF ratio during the 60 min recovery 

period following exercise compared to control. Both ΔSBP and ΔDBP were negatively correlated to the 

ΔLF:HF ratio after CONTIN and INTER2, with Pearson correlation coefficients (r) ranging from -0.64 to 

-0.65 (P = 0.045 to P = 0.041, respectively) for SBP, and -0.26 to -0.71 (P = 0.467 to P = 0.021, 

respectively) for DBP. Only the relationships between ΔSBP and ΔDBP vs. ΔLF:HF ratio after INTER1 

or between ΔDBP vs. ΔLF:HF ratio after CONTIN were not significant (P > 0.05).  

INSERT FIGURE 3 

DISCUSSION 

To the best of our knowledge, the present study is the first to investigate the extent to which the 

magnitude of PEH is affected by cycling bouts performed continuously and cumulatively under isocaloric 

conditions (i.e. same energy expenditure) in prehypertensive men. Three important observations can be 

derived from the main findings of the present study with respect to optimizing exercise prescription for 

maximizing the magnitude of PEH: (a) there was a significant positive accumulative effect on PEH from 

accumulated exercise. Splitting the cycling exercise into two bouts of short-term exercise (i.e. 2 x 200 

kcal) was shown to empower sub-acute effects on PEH, promoting similar decreases in blood pressure 

compared to a continuous cycling bout with an equivalent total energy expenditure of 400 kcal. 

Consequently, exercise prescription with either accumulated or continuous isocaloric exercise can be 

adopted; (b) these findings also suggest that the exercise volume determines the pattern of the 

hypotensive response to aerobic exercise, where INTER1 with the same relative intensity (i.e. 75% 

VO2R), but lower volume (i.e. 200 kcal), promoted lower PEH than INTER2 with a greater exercise 

volume (i.e. 400 kcal); (c) lastly, sympathetic (LF component of HRV) and parasympathetic (HF 

component of HRV) activities remained significantly increased and decreased during the 60 min exercise 

recovery, resulting in a sympathetic overload (expressed by the LF:HF ratio) that was inversely correlated 

with the magnitude of PEH, regardless of CONTIN or INTER2 acute exercise. This finding indicates that 

the recovery pattern of cardiac autonomic activity may have an important role in eliciting PEH. 
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To date, findings from most previous studies support the idea that accumulated exercise bouts elicit a 

greater PEH than continuous exercise bouts using treadmill (5, 32, 33) and cycle ergometry (2, 22). Park 

et al. (33), for example, compared blood pressure responses after continuous (40 min) and accumulated (4 

x 10 min with rest intervals of 50 min) bouts of treadmill walking, at an intensity of 50% VO2peak, in 

twenty-one prehypertensive adults (SBP and DBP = 131.9 ± 1.1 and 82.5 ± 1.4 mmHg; and VO2max = 

34.5 ± 1.6 ml·kg-1·min-1). The continuous exercise bout resulted in lowered SBP and DBP for 7 h into 

recovery, whereas the accumulated bout provided greater PEH, with SBP and DBP significantly reduced 

for 11 and 10 h postexercise, respectively. However, the present study disagrees with this view, since the 

magnitude of PEH in relation to control was similar in both the CONTIN and INTER2 for cycling 

(ΔSBP60-min = -3.4 and -4.3 mmHg; ΔDBP60-min = -2.0 and -2.6 mmHg). On the other hand, similar to our 

findings, Cunha et al. (13) observed that accumulated (2 x 200 kcal with rest interval of 60 min) and 

continuous (400 kcal) treadmill running at 75% VO2R elicited similar SBP and DBP reductions compared 

to a control session (∆SBP = -6 and -7 mmHg, respectively; ∆DBP = -5 and -6 mmHg, respectively) 

among 10 hypertensive men. Beyond that, the authors provided further analysis showing that continuous 

and/or second accumulated bouts matched for total energy expenditure of 400 kcal induced greater blood 

pressure reduction compared to the first accumulated bout performed with equivalent intensity (i.e. 75% 

VO2R) but a lower energy expenditure (200 kcal) (i.e. ∆ SBP = 2.1 and 4.3 mmHg, respectively; DBP = 

3.7 and 4.8 mmHg, respectively). In other words, it is feasible to think that the exercise volume involved, 

which seems to be a major determinant of PEH, is likely to be one of main reasons why the results of the 

present study differ from previous research reporting different blood pressure responses following 

continuous and accumulated acute aerobic bouts, since all these studies failed to match the exercise 

volume by energy expenditure.  

It is clear that accumulated exercise bouts can be a useful tool for prescribing aerobic exercise in different 

populations, since its acute effect on the magnitude of the PEH seems to be similar or equal to continuous 

exercise. Additionally, other advantages may make prescribing accumulated exercise more favorable, 

such as a better strategy to improve exercise adherence (20), since this strategy seems to be more 

palatable and easier to maintain (28). Sedentary individuals have low tolerance to prolonged efforts, such 

as continuous exercise lasting 30-60 min, and accumulated bouts also could minimize this issue. 

Accumulated bouts could even allow higher intensity exercise, which chronically, may result in greater 

benefits than continuous exercise with moderate intensity and long duration in improving 
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cardiorespiratory fitness, body composition, total cholesterol, low-density lipoprotein cholesterol, serum 

triglycerides, insulin sensitivity, and glucose control (41). All these favorable changes in health status 

from engaging in vigorous-intensity exercise (i.e. 60-85% VO2R) have been identified as independent risk 

factors for hypertension (19, 40). 

Regarding postexercise cardiac autonomic control, our findings agree with previous reports (13, 14, 39, 

43), since the HRV spectral analysis indicated that during recovery from continuous and accumulated 

cycling bouts, sympathetic activity (LF band) increased while parasympathetic activity (HF band) 

decreased, resulting in higher sympathovagal balance (LF:HR ratio) concomitant with a reduction in 

blood pressure (see Figures 1 and 2). Moreover, the acute reductions in blood pressure following 

CONTIN and INTER2 were negatively correlated with changes in sympathovagal balance, meaning that 

the greater the magnitude of PEH, the greater the increase in relative sympathetic activity (see Figure 3). 

Nonetheless, the reason for this inverse relationship between changes in blood pressure and changes in 

the LF:HF ratio during exercise recovery remains unclear. Some studies have shown, for example, that 

the operating point of the arterial baroreflex seems to be at low values of blood pressure (7, 25), 

indicating that the elevated sympathetic activity and reduced vagal activity of HR may be associated with 

the hypotensive effect of exercise that reduces the discharge of pressoreceptors, causing less inhibition of 

sympathetic activation and lower parasympathetic activation mediated reflex arc dependent on arterial 

baroreceptors. This is a physiological response to offset the reduction in blood pressure and compensate 

for resetting of the baroreflex (17). If this is indeed the case, it is plausible that the hypotensive effect 

would somehow rely on the ability of peripheral vasodilation mechanisms to overcome such increases in 

sympathetical activity. 

On the other hand, the absence of a correlation between blood pressure and sympathovagal balance in the 

present study occurred only after INTER1 (see Figure 3). Within a practical perspective, whether or not a 

correlation between blood pressure and sympathovagal balance is observed after exercise might be a 

result of exercise volume – in other words, the compensatory response related to acute blood pressure 

lowering and shift in cardiac autonomic balance might also be associated with exercise volume. It has 

been advocated that exacerbated hemodynamic responses after exercise may be influenced by the amount 

of muscle work, which would increase the exercise pressor reflex (ergoreflex) through afferent stimuli 

from muscle ergoreceptors (mechanoreceptors and metaboreceptors) (8, 16, 26). The increased muscle 
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afferent signaling would contribute to a higher sympathetic activity during exercise and to a consequent 

‘resetting’ of the arterial baroreflex during the postexercise period, reducing sympathetic outflow and 

lowering blood pressure (15, 16). It is therefore plausible that at least to some extent, the magnitude of 

blood pressure reduction and the shift of sympathovagal balance following an aerobic exercise bout might 

rely on the amount of overall volume, as expressed by the energy expenditure. This could partially 

explain the total absence of correlation between blood pressure and sympathovagal balance only after 

INTER1 (i.e. the exercise bout with the lowest energy expenditure). Further research is certainly 

warranted to clarify these issues. 

Another issue to be addressed is the effect of the recovery period between accumulated intermittent bouts 

on the acute blood pressure and cardiac autonomic control responses. Although there is no consensus in 

the literature on this issue, it is worth noting that previous studies have adopted 3 to 4 sets of 10 min of 

exercise interspaced by 10 min (22), 50 min (32, 33) or 4 h (2, 5) rest periods. From a practical 

perspective, it is feasible to think that this wide range observed for the recovery period between 

intermittent bouts (i.e. 10 min to 4 h) could directly affect the phenomenon of PEH, since the immediate 

postexercise hyperaemia - one of the mechanisms underlying hypotension - can last from several seconds 

up to 20 min (4, 16). Additional research is therefore needed to verify any changes in PEH in response to 

different recovery periods accumulated between intermittent bouts. 

PRACTICAL APPLICATIONS 

The PEH was favorably affected by the accumulation of cycling bouts. In practical terms, splitting the 

volume of exercise into two bouts of shorter-term exercise, with the same total energy expenditure, was 

as effective as the more traditional approach of using continuous exercise to promote the postexercise 

hypotensive effects of aerobic exercise. Additionally, exercise volume measured by energy expenditure 

markedly influences the PEH response, regardless of whether the exercise is performed continuously or 

cumulatively. In this context, aerobic exercise that involves a higher volume elicits greater PEH than that 

involving a smaller volume. Furthermore, the magnitude of PEH was associated with vagal inhibition and 

prolonged elevation in sympathetic activity during recovery from aerobic exercise involving greater 

volume in prehypertensive men. These findings may have important implications for prescribing aerobic 

exercise as a long-term intervention for lowering blood pressure. 
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Table 1. Baseline participant characteristics (N = 10).  

Moment Variables Mean ± SD 

Anthropometric assessment  Age (yr) 27.6 ± 3.5 

Height (cm) 173.9 ± 8.7 

Body mass (kg) 78.0 ± 8.5 

BMI (kg.m-2) 25.7 ± 0.9 

Resting assessment SBP (mmHg)a 125.9 ±4.3 

DBP (mmHg)a 84.0 ± 3.2 

HR rest (beats·min-1) 68.3 ± 4.8 

LF power (n.u.) 42.0 ± 9.5 

HF power (n.u.) 49.6 ± 7.7 

LF:HF ratio (n.u.) 0.9 ± 0.3 

Resting VO2 (L·min-1) 0.2 ± 0.1 

Maximal cardiopulmonary exercise test Maximal heart rate (beats·min-1) 181 ± 1 

Maximal oxygen uptake (L·min-1) 3.8 ± 0.6 

Minute ventilation (L·min-1) 118 ± 22 

Respiratory exchange ratio 1.17 ± 0.02 

Time to exhaustion (s) 575 ± 40 

Continuous bout Heart rate (beats·min-1) 159 ± 5 

Oxygen uptake (L·min-1) 2.5 ± 0.603 

Respiratory exchange ratio 1.02 ± 0.06 

Time to achieved 400 kcal (s) 2214 ± 452 

Accumulated intermittent bouts  Heart rate (beats·min-1) 157 ± 10* 

Oxygen uptake (L·min-1) 2.5 ± 0.7* 

Respiratory exchange ratio 0.93 ± 0.06* 

Time to achieved 400 kcal (s) 2307 ± 438* 
a Average of three screening BPs; BMI = body mass index; VO2 = oxygen uptake; HR = heart rate; SBP = 

systolic blood pressure; DBP = diastolic blood pressure; HF = high frequency band; LF = low frequency 

band; LF:HF ratio = sympathovagal balance. *Average of two exercise bouts (first and second 

intermittent exercise bouts). 
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Figures 

 

Figure 1. Mean ± SD change in SBP, DBP, and MAP (mean value for condition minus mean value for 

control) at baseline and postexercise recovery periods. * Significantly lower than control (P < 0.05 to P < 

0.001). † Significantly lower than INTER1 (P < 0.05). CONTIN = continuous cycling bout; INTER1 = 

first intermittent cycling bout; INTER2 = second intermittent cycling bout; SBP = systolic blood pressure; 

DBP = diastolic blood pressure (DBP); MAP = mean arterial pressure.  



21 
 

 

Figure 2. Mean ± SD change in HR, LF, HF and LF:HF ratio (mean value for condition minus mean 

value for control) at baseline and postexercise recovery periods. * Significantly lower than control (P < 

0.05 to P < 0.001). CONTIN = continuous cycling bout; INTER1 = first intermittent cycling bout; 

INTER2 = second intermittent cycling bout; HR = heart rate; LF = low frequency band; HF = high 

frequency band; LF:HF ratio = sympatho-vagal balance.  
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Figure 3. Relationships between average changes in blood pressure and the LF:HF ratio during the 60-

min assessment after control and recovery period from CONTIN, INTER1 and INTER2. CONTIN = 

continuous cycling bout; INTER1 = first intermittent cycling bout; INTER2 = second intermittent cycling 

bout; SBP = systolic blood pressure; DBP = diastolic blood pressure; LF:HF ratio = sympathovagal 

balance. 


