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Dear Graham,  
 
Many thanks for the three constructive reports on our ms.  I am now submitting a revised 
manuscript and illustrations.  Below we give our responses to the reviewers, detailing changes we 
have made, addressing most of the reviewers’ suggestions, and pointing out where it has not been 
practicable.  In the revised manuscript, altered sections of text are marked in yellow. 
 
Best wishes 
John 
 
 
 
Reviewer #1: This is an interesting manuscript on spatiotemporal expression pattern of 
hemangioblastic foci in the 1st trimester placenta. Although the reviewer appreciates the 
remarkable descriptive effort of the authors to characterize blood cell and blood vessel development 
in early placental tissue some aspects of the work need - in his opinion -clarification. 
 
In reviewer's opinion following questions remain unanswered: 
 
1. Do the HAF cells originate from common bipotent progenitor (hemangioblas?) or different, 
independently fated mesodermal progenitors or even hemogenic endothelium? 
 
2. Since HAF possibly consist of mixed cell population, further characterisation (using specific 
markers including FLK-1, Gata-1, cKIt, VE-cadherin or Runx 1) might provide more detailed 
information in regard to their origin. 
 
3. Do the HAF cells originate from chorionic or allantoic mesoderm? 
 
4. Are HAF cells involved in primitive or definitive hematopoiesis? 
 

We thank the reviewer for these insightful comments.  We agree that important questions 
regarding the origins and fates available to cells in placental HAFs remain unanswered at this stage.  
Especially given the restrictions associated with working in human, we believe that answers to 1 and 
4 will only be gained by carrying out in vitro studies, ideally on very early tissues which are a scarce 
resource. We aim to develop methods for cell isolation and propagation, but this will take time.   
 

On point 2, several of the markers listed are expressed not only on hemangioblastic cells but 
also in other placental populations, limiting their use in whole mount imaging studies.  However we 
have added a new stem cell marker, CD41, to the data presented. Its presence in cells emerging from 
HAFs suggests that non-erythroid fates may be accessible.  We have also added some colocalisation 
data that allow a more detailed insight into the segregation of CD34 (stem cells and endothelial cells) 

Response to Reviewers



from CD235a (erythroid cells). This has required the addition of a new coauthor as well as a larger 
sample set.  
 

As for point 3, there is evidence of hematopoiesis in the human yolk sac between 16 and 19 
days gestation (Kelemen e et al 1979. Atlas of human hematopoietic development. Springer, Berlin) 
and it has been identified by one of us in the human yolk sac between 6 and 10 weeks (Jones CJ and 
Jauniaux E 1995. Micron 26: 145). It is therefore possible that it occurs in the two sites 
simultaneously. 
 
 
5. The author's proposal that HAFS may act as oxygen reservoir during early placental 
development is exciting but not sufficiently supported by the data presented. 
 

We agree this is speculative and have changed the wording in the abstract and text to make 
it clear. 
 
 
Reviewer #2: This manuscript describes the identification and characterisation of what the authors 
designate as Hemangioblastic foci (HAF).  Understanding the processes of vasculogenesis and 
hematopoeisis in the placenta is both challenging and important.  The main challenge is obtaining 
suitable well preserved specimens.  The authors in this study have overcome this by using some 
newly collected material and archival material.  By the nature of such specimens the experimental 
design is quite constrained and essentially limited to descriptive histological methods.  That said, this 
study is well conducted and my comments will only require modest changes to the manuscript. 
 

We thank this referee for her or his positive remarks. 
 

1 In the abstract (line 40) the authors "propose" that the HAFs (although in the discussion, 
line 267 that it is the erythrocytes) act as an oxygen reservoir.  Thus is all rather 
speculative and stated a little too strongly.  While it is a reasonable speculation I would 
suggest removing this from the abstract. 

 
See response to referee 1 point 5. We have tried to be more precise in the revised text. 

 
2 The annotation of the figures needs improving.  The addition of arrows and indicating in 

the legend what the arrows that are present are highlighting.  At present this is 
inconsistent. 
We’ve added arrows and asterisks to Figure 2,3,6, annotated the new supplementary 
figures, and alluded to the corresponding features in the legends. 

 
3 In the methods section the specific biotinylated lectins used are not described. 

Now addressed. 
 

4 Line 140, the type, not just the degree of glycosylation could also have changed. 
We agree, now addressed. 
 

5 The section on the proposed role of the hofbauer cells (around line 218) is somewhat 
speculative and needs to be shortened and phrased with less certainty.  The results 
show very few examples of staining for macrophages and this is in contrast to the 
disproportionately long section in the discussion. 



We have added some later tissue specimens, extending the study to 11 weeks, and added 
a new supplementary figure that describes the occurrence of Hofbauer cells in the vicinity 
of extravascular erythrocytes.   

6 Lines 255-257.  This sentence is unclear and should be reworded. 
Done. 

 
7 The Centre for Trophoblast Research (CTR, fig 2) needs to be defined in the methods.  

Done.  
 

8 Fig 6 - the legend states panels C and d are serial sections.  This is not the case in the 
figure. 
This error has been corrected to A and B. 

 
 
 
Reviewer #3: Aplin and colleagues describe hemangioblastic foci in human first trimester placenta.  
The study appears to have been well done using conventional methods. 
 
There are, however, some minor points that need to be addressed. 
 
In Fig. 2, addition of arrows (or some other labeling symbol) to indicate the features mentioned in 
the text are needed. 

Done 
 
In Fig. 3A-C, addition of arrows is needed. 

Done  
 
In the legend for Fig. 5, more information is needed for readers to understand what is being shown 
is needed. 

Arrows and asterisks now supplied along with some descriptive text in the legend. 
 
In Fig. 5, the structures of interest should be noted.  Also it is not clear why grey scale images are 
mixed with color images. 

Capture was with a monochrome camera, the grey scale images are shown so readers 
understand that C and D are false colour images. 
 
The legend for Fig. 6 is so brief that it provides little information.  For example, what are the labeled 
structures?  Again, labeling the figures would be helpful. 

Labels added. 
 
In the Discussion, the authors point out that improper fixation may have been a problem in some 
studies related to this topic.  Surprisingly, the fixation conditions for this study were not given 
(except for the glutaraldehyde used for the resin embedded specimens). 

Now addressed. 
 
In the Abstract (Methods), it is stated that thin sections were used.  Generally the term "thin 
section" is used to describe resin embedded samples that are sectioned at 50-100 nm for 
examination by transmission electron microscopy.  The wording should be modified. 

Now given as semi-thin. 
 



While the sources of antibodies and their concentrations were given, this is not the case for the 
lectins.  This information is needed. 

Now given. 
 
What are the binding partners for the two lectins used in this study?  Why were these lectins used 
and not some other lectins. 

Explanation provided. 
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ABSTRACT 16 

Introduction: The human placenta is a site of both hematopoiesis and vasculogenesis.  There are 17 

reports of hemangioblastic foci (HAF) in the first trimester placenta, but little published information 18 

about their spatiotemporal incidence.   19 

Methods: We have used semi-thin sections and whole mount staining techniques on archival early 20 

pregnancy hysterectomy material as well as freshly-collected termination tissue.  21 

Results: We report a description of the distribution of HAF, their gestational profile, and some 22 

characteristics of the constituent cells.  We show crypt-shaped HAF are present in villi at different 23 

levels from 4-11 weeks and in the chorionic plate from 4-9 weeks.   In the villous placenta, the foci 24 

often approach closely at one end to the trophoblast basement membrane.  Morphologically they 25 

show remarkable similarity to those found in the yolk sac at similar stages.  In some crypts, all cells 26 

are CD34+, but CD34 and nestin progressively segregate into the endothelial lineage.  Brachyury is 27 

present in less differentiated cells.  The erythroid lineage is dominant, as shown by the widespread 28 

expression of CD235a/glycophorin and characteristic erythroid morphologies, indicating various 29 

degrees of differentiation.  However, CD41 is also present in non-endothelial cells.  Initially a 30 

discontinuous UEA-1/CD31-positive endothelium forms at the periphery of the foci.  These cells 31 

appear to become integrated into the developing vasculogenic/angiogenic vessel network.  We also 32 

demonstrate that, independent of HAF, vasculogenesis occurs near the tips of growing villi during 33 

the first trimester. 34 

Discussion: We suggest HAF interface with the developing vascular network, producing 35 

communication channels that allow erythrocytes to enter the placental-embryonic circulation.  We 36 

speculate that the erythroid cells act as oxygen reservoirs during the period before flow of maternal 37 

blood through the intervillous space of the placenta, allowing a slow feed of oxygen-rich cells to the 38 

developing embryo. 39 
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HAF distribution in mid first trimester  
Graphical Abstract



Highlights 

Hematopoiesis occurs in the early human placenta. 

We identify hemangioblastic foci distributed randomly through the villous tree and chorionic plate in 
placenta up to 9-10 weeks.  

These are mainly sites of erythropoiesis, surrounded by a progressively developing endothelium. 

We propose that oxygen-loaded red cells are released gradually from these sites as the embryonic 
circulation spreads through the chorionic plate and into distal regions of the villous tree. 

We show that vasculogenesis continues during first trimester at growing villous tips. Such sites are 
unrelated to hemangioblastic foci, suggesting two distinct endothelial lineages. 
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ABSTRACT 16 

Introduction: The human placenta is a site of both hematopoiesis and vasculogenesis.  There are 17 

reports of hemangioblastic foci (HAF) in the first trimester placenta, but little published information 18 

about their spatiotemporal incidence.   19 

Methods: We have used semi-thin sections and whole mount staining techniques on archival early 20 

pregnancy hysterectomy material as well as freshly-collected termination tissue.  21 

Results: We report a description of the distribution of HAF, their gestational profile, and some 22 

characteristics of the constituent cells.  We show crypt-shaped HAF are present in villi at different 23 

levels from 4-11 weeks and in the chorionic plate from 4-9 weeks.   In the villous placenta, the foci 24 

often approach closely at one end to the trophoblast basement membrane.  Morphologically they 25 

show remarkable similarity to those found in the yolk sac at similar stages.  In some crypts, all cells 26 

are CD34+, but CD34 and nestin progressively segregate into the endothelial lineage.  Brachyury is 27 

present in less differentiated cells.  The erythroid lineage is dominant, as shown by the widespread 28 

expression of CD235a/glycophorin and characteristic erythroid morphologies, indicating various 29 

degrees of differentiation.  However, CD41 is also present in non-endothelial cells.  Initially a 30 

discontinuous UEA-1/CD31-positive endothelium forms at the periphery of the foci.  These cells 31 

appear to become integrated into the developing vasculogenic/angiogenic vessel network.  We also 32 

demonstrate that, independent of HAF, vasculogenesis occurs near the tips of growing villi during 33 

the first trimester. 34 

Discussion: We suggest HAF interface with the developing vascular network, producing 35 

communication channels that allow erythrocytes to enter the placental-embryonic circulation.  We 36 

speculate that the erythroid cells act as oxygen reservoirs during the period before flow of maternal 37 

blood through the intervillous space of the placenta, allowing a slow feed of oxygen-rich cells to the 38 

developing embryo. 39 



3 
 

1. Introduction 40 

In the second week of gestation, the outer trophoblast layers of the implanted human embryo are 41 

invested by radial tongues of outgrowing extraembryonic mesenchyme.  From day 14 post 42 

conception, vascular elements begin to form within this layer, comprising cords of endothelial cells 43 

that develop into networks [1-3].   The vascularised mesenchyme forms the stroma of the chorionic 44 

plate and, through progressive outgrowth, the core of the rapidly branching and growing villous 45 

placenta.   The developing placental vascular network connects though the body stalk to the gut, the 46 

developing anterior vascular plexus, the heart and yolk sac [1].   Early in the 5th week of gestation, 47 

when the heart starts beating, the placental vascular network is connected to the embryo and yolk 48 

sac via the chorionic plate and umbilical cord.  49 

Though early studies of the placenta identified vascular elements at these stages [4], limitations in 50 

tissue preservation in the mid 20th century probably obscured hemangioblastic and/or 51 

hematopoietic activity.  This was however suggested in the 1980s [5], and morphological studies as 52 

well as in situ cell marker evidence later emerged to support the idea that hemangioblastic sites are 53 

present in first trimester placenta [6] as well as in the yolk sac [7].  These sites comprise tightly 54 

packed cells, often with recognisable endothelialised margins.  55 

More recently, colony-forming assays conducted with cells isolated from placenta have confirmed 56 

the presence of hematopoietic cells both in the first trimester and later in gestation [8]. The relative 57 

incidence of the various derivative lineages changes, with erythroid precursor cells dominating in the 58 

first 9 weeks though multilineage precursors are also present [9].   Similarly in the mouse, it is clear 59 

that in addition to the yolk sac, the placenta proper is an important hematopoietic tissue [10, 11].    60 

Late in the first trimester, villi regress over the superficial (capsular) aspect of the placenta and the 61 

chorionic plate develops into the avascular chorion laeve.  Studies conducted to date have not 62 

always enjoyed access to well preserved tissue from a spectrum of early gestational ages, and 63 
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generally have not addressed the question of where and when angioblastic sites are found in 64 

relation to the cord insertion.   They have also not clarified the spatial and developmental 65 

relationships between developing vasculogeneic and angiogenic structures and the primitive cell 66 

populations present in putative hemangioblastic foci.  Here we have combined various imaging 67 

methods, including whole mount immunofluorescence and semithin resin sections, in order to throw 68 

light on these and related questions.  69 

 70 

2. Materials and methods 71 

2.1 Tissue  72 

Thirty specimens were analysed from the Manchester early pregnancy tissue bank and 18 from the 73 

Boyd collection at the Centre for Trophoblast Research (CTR) at the University of Cambridge.  74 

Pregnancy termination tissue 4-12 weeks gestation was Carnegie-staged.  Boyd tissues are staged by 75 

crown-rump length; these have been converted to an estimated gestational age to the nearest 76 

week.   Two specimens were also obtained from Dr C Dunk, Toronto.  Tissues were cleaned in 77 

Dulbecco’s Minimal Essential Medium, then fixed in ice-cold 90% methanol overnight before 78 

rehydrating in PBS for whole mount staining.   For immunoperoxidase staining, tissue was fixed in 79 

neutral buffered formalin overnight then washed and processed into paraffin wax.  Efforts were 80 

made to minimise the time between collection and fixation.  A period of <4h gave acceptable 81 

histological preservation.    82 

Whole mount immunofluorescence was carried out essentially as described [12] using directly 83 

conjugated monoclonal antibodies to CD235a (Alexa 488 conjugate, BD Pharmingen 559943, 1/200), 84 

CD41 (Alexa 488 conjugate, MEM-06, AbCam, 1/50) or CD31 (Alexa 647 conjugate, WM59, 85 

BioLegend, San Diego, CA, 1/40).  86 

2.2 Immunohistochemistry 87 
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Sections (6 µm) were heated at 60⁰C for 20 minutes to soften the wax then deparaffinised in 88 

Histoclear (3x 5 minutes) and rehydrated in alcohol (100% ethanol 2x 3 minutes, 70% alcohol 89 

3minutes) then water.  They were microwaved (10min) in citrate buffer pH 6.0 (0.01M), cooled for 90 

20 minutes then endogenous peroxidise activity was blocked using 400ml of methanol containing 91 

1.6ml 1M HCl/litre with 2ml H₂O₂. After rinsing in running water and TBS a 5% bovine serum albumin 92 

protein block was applied. The sections were incubated overnight at 4⁰C with primary antibodies: 93 

monoclonal mouse anti-CD34 (Dako, QBend10, 0.18µg/ml), monoclonal mouse anti-nestin 94 

(10µg/ml), monoclonal mouse anti-CD45 (Dako, 2B11+PD7/26, 7µg/ml), monoclonal mouse anti-95 

CD68 (Dako, PG-M1, 0.4µg/ml), monoclonal rabbit antibody Flk-1 (AbCam, 10C2, 2.5µg/ml), 96 

polyclonal goat anti-brachyury (Santa Cruz, C-19, 4µg/ml, 2µg/ml, 1µg/ml). Controls: mouse IgG 97 

(10µg/ml) for nestin and CD34, mouse IgG (7µm/ml) for CD41, CD45 and CD68, rabbit IgG (2.5µg/ml) 98 

for FLk-1 and TBS (0.125M) for Brachyury. Sections were incubated with secondary antibody: 99 

polyclonal goat anti mouse, polyclonal swine anti rabbit or polyclonal rabbit anti goat followed by 100 

avidin peroxidise (5µg/ml in 0.125 TBS). Peroxidise activity was visualized by application of 101 

diaminobenzidine. The tissue sections were then washed with TBS (0.125M) and counterstained 102 

with hematoxylin. Finally the tissue was dehydrated in alcohol (70% 3minutes, 100% 2x 3 minutes) 103 

and then cleared in histoclear and mounted in DPX. 104 

2.3 Semithin sections and lectin histochemistry 105 

Specimens of placenta of 4, 6, 7 and 8 weeks’ gestation and a 6 week yolk sac were fixed in 2.5% 106 

glutaraldehyde in 0.1M sodium cacodylate buffer pH 7.3 for 4 h, then washed in buffer containing 107 

3mM calcium chloride several times over 24 h before being dehydrated and embedded in TAAB 108 

epoxy resin (TAAB Laboratory Equipment Ltd., Aldermaston, UK). Sections 0.5µm thick were cut and 109 

stained with 1% toluidine blue in 1% borax for 2min on a hotplate at 60˚C then rinsed in water. 110 

Suitable areas were selected for lectin histochemistry and 0.75µm thick sections were mounted on 111 

3-aminopropyltriethoxysilane-coated slides and dried at 50˚C for 48 hours after which they were 112 
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stained with a panel of 5 lectins as previously described[13]. These were agglutinins from Ulex 113 

europaeus-1, Solarnum tuberosum,  Phytolacca americana, Maackia amurensis (all from Vector 114 

Laboratories Ltd, Peterborough, UK) and Sambucus nigra-1 (E-Y Laboratories, San Mateo, CA, USA) 115 

which bind to fucose (UEA-1), N-acetyl glucosamine oligomers (STA, PAA), α2,3 sialic acid (MAA)and 116 

α2,6-sialic acid (SNA-1).  These lectins were selected from a panel of 25 as a previous study (Jones et 117 

al., 2015) had indicated that  they show binding  to cells of the erythroid lineage. Briefly, after resin 118 

removal with 50% sodium ethoxide, blocking endogenous peroxidase and subjecting the sections to 119 

a brief trypsinization step, sections were stained with 10µg/ml (UEA-1, STA, PAA, MAA) or 50µg/ml 120 

(SNA-1) biotinylated lectin in 0.05M TBS pH 7.6 with 1mM added calcium chloride for 1 hour at 37˚C 121 

then treated with 5 µg/ml avidin peroxidase (Sigma) in 0.125 M TBS, pH 7.6, with 0.347 M sodium 122 

chloride for 1 h at 37°C [14].  Sites of lectin binding were revealed with 0.05% diaminobenzidine 123 

tetrahydrochloride dihydrate (Sigma) in 0.05 M TBS, pH 7.6, and 0.015% hydrogen peroxide (100 124 

volumes) for 5 min at room temperature. Sections were rinsed then lightly counterstained with 125 

Harris’s hematoxylin before mounting in DPX. Images were captured on an Olympus microscope 126 

using Image-ProPlus software (Media Cybernetics, Rockville, MD, USA). 127 

 128 

3. Results 129 

3.1 Morphology and glycosylation of HAF  130 

Flat-mounted unfixed specimens of first trimester villous placenta from the end of the first month 131 

(Figure 1) showed elongated haemoglobin-rich structures, often with bulbous tips approaching close 132 

to, or in direct contact with, the trophoblast basement membrane, though not in all villi.   They 133 

appeared to connect to channels lacking visible haemoglobin that continued along the axis of the 134 

villi.   135 
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Histological wax and semi-thin resin sections of tissue fixed soon after delivery revealed prominent 136 

cleft-shaped or ellipsoid structures in the villous mesenchyme alongside small open vessel profiles 137 

(Figures 2, 3), sometimes called ‘blood islands’, here referred to as hemangioblastic foci (HAF), 138 

interacting closely with basal cytotrophoblast (Figure 3).  In some sections the clefts were seen to 139 

comprise branching networks in villous mesenchyme (Figure 2A).   Simple open endothelialised 140 

vascular channels were also seen, sometimes in close proximity to HAF (Figure 2C), both in villi and 141 

chorionic plate (CP).  Cells packed tightly in the foci showed various stages of erythroid 142 

differentiation, with darker and paler Toluidine blue-staining cytoplasm, indicating alterations in 143 

organelles and cytoplasmic differentiation.  Nuclear profiles varied in diameter, and some cells 144 

showed anuclear profiles (Figure 3B), but serial sectioning revealed that most cells are in fact 145 

nucleated (Supplemental Figure 1) with variation in nuclear size and chromatin density.  146 

Different staining densities reflecting various degrees and types of cytoplasmic glycosylation could 147 

be distinguished in the luminal cells with STA (Figure 3C), MAA and SNA-1, again suggesting cell 148 

differentiation. Most cells bound these lectins at the plasma membrane.   At 4-6 weeks the luminal 149 

cells were often tightly adherent both to the tissue wall, the presumptive endothelium and to one 150 

another.  From 6-8 weeks more clefts were seen containing cells in a looser arrangement, often at 151 

one end of the cleft.   Nucleated erythroblasts and some pyrenocytes were found in stroma 152 

surrounding HAF, often in groups with Hofbauer cells in the near vicinity, and this occurred more at 153 

later stages (9-11 weeks) when the associated vascular spaces contained looser cell aggregates 154 

(Figure 4 F,G).  155 

Within the HAF, endothelial differentiation was evident; UEA-1, which detects endothelial cells in 156 

placenta of all gestations [15], was able to differentiate monolayered endothelial cells exhibiting a 157 

flattened shape at the margins of the clefts (Figure 3E,F).  A few adjacent cells, not yet incorporated 158 

into the presumptive vessel wall, also exhibited UEA-1 staining.  Gaps in the UEA-1-positive layer 159 

persisted in some locations up to 8 weeks, potentially allowing access of cells to or from the 160 
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surrounding stromal compartment.  Consistent with this, histological staining for microfibrillar 161 

matrix (reticulin) revealed what appeared to be a discontinuous structure around the developing 162 

HAF (Figure 3D). Yolk sac specimens from the same range of gestational ages showed remarkably 163 

similar features (Figure 3G,H,I).  Biochemical heterogeneity of endothelial cells, which may also be 164 

related to the degree of differentiation, was revealed in early pregnancy by variation in binding of 165 

PAA (Figure 3J). 166 

3.2 Gestational profile of HAF 167 

From 4 weeks, HAF were prominent in the chorionic plate (CP) and major villi (Figure 2A and 3D) and 168 

at 6 weeks particularly large foci were seen in stem villi near sites where they branched from the 169 

plate (Figure 4A).  By this time all vessels in the central CP were opening (Figure 4B) while in the 170 

peripheral CP tightly packed HAF were still present (Figure 4C).  Opened lumena were mostly 171 

oriented towards the chorionic plate with residual adherent cells in the opposite pole of the clefts 172 

(Figure 4A,B). More loosely packed profiles were present in some villi from the earliest stage studied 173 

(4 weeks) and they coexisted with close-packed HAF up to 8 weeks, the latter being found 174 

increasingly towards the distal part of the villous tree, especially centrally. Distally and laterally, 175 

away from the central villous placenta, some villi were present that lacked vessel profiles with 176 

lumena of any kind.   177 

From 7 weeks, increasing numbers of discoid, apparently anuclear erythrocytes were present in 178 

villous vessel profiles (Fig 4D, E), and spaces had opened up in many HAF (presumably following cell 179 

displacement) to leave endothelialised vessels with primitive cells still adherent to the walls.  180 

Residual cell clusters could be found up to about 10 weeks but by this time most vessels were open, 181 

though often containing non-adherent nucleated or anuclear erythrocytes. 182 

 183 

 184 
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3.3 Molecular markers: endothelial and erythroid lineages  185 

Immunofluorescence colocalisation was carried out in whole mounted villous tissue using antibodies 186 

to CD31 and CD235a. Strong CD235a (glycophorin A) immunoreactivity was evident in ellipsoid 187 

structures adjacent to the trophoblast (Figure 5A,E).  These foci, interpreted as HAF, were present 188 

from 5 weeks (the earliest tissue studied using this technique) in the CP and at all levels of the villous 189 

tree.  They were absent from some villous branches, apparently at random.    190 

Staining of whole-mounted tissue with antibody to CD31 (Figure 5F, Supplemental Figure 2) or CD34 191 

(Supplemental Figures 3,4) revealed an extensive developing microvascular network present at 5.5 192 

weeks and all later times in both the CP and more or less throughout the villous tree, with 193 

connection between the two.  Though at all times examined the majority of CD31+ or CD34+ cells 194 

were incorporated in the developing anastomosing vascular network,  it was possible to pick out 195 

evidence of vasculogenic activity in the form of double blind-ended cords using whole mount 196 

staining (Supplemental Figures 2-4). Such sites were usually associated with the tips of growing villi. 197 

They were not observed to have any particular association with CD235+ foci, and indeed were seen 198 

in areas from which the latter were absent.   They could be observed as late as 10 weeks.  199 

CD31+ specks could be seen in CD235+ foci (Figure 5F) that did not contain organised CD31+ vascular 200 

structures, and lacked a discrete layer of CD31+ cells at the periphery.  At 8 weeks (and to a lesser 201 

extent at 5 weeks), CD235+ cells could be seen tightly packed in CD31+ vessel channels adjacent to 202 

HAF (Figure 5C).  However, CD235 staining was absent from most areas of the CD31+ villous vascular 203 

network.  By 9 weeks packed CD235+ cells were detected extending farther into the developing 204 

vascular network.  At 10 weeks CD235bright/CD31weak aggregates were uncommon and many more 205 

vascular elements contained CD235+ cells.  Bright field examination confirmed that oxyhemoglobin-206 

positive cells were spread extensively through vascular channels in the villous tree. 207 
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Tightly packed immature cells in cleft-shaped HAF near to the trophoblastic surface were CD34-208 

positive (Figure 6A, 6 weeks), and many were also nestin-positive (Figure 6B, 6 weeks). However, 209 

CD34 and CD235a did not colocalise (Supplemental Fig 5).  At connections into vascular channels, 210 

CD34 (Figure 6C, 5 weeks) and nestin (not shown) both segregate into endothelium, being absent 211 

from the rounded adherent luminal cells, while CD41 staining was present in non-endothelialised 212 

foci as well as in cells feeding into vascular channels (Supplemental Fig 6).  Alpha smooth muscle 213 

actin (not shown) was found on some presumptive endothelial cells as well as on a scattered 214 

population of mesenchymal cells.  FLK1 staining was found in presumptive endothelial cells but not 215 

in most luminal ones (Figure 6D, 5 weeks).  Large rounded nucleated luminal cells, and rounded cells 216 

adherent to endothelium, were brachyury-positive up to at least 8 weeks, consistent with an early 217 

mesenchymal lineage (Figure 6E).  Where gaps were present in the developing endothelium, 218 

brachyury-positive cells could be seen adhering to the tissue surface (Figure 6E).  Very occasionally 219 

CD45+ cells were present in HAF (Figure 6F).  CD68 recognised a prominent population of Hofbauer 220 

cells at all gestational ages. Though often found in adjacent areas of villous stroma (Figures 4F, 6G), 221 

and occasionally in open vessel spaces (Figure 4G), they were not seen amongst the cells in close-222 

packed HAF.  223 

 224 

4. Discussion 225 

Almost all areas of extraembryonic mesenchyme examined in the 4-10 week period were richly 226 

endowed with CD31-positive cords and microvessels, even at the placental periphery, indicating that 227 

investment with vascular elements follows closely the outgrowth of new mesenchyme.  It has never 228 

been delineated how late in gestation vasculogenesis (as opposed to angiogenesis) can occur; here 229 

we examined endothelial markers in whole mounted and serially sectioned  specimens as late as 10 230 

weeks and were able to discern sites where vasculogenesis appeared to be taking place.  Inward 231 

growth from villous tips seems to be guided in a way that allows newly forming cords to join up with 232 
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elements of the existing angiogenic network located more proximally to the CP, possibly facilitated 233 

by Hofbauer cells which, as tissue macrophages, may promote the joining of tip-cells [16] by 234 

providing a bridge and mediating fusion [17].  Hofbauer cells are present in all early stages reported 235 

and are present in extraembryonic mesenchyme in advance of vascularisation [4, 5]. This suggests 236 

that both endothelial and macrophage lineages can arise de novo from mesenchymal precursors, 237 

though it remains possible that cells originating in the yolk sac might colonise the early placenta [18]. 238 

Hofbauer cells were widespread and randomly distributed in villous and chorionic plate tissues 239 

examined in the present study, however they were not observed amongst the close-packed cells in 240 

HAF.  We therefore suggest that the macrophage is not a derivative of the primitive cells found in 241 

HAF.   A majority of endothelial cells and pericytes [19] probably arise directly from primitive 242 

mesenchymal precursor cells; indeed placental mesenchymal stem cells from various times of 243 

gestation have been shown to have the capability to differentiate in vitro into endothelial cells [20].  244 

However, based on the localisation studies herein, we suggest that a second minority population of 245 

endothelial cells arises within HAF, forming a peripheral layer that eventually encases the foci and 246 

joins them to the wider vascular network.   Studies of embryonic stem cells have demonstrated the 247 

existence of a mesoderm-derived precursor for both mesenchymal stem and endothelial cells [21], 248 

and it will be interesting to see if such a cell can be isolated from human placenta.  Lectin 249 

histochemistry has previously shown term endothelial cells to exhibit heterogeneity [22] as seen 250 

here in early pregnancy, and this may reflect differences in surface properties related to cell 251 

adhesion which may be important in release of erythroid cells into the lumen, and/or different 252 

developmental origins. 253 

Early morphologists did not report hemangioblastic sites [2], possibly because if not promptly fixed,  254 

they become difficult to distinguish from red cells densely packed into vascular channels.  Later 255 

higher-quality histological studies discerned these sites and described some of the phenotypic 256 

features of the constituent cells [5, 6]. It has also become clear that mouse placenta is an important 257 

site of hematopoiesis [11]. The combination of bright field examination of fresh, unfixed, flat-258 
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mounted tissue, histochemistry of resin-embedded tissues fixed soon after delivery, and whole-259 

mount double immunofluorescence with antibodies to CD235a (erythroid lineage cells) and CD31, 260 

clearly identifies mesenchymally-located foci.   Consistent CD235a positivity, together with the 261 

presence of cells with few organellar features and dense or condensing nuclear morphology identify 262 

them as predominantly sites of erythroid development, in keeping with the predominance of 263 

erythroid CFUs in placental cells cultured from early gestation tissue [9].   However there is evidence 264 

that CD235a can mark hematopoietic stem cells [23] and the presence of CD41/integrin αIIb 265 

suggests that primitive cells might be able to progress into other blood cell lineages. This has 266 

previously been suggested in mouse [24, 25], but midgestation placental CD41+ cells could not 267 

reconstitute definitive hematopoiesis [26], so further investigation is warranted in human.  The 268 

details of erythroid maturation and its control are still to be worked out, but erythropoietin, a potent 269 

stimulator of erythroid lineage cells,  is produced by trophoblast, and a paracrine interaction has 270 

been demonstrated in which blocking PDGF signalling leads to upregulation of EPO and an increased 271 

erythroid cell population in the mouse placenta [27].  The data are consistent with the idea that the 272 

most active sites of erythroid initiation and maturation in human are in crypts adjacent to the 273 

trophoblast basement membrane.  Stromal (extravascular) erythroid cells were found to be 274 

associated with the later phases of HAF maturation at which cells start to dissociate, presumably for 275 

release into circulation. Such cells may be left behind after expulsion of the majority of cells from 276 

HAF into the vascular network, after which they are probably phagocytosed by Hofbauer cells, which 277 

are abundant in such areas.   Some pyrenocytes were detected, and it has been suggested that 278 

Hofbauer cells may ingest nuclei extruded from red blood cells originating either in the yolk sac or 279 

placenta [28].   However we tend to the supposition that most cells released from HAF into the 280 

embryonic circulation are nucleated.    281 

The expression of CD34 and brachyury (and some CD31 reactivity) is consistent with stem cells in 282 

these niches that retain the potential to produce endothelial (and probably other vascular) cells, 283 

hence we refer to the niche as a HAF.  The cell aggregates seem to undergo progressive loosening as 284 
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they join up with the vascular tree, eventually becoming incorporated entirely at 9-11 weeks.  They 285 

appear to open up progressively from the end proximal to the CP, ie the developing fetal circulation. 286 

This sequence of events does not occur at one specific time of gestation – rather it depends on the 287 

location, and in all probability the relationship with the onset of blood flow in that area. That is, 288 

various patterns of HAF morphology coexist in different locations in the villous placenta throughout 289 

the period 4-11 weeks.    Adherent, packed luminal cells characteristic of HAF seem to be cleared 290 

from the peripheral CP by 7 weeks, 2-3 weeks before they disappear from villi.  Placentally resident 291 

stem cells present later in gestation clearly occupy a different niche, and indeed scattered stromal or 292 

perivascular CD45+ cells have been observed [9, 29]. 293 

The supply of fetal erythrocytes may well be initiated from the yolk sac, but this is closely followed 294 

by the CP and villous placenta, the aortic-gonadal-mesonephric region, the liver and finally the bone 295 

marrow.   HAF contain cells expressing CD235a that also express high affinity fetal haemoglobin 296 

isoforms including Hbζ and Hbε [28].  They are red on inspection after delivery, and hence bear 297 

oxygen, though this could result from exposure to atmospheric oxygen.  However, they must bind 298 

oxygen tightly in the low partial pressure environment of the first trimester placenta.  Initially not in 299 

communication with the fetal circulation, the foci probably act as a reservoir of oxygen, gradually 300 

releasing oxygen-charged erythrocytes into the fetal circulation. The presence of erythroid foci in the 301 

CP and proximal/central villous placenta – sites closest to the cord -- means that this drip-feed of 302 

cells can start from the earliest stages of fetal circulatory connection.   Indeed in the rhesus 303 

macaque, intravillous circulation has been detected as early as 11 days after fertilisation [30]. We 304 

suggest more distal areas of the growing villous placenta are progressively incorporated.   305 
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Figure legends 

Fig 1 Flat-mounted fresh first trimester villi.  Note that bulbulotubal structures rich in hemoglobin 

extend inwards from sites immediately beneath the trophoblast. They are absent from some villi, for 

example the left hand branch in B.    They connect to presumptive channels that appear to lack 

hemoglobin.  Details of channel systems in A and B are shown in C and D respectively. Scale bars: A, 

25µm; B, 50µm; C, 15µm; D, 25 µm.  

Fig 2 Hemangioblastic foci (HAF) are readily identified in histological sections at (A) 4 and (B) 6 weeks 

(arrows), and a simple empty small vessel profile can be seen in a villus at 6 weeks (C, asterisk).  A is 

an archival specimen (H710) from the collection at the Centre for Trophoblast Research, Cambridge; 

the histological stain is unknown.  B and C are semithin resin sections stained with Toluidine blue.  

Note the elongated HAF extending from the edge towards the centre of the villous mesenchyme. 

The simple vascular channel shown in C is from a field adjacent to B.  Scale bars: A, 40 µm; B&C, 

5µm. 

Fig 3 Histology and lectin histochemistry of placenta and yolk sac reveals developing erythroid and 

endothelial cells in HAF.  (A) Several HAF profiles visible in a Toluidine blue-stained villus at 8 weeks.  

(B) At higher magnification, thin cells are visible at the periphery of a HAF. (C) Solanum tuberosum 

agglutinin (STA) staining of an adjacent section reveals various degrees of differentiation in the 

developing erythroid lineage, as well as presumptive endothelium. (D) Archival specimen (H710; 

4mm CRL; Gomori’s reticulin stain with neutral red counterstain) from approximately 4 weeks, 

revealing that the microfibrillar matrix around developing HAF (*) is discontinuous. (E,F) Combining 

Ulex europaeus-1 agglutinin (UEA-1) staining with a hematoxylin counterstain reveals a 

discontinuous endothelium (8 weeks). (G,H, I) Yolk sac (6 weeks) stained with UEA-1 and 

counterstained with hematoxylin, demonstrating features of endothelial and erythroid development 

similar to those seen in placenta at the same stage.  (J) Phytolacca americana  agglutinin (PAA) 

Figure Legend



binding to a 4 week placental vessel (*) demonstrates endothelial cell heterogeneity. Scale bars: A, 

50µm; B,C and J, 25µm; D, 15µm; E&F, 10µm; G,H,I, 5µm. 

Fig 4 Histology of CP and stem villi, illustrating opening of vascular luminal spaces and release of cells 

from different parts of the placenta, 6-7 weeks.  (A)  A central area in the CP at about 6 weeks (CTR 

specimen H33, CRL 10mm) shows large vessels opening up. Note that in an adjacent stem villus, cell 

displacement from a putative HAF is occurring proximally to the CP (arrow).  Further away from the 

stem villus-CP junction, putative HAF are densely packed with cells (arrowheads).  However fixation 

quality limits the interpretation.  (B) This shows central CP and stem villus, also at 6 weeks; the 

arrows point to small open capillaries in the CP, while the arrowhead locates a vessel in a stem villus 

from which cells are being displaced, note again the initiation of displacement is from the direction 

of the CP.  (C) Peripheral CP at 6 weeks showing an elongated HAF containing tightly packed cells 

(arrows) near to the trophoblast epithelium; (D) peripheral villus at 7 weeks showing a HAF 

containing closely packed cells at various stages of differentiation; (E) central proximal villus at 7 

weeks showing a large vessel with open lumen containing cells including differentiated erythrocytes.  

(A) Archival pregnancy hysterectomy specimens, presumed H&E. (F,G) Two areas from an 8 week 

placenta showing erythroid cells in vascular spaces and adjacent areas of stroma. In F, arrows 

highlight Hofbauer cells in the stroma and in a vessel.   In G,  arrows identify pyrenocytes (red cell 

nuclei) both in stroma and vessels.  However most erythroid cells in both locations are nucleated. 

Note that vascular endothelium is thin and discontinuous in both fields.   (B-G) Toluidine blue-

stained semithin resin sections.  Scale bars: A, 125µm; B, 25µm; C, 10µm; D, 20µm; E-G, 25µm. 

Fig 5 Immunofluorescence of whole-mounted first trimester villous tissue using antibodies to 

CD235a and CD31.  Examples from 5.5 weeks (A-C) and 8 weeks (D-F).  A and E show CD235a, while B 

and F show CD31.  C and D are the respective false colour overlays. Scale bars: A (also B & C), 10µm; 

D (also E & F), 25µm.  In C a developing vessel is shown containing tightly packed CD235a-positive 

cells, and a discontinuous endothelium (dotted lines show gaps, while asterisks mark endothelialised 



segments). In D a HAF (asterisk) contains many CD235a-positive cells along with traces of CD31 

immunoreactivity, and is immediately adjacent to a developing network of CD31+ cords and vessels.  

CD235a+ cells appear to be forming into channel-like structures (asterisk in E) but these have not yet 

acquired an endothelium, nor have they become incorporated into the adjacent CD31+ vascular 

network. 

Fig 6 Immunohistochemistry of lineage markers in 4-8 week villi.  Antigens and gestational ages are 

shown.  Aand B are adjacent sections. CD34 (A, C), nestin (B) and FLK 1 (D) are present in endothelial 

cells of the HAFs (arrows), with FLK 1 also being found in cytotrophoblast cells. Brachyury positive  

cells are present in HAFs (E), some of which adhere to the wall of the vessel (arrow).   In F, CD45 is 

expressed by  a leucoyte in a HAF (arrows) and in G stromal macrophages are stained (arrow).  Tr = 

trophoblast. Scale bars: A (also B-F), 25µm; G, 75µm. 

Supplemental Fig 1. Serial sections of Toluidine blue-stained semithin sections of a 6 week villus.  

The red rectangle identifies a group of cells that shows 4 nuclei in the first image, but another 

nucleus appears in the third section.  The circle in image 9 surrounds an apparently anuclear cell that 

is revealed in image 10 as containing a small pyknotic nucleus that has been cut through by image 

11, while the triangle in image 11 around an anuclear profile contains a nucleus in image 12.  Scale 

bar: 10µm.  Contrast has been increased to maximise the clarity of nuclear profiles, as a result of 

which the surrounding stroma appears bleached. 

Supplemental Fig 2.  A vasculogenic site near the tip of a distal villus at 5 weeks.   This is a 

conventional fluorescence image of a flat mounted specimen stained with CD31, with all the vascular 

elements visible, though not all are in focus.  Note that cords are extending from an area at right, 

which is near the villus tip, towards a more proximal, well-vascularised angiogenic zone at left.  Scale 

bar: 15µm. 



Supplemental Fig 3.  A series of fluorescence planes from a 5 week villus whole mount preparation 

stained with CD34 to localise endothelial cells in vasculogenic sites, assembled into a movie 

(approximately 20 seconds).  

Supplemental Fig 4. Stills from the Z-stack series in Fig 3.  A: 3 seconds. CD34 positive vessel (arrow) 

positioned immediately below the cytotrophoblast layer (CT) though which the imaging plane 

passes. B: 7 seconds; Example of a blind-ending vessel (arrow.) C: 13 seconds. As the series moves 

deeper into the villus small CD34 positive structures (circled) can be identified that are physically 

isolated from, and do not join with, surrounding vessels. A vessel appears to branch in the direction 

of the trophoblast (arrow). CD34 (green), PI (red). Scale bar: 50µm (all images to same scale). 

Supplemental Fig 5. Whole mount immunofluorescence showing CD235a (green) and CD34 (red). 

Small HAF at 8 and 10 weeks show both CD34 and CD235a positivity but no colocalisation is 

detected. Note that CD34 also marks adjacent vascular networks. 

Supplemental Fig 6. Whole mount immunostaining with CD41/integrin αIIb (green) and CD31 (red).  

The 5, 7 and 10 week images show CD41 in the centre panel and CD31 in the right panel, with DAPI 

added to the colour images.  DAPI marks trophoblast most effectively.  The boxed area at 5 weeks is 

shown in two focal planes.   Asterisks mark non-endothelialised HAFs at 6 and 7 weeks.  At 5 and 10 

weeks most CD41+ cells are enclosed within vascular structures though the endothelium is not 

continuous (eg white dotted line at 5w, top left).   
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Fig 3.  Lectin histochemistry of placenta and yolk sac.  
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