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Abstract 24 

Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in 25 

physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-26 

seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to 27 

possess methanogenic and sulfate-reducing activities, yet no systematic studies have been 28 

conducted to address the potential functional diversity of methanogenic and sulfate-reducing 29 

communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and 30 

Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S 31 

rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme 32 

M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over 33 

Archaea in most locations, the majority of which being affiliated with Deltaproteobacteria, 34 

while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper 35 

convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, 36 

were dominated by members of the class Thermoplasmata (Marine Benthic Group E and 37 

Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the 38 

presence of niche-specific groups, and collectively a higher diversity of the sulfate-reducing 39 

communities compared to the methanogenic communities in all five studied locations.  40 

Keywords: hypersaline environments; brine pools; biodiversity; methanogens; sulfate reducers  41 

  42 
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1. Introduction 43 

Hypersaline water bodies at the bottom of the ocean (brine pools) are present in the 44 

Mediterranean Sea, the Gulf of Mexico, and the Red Sea [1]. In the Red Sea, a total of 25 such 45 

deep-sea hypersaline brine pools have been discovered at depths ranging from 1,193 to 2,850 46 

meters below sea level [1, 2]. These environments are extremely saline (up to 26% salinity), 47 

anoxic, rich in heavy metals, and characterized by drastic changes in physicochemical conditions 48 

when compared to the overlaying seawater [3].  49 

The interface between the brine pools and the seawater (BSI) represents a highly peculiar 50 

environment that harbors a high microbial diversity and biomass [4-6]. The increase in microbial 51 

biomass can be explained by the drastic changes in density, which result in an in situ particle trap 52 

for debris sinking through the water column, thus increasing the concentrations of available 53 

nutrients [6, 7]. In addition, the BSI is also characterized by sharp changes in physicochemical 54 

parameters including salinity, oxygen concentration, temperature, and redox potential, all of 55 

which provide a large variety of environmental niches for different metabolic groups [8, 9]. The 56 

microbiology of the BSIs of some of the Red Sea brine pools has been explored with a 57 

combination of cultivation-dependent [10, 11] and molecular–based methods [12, 13]. Previous 58 

studies based on 16S rRNA gene sequences uncovered novel groups of Archaea and Bacteria 59 

inhabiting the BSI of Shaban Deep and Kebrit Deep of the Red Sea [6, 12]. 60 

Microbial community studies in the Mediterranean DHABs revealed that diverse 61 

biogeochemical processes apparently co-occur in the BSI [8]. Other investigations reported on 62 

the importance of methanogenesis and sulfur cycling in these environments [4, 14]. These 63 

findings were also corroborated by recent metagenomic studies, where pathways for 64 

methanogenesis and/or sulfate reduction were detected in brines from the Red Sea and in 65 
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DHABs in the Mediterranean Sea [15-17]. Additionally, unique microbial communities were 66 

found to thrive in the sediments of two brine pools in the Red Sea, and many of the reported 67 

microorganisms are hypothesized to play a dominant role in the methane and sulfur cycle, based 68 

on their phylogenetic affiliations [18]. 69 

Taken together, methanogenesis and sulfate reduction could thus be considered very 70 

important biogeochemical processes in deep-sea brines [4, 19]. However, the composition of the 71 

microbial communities involved in both processes is largely unknown for the Red Sea brine 72 

pools. Considering the extreme conditions of these environments and the unique combination of 73 

physicochemical features in each individual brine pool [1], we postulated the existence of novel, 74 

niche-adapted groups of methanogens and sulfate reducers in the BSIs. Moreover, despite the 75 

micro-oxic conditions present in the BSI [20], members of both groups are capable of tolerating 76 

minute amounts of oxygen [21-23] and could thus play an important role in these environments. 77 

Previous 454 amplicon data [20] uncovered interesting microbial communities in the sampled 78 

sites, but as many of the relatively short sequences stem from poorly characterized groups, we 79 

decided that nearly full-length 16S rRNA gene sequences would be important to provide better 80 

phylogenetic detail and resolution on members of these groups. Therefore, we analyzed the 81 

microbial communities in the BSIs of geochemically distinct brine pools of the Red Sea, using 82 

the canonical 16S rRNA gene, as well as functional marker genes encoding for the alpha 83 

subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA) to 84 

uncover the main methanogenic and sulfate-reducing communities. 85 

 86 

 87 

 88 
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2. Materials and methods 89 

2.1. Sample collection 90 

Water samples from the brine-seawater interfaces and the upper convective layers of the 91 

deep-sea brines were collected from the R/V Aegaeo during the 3
rd

 KAUST Red Sea Expedition 92 

in November 2011 using a rosette sampler equipped with 10-l Niskin bottles and a CTD unit for 93 

monitoring salinity, temperature, transmission, oxygen, and pressure (Idronaut, Italy). Large 94 

volumes (ca. 200 l) of sample were collected from Atlantis II Deep BSI (Ai); first, second, and 95 

third upper-convective layer of Atlantis II Deep (labeled as A-UCL1, A-UCL2, A-UCL3, 96 

respectively), Discovery Deep BSI (Di), Erba Deep BSI (Ei), Kebrit Deep BSI (Ki), and Nereus 97 

Deep BSI (Ni) (Table 1). During sampling, we have avoided mixing between the seawater and 98 

the brine samples by carefully controlling the depth of the CTD and sampler when triggering the 99 

closure of each Niskin bottle to ensure sampling of desired layers. Furthermore, prior to sample 100 

collection on deck, we measured the salinities at the top and bottom of each individual Niskin 101 

bottle using a handheld refractometer (Master Refractometer, Atago, Japan) to confirm that the 102 

salinities of the samples matched the expected values of the targeted layers. Samples were then 103 

concentrated using a Tangential Flow Filtration (TFF) as described elsewhere [20]. Methane and 104 

carbon dioxide concentrations in the samples were determined via a commercial service provided 105 

by GEOMAR Helmholtz Centre for Ocean Research (Kiel, Germany, http://www.geomar.de).  106 

2.2. DNA extraction, amplification, and sequencing of 16S rRNA genes 107 

Nucleic acids were extracted as previously described [24] and the concentrations of the 108 

DNA were measured in a NanoDrop (Thermo Scientific, USA). Partial 16S rRNA genes were 109 

amplified by PCR by using combinations of the archaeal-specific primer 4F (5′-110 
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TCCGGTTGATCCTGCCRG-3′) [25], or the bacteria-specific primer 27F (5′-111 

AGAGTTTGATCMTGGCTCAG-3′) paired with the universal primer 1492R (5′-112 

GGTTACCTTGTTACGACTT-3′) [26]. The primers were chosen to produce sequences with 113 

maximum length. In silico testing using Silva-TestPrime (http://www.arb-114 

silva.de/search/testprime/ [27] with one allowed mismatch indicated a coverage for Bacteria of 115 

65.5% and a coverage for Archaea of 46.6%, while three allowed mismatches indicated a 116 

coverage for Bacteria of 71% and a coverage for Archaea of 53.1%. In addition, the above 117 

primers have a good coverage of major taxa reported in a previous study using 454 amplicon 118 

data [20]. The PCR conditions for archaeal 16S rRNA genes were: an initial denaturation of 5 119 

min at 94 °C, 30 cycles of 1 min at 94 °C, 1 min at 55 °C, and 1.5 min at 72 °C, and then a final 120 

extension step of 7 min at 72 °C. The conditions for bacterial PCR were 3 min at 94 °C, 35 121 

cycles of 1 min at 94 °C, 1 min at 53 °C, and 1.5 min at 72 °C, and then 7 min at 72°C. Purified 122 

PCR products were cloned into PCR®2.1 TOPO vectors (Invitrogen) according to the 123 

manufacturer’s instructions. All clones with inserts from each library (856 and 1040 for archaeal 124 

and bacterial libraries, respectively) were selected for plasmid extraction and bi-directional 125 

sequencing on an ABI 3730  l Capillary Sequencer at the Biosciences Core Laboratory at 126 

KAUST. Raw 16S rRNA gene sequences were quality checked, trimmed and assembled using 127 

Sequencher v.4.9 (Gene Codes Corporation).  128 

2.3. Diversity and phylogenetic analysis 129 

Assembled archaeal and bacterial 16S rRNA sequences were aligned and analyzed using 130 

mothur v.1.31, yielding operational taxonomic units (OTUs) grouped at 97% sequence identity 131 

level [28]. Potential chimeric sequences were removed using the Uchime 4.2 package [29], and 132 

diversity indeces (Shannon) and estimated sample coverage (Good’s coverage) were calculated 133 

http://www.arb-silva.de/search/testprime/
http://www.arb-silva.de/search/testprime/
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as implemented in mothur. Sequence alignments of the resulting representative OTUs (62 for 134 

Archaea and 281 for Bacteria) and closely related sequences recovered from GenBank using 135 

BLASTn [30], were done automatically using the SINA aligner (http://www.arb-136 

silva.de/aligner/) against the SILVA SSU 115 database [31]. The SILVA-aligned sequences were 137 

then used to construct phylogenetic trees with a maximum likelihood algorithm using bootstrap 138 

analysis (1000 samples) to validate support for clades as implemented in ARB v.5.3 [32].  139 

2.4. Functional gene analysis 140 

Partial mcrA and dsrA genes were amplified based on previously described methods [33, 141 

34]. Purification of PCR products, clone library construction and sequencing protocols were the 142 

same as the ones used for 16S rRNA genes described above. The OTUs of mcrA and dsrA genes 143 

were generated at a 6% distance cutoff using FunGene (http://fungene.cme.msu.edu/) [35]. 144 

Deduced amino acid sequences of both genes were aligned with ClustalW [36].  The alignments 145 

of mcrA and dsrA genes were used for phylogenetic analyses with a maximum-likelihood 146 

algorithm (amino acids substitution model: LG for mcrA, and LG+G for dsrA genes) and 1000 147 

bootstraps as implemented in Geneious Pro version 7.1 (Biomatters Ltd.) and MEGA version 148 

6.06 [37], respectively.  149 

2.5. Quantification of gene copy numbers by real-time PCR 150 

Copy numbers of total bacterial and archaeal 16S rRNA genes from each sample location 151 

were determined by quantitative real-time PCR (qPCR) using EXPRESS qPCR SuperMix 152 

(Invitrogen) and a two-step qPCR cycling program on an ABI 7900HT Fast Real-Time PCR 153 

System instrument (Applied Biosystem). The primers Bac518F and Bac786R for Bacteria and 154 

A519F and A727R for Archaea were used as described by Park et al. [38]. Standards were made 155 

from plasmids containing inserts of archaeal or bacterial 16S rRNA gene sequences. The 156 
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efficiency for archaeal 16S rRNA primers was 99.8% and that for bacterial 16S rRNA primers 157 

was 99.5%, as estimated based on the slope of the standard curve.  To allow for better 158 

comparisons among the different samples, copy numbers of genomic DNA were normalized 159 

based on ng of genomic DNA. 160 

2.6. Nucleotide sequence accession numbers 161 

The 16S rRNA gene sequences from this study were deposited in GenBank under 162 

accession numbers KJ881441–KJ882283 (Archaea), and KM018335–KM019141, KP083299– 163 

KP083370 (Bacteria), while mcrA and dsrA gene sequences were deposited under accession 164 

numbers KJ880100–KJ880274 and KM241874–KM242055, respectively.  165 

3. Results and discussion 166 

3.1. General microbial community structure  167 

The ratios of the copy numbers of bacterial to archaeal 16S rRNA genes as estimated 168 

using qPCR were used as a proxy for their abundances in each sample. These ratios ranged in our 169 

samples from 0.15 to 179.12 (Table 1), and Bacteria were more abundant than Archaea in six out 170 

of eight samples. The predominance of Bacteria over Archaea thus seems to be a general trend in 171 

the BSI (and brine bodies) of brine pools from the Red Sea ([5, 17]; this study) and the 172 

Mediterranean Sea [8, 19, 39, 40]; the exceptions being the BSIs of Kebrit Deep and Atlantis II 173 

Deep (this study) and the brine layer of the Urania DHAB in the Mediterranean Sea [19]. 174 

Physico-chemical differences that might be either the reason for, or a result of, the high archaeal 175 

abundances are 1) they are highly sulfidic (in the case of Kebrit Deep and Urania DHAB; ~150 176 

μM and 10 mM H2S, respectively [9]), and 2) the BSIs of Kebrit and Atlantis II Deep have 177 
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dissolved oxygen concentrations (DO2) that are 4–9 times higher than those at the other 178 

locations, where DO2 is close to depletion (Table 1).  179 

Phylogenetic analysis based on 16S rRNA gene sequences revealed a high microbial 180 

diversity in the brine interfaces of geochemically distinct brine pools of the Red Sea (Fig. 1). A 181 

total of 843 archaeal (>1000 bp length) and 960 bacterial (>1400 bp length) non-chimeric 16S 182 

rRNA gene sequences were obtained from the BSIs of the five brines and from the subsequent 183 

three upper convective layers of Atlantis II Deep (A-UCL1, A-UCL2, and A-UCL3). These 184 

sequences were clustered into 62 and 281 OTUs (at 97% sequences identity level) for archaeal 185 

and bacterial genes, respectively. Archaeal sequences were primarily affiliated with the phyla 186 

Thaumarchaeota (60%) and Euryarchaeota (37%), while the bacterial sequences encompassed 187 

diverse lineages. Our findings are in general consistent with previous studies [5, 20]. 188 

 Hierarchical cluster analysis of the archaeal and bacterial 16S rRNA gene based on the 189 

Jaccard similarity index indicated similarities and differences among microbial communities of 190 

each location (Fig. 1A and 1B). The archaeal community in Kebrit Deep was clearly distinctive 191 

from those in the other locations (Fig. 1A). Archaeal communities in the three upper convective 192 

layers of Atlantis II Deep, BSIs of Nereus Deep and Erba Deep, and BSIs of Atlantis II Deep and 193 

Discovery Deep formed three separate clusters. In contrast with the results of the archaeal 194 

communities, we found no apparent clustering of the bacterial communities (Fig. 1B). Though, a 195 

highly stratified bacterial community profile was observed in the multi-layered Atlantis II Deep, 196 

concurrent with previous reports [5].  197 

This is the first detailed phylogenetic study of nearly full-length prokaryotic 16S rRNA 198 

gene sequences from BSIs of Erba and Nereus Deep. Surprisingly, despite their salinity 199 

differences (9.8% vs. 15.4 %), they both harbor very similar microbial communities (Fig. 1). The 200 
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primary archaeal taxon was Marine Group I Thaumarchaeota (77%), while members of the class 201 

Deltaproteobacteria dominated their bacterial clone libraries (35.5% in Erba, and 27.9% in 202 

Nereus). In general, the microbial community compositions based on clone libraries were 203 

consistent with previous findings using an amplicon sequencing approach [20]. Additionally, six 204 

bacterial OTUs accounting for ~8% of all sequences were present in both brine pools, and are 205 

affiliated mostly with sulfate-reducing or sulfur-oxidizing taxa (e.g., Deltaproteobacteria and 206 

SAR324; Table S1).  207 

3.2. Detailed analysis of archaeal communities 208 

Both Thaumarchaeota and Thermoplasmata were ubiquitous in all five brine-seawater 209 

interfaces (BSI) and the three upper convective layers of Atlantis II Deep (A-UCL1, A-UCL2, 210 

and A-UCL3). This suggests that they are important components of deep-sea brine environments, 211 

and presumably possess adaptations to thrive in these gradient environments. Thaumarchaeota 212 

was the predominant group in archaeal clone libraries of all the five BSI samples (73–87%). The 213 

archaeal community composition in the Atlantis II BSI was different from the communities 214 

found in the subsequent convective layers. Clone libraries showed that the most abundant 215 

members in those convective layers belonged to the class Thermoplasmata (46-81%). Class 216 

Methanomicrobia-related sequences were also present (six out of eight sampled locations), but 217 

constituted only a small proportion of the archaeal communities (2.5%–11.4%; Fig. 1A). 218 

Additionally, a variety of archaeal lineages were found in the investigated Red Sea brine pool 219 

BSIs, albeit at low abundances, such as Archaeoglobi, Halobacteria, Marine Benthic Group A 220 

and D, Marine Group III, MSP41, CCA47 cluster and VC2.1 Arc6, Terrestrial Miscellaneous 221 

Group, SM1K20 group, South African Goldmine Euryarchaeotal Group (SAGMEG), Deep-Sea 222 

Euryarchaeotic Group, Miscellaneous Euryarchaeotic Group (MEG) and Terrestrial Hot Spring 223 
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Crenarchaeotic Group (THSCG) (Supplementary Figure S2). Many of the phylogenetic lineages 224 

of Archaea retrieved in this study are uncultured at present. A few of these lineages have been 225 

previously detected from the sediment samples of Atlantis II Deep and Discovery Deep of the 226 

Red Sea in a pyrosequencing approach using 16S rRNA genes [18].  227 

Although we cannot rule out the possibility of reporting DNA sequences of non-228 

metabolically active cells due to long-term preservation of DNA and cells in the deep-sea 229 

hypersaline environments, our recently published results [20] have shown that most of the 230 

thaumarchaeal sequences retrieved from the exact same sampled locations (BSIs) belonged to a 231 

Marine Group I phylotype that is absent in the overlaying water column. Still, this might not 232 

apply to all retrieved sequences. The cultivated species in the phylum Thaumarchaeota are 233 

autotrophic ammonia-oxidizing archaea [41], but a mixotrophic lifestyle in the dark ocean has 234 

also been suggested [42]. Considering their abundance and the halotolerant genomic features of 235 

thaumarchaeal single-cells from BSIs of Red Sea brines [20], we reconfirm previous findings 236 

that the BSI populations might play significant roles in the nitrogen and carbon cycles in the 237 

deep-sea brine interfaces with special adaptation to the hypersaline environments.  238 

Detected members of the Thermoplasmata were mostly associated with the Candidate 239 

division MSBL1 (or Mediterranean Sea Brine Lakes Group 1) and MBGE (Marine Benthic 240 

Group E). Considerable proportions (5%–37%) of sequences related to MSBL1 were found in 241 

most clone libraries (six out of eight). In the Mediterranean DHABs, MSBL1 communities were 242 

commonly found in the lower interfaces and in the brines, and they have been assumed to be 243 

methanogenic due to a positive correlation between their abundances and the in situ methane 244 

concentrations [16, 43].  245 
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MBGE sequences were more abundant in the clone libraries of the upper convective 246 

layers of Atlantis II Deep than in other samples. This is consistent with previous reports 247 

indicating that they frequently occur at locations with higher temperatures (50 °C – 63 °C), 248 

correlating with the high G+C content of their 16S rRNA gene sequences [44]. They were often 249 

retrieved from deep-sea sediment, hydrothermal environments, chimney samples [45], and iron-250 

rich habitats [46]. Therefore, we speculate that their increased abundance in the upper convective 251 

layers of Atlantis II is related to the increased temperature (52 – 65 °C) and iron concentration 252 

(24.5–70.5 µM). As no members of the MBGE clade and MSBL1 clade have been cultivated so 253 

far, their physiology and ecological roles in hypersaline deep-sea environments require future 254 

investigation.  255 

3.3. Detailed analysis of bacterial communities 256 

A wide diversity of Bacteria was observed in the BSIs of Atlantis II, Discovery, Kebrit, 257 

Nereus, and Erba Deep, corroborating previous reports on the microbial communities in the Red 258 

Sea brine pools [5, 6, 12]. The majority of bacterial 16S rRNA sequences were affiliated with 259 

Proteobacteria (relative abundance 37.5–89.4%), Bacteroidetes (0.8–13.2%), Deferribacteres 260 

(0.8–13.9%), and Chloroflexi (1.1–4.2%) (Fig. 1B). The remaining bacterial sequences belong to 261 

uncultured bacterial groups with unknown physiology such as Candidate division KB1, MSBL 2, 262 

and ST12-K34 (Fig S3). These uncultivated groups were previously reported from hypersaline 263 

brines in the Red Sea and DHABs in the Mediterranean Sea [6, 12, 43].  264 

Deltaproteobacteria was the predominant bacterial class in the BSIs of colder brines such 265 

as Kebrit, Erba, and Nereus Deep  (Fig. 1B). The high abundance of Deltaproteobacteria in the 266 

BSIs of these three brines is consistent with previous studies from the Mediterranean DHABs [4, 267 

40]. This group is also one of the most prominent metabolically active microbial groups thriving 268 
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in the chemocline of MgCl2-rich Discovery Basin [47], hypersaline Lake Kryos [39],  and 269 

hydrothermal mud fluids of Urania DHAB, Mediterranean Sea [48]. These findings affirm the 270 

argument that sulfate reduction is one of the main metabolic processes occurring in the 271 

chemoclines of brine pools, which might be primarily performed by members of the 272 

Deltaproteobacteria [4, 19].  273 

On the contrary, Deltaproteobacteria were less abundant in the clone libraries of the hot 274 

brines such as Discovery and Atlantis II Deep. The bacterial clone libraries of Atlantis II Deep 275 

shifted from being dominated by Nitrospinae-like bacteria in the BSI to being dominated by 276 

Gammaproteobacteria in the convective layers underneath (Fig. 1B). Similar patterns of 277 

gradually changing microbial communities were observed in a previous study based using 278 

pyrosequencing of the 16S rRNA genes in these two locations [5]. According to the same study, 279 

the combination of high temperature and salinity was presumed to shape the communities in both 280 

brines. 281 

The majority of the OTUs in the class Deltaproteobacteria fell into four orders: 282 

Desulfobacterales, Desulfurellales, Desulfovibrionales, and Syntrophobacterales (Fig. 2). The 283 

remaining OTUs were assigned into four lineages with no cultured representatives, namely 284 

10bav-F6, DTB120, Candidatus Entotheonella, and SAR 324. A large fraction of 285 

Deltaproteobacteria (around 33.3%) in A-UCL1 could not be classified to any known family, 286 

based on the ARB-SILVA SSU 115 database. 287 

Certain bacterial groups seemed specifically adapted to high salinities. For instance, the 288 

bacterial community of the deepest convective layer of Atlantis II (A-UCL3) was dominated by 289 

Candidate division KB1, a group with no cultured representatives. This group branches between 290 

the Aquificales and the Thermotogales, and is restricted to hypersaline conditions [49]. Members 291 
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of KB1 were initially retrieved from sediments in Kebrit Deep [12] and later obtained in 292 

enrichments of BSI with high salinities obtained from Lake Medee, the Mediterranean Sea [43]. 293 

In this study, Candidate division KB1 was detected in interfaces with higher salinity such as A-294 

UCL3, Di, and Ki (Fig. S3). The metabolic preferences of Candidate division KB1 remain 295 

unsolved although they seem to partially rely on reductive cleavage of the osmoprotectant 296 

glycine betaine, resulting in the formation of trimethylamine (TMA) and acetate [43]. 297 

3.4. Molecular diversity of mcrA genes  298 

Up to now, all described methanogenic archaea fall into the seven orders in the phylum 299 

Euryarchaeota: Methanococcales, Methanopyrales, Methanobacteriales, Methanosarcinales, 300 

Methanomicrobiales, Methanocellales, and the recently proposed 7th order, 301 

Methanomassiliicoccales [50]. The reduction of CO2, the fermentation of acetate, and the 302 

dismutation of methanol or methylamines encompass the three major methanogenic pathways 303 

[51]. Although methanogens play an important role in the global carbon cycling in various 304 

environments, very little is known about the methanogenic players in the Red Sea brine pools. 305 

Methyl-coenzyme M reductase is unique to methanogens and catalyzes the last step in methane 306 

formation. Genes encoding the α subunit of this enzyme (mcrA) have been employed as a 307 

specific marker to detect and differentiate methanogenic and anaerobic methanotrophic 308 

communities [52].  309 

Figure 3 summarizes the diversity and phylogenetic analysis based on 199 mcrA gene 310 

sequences retrieved from the upper convective layers of Atlantis II Deep and the BSIs of Erba 311 

and Kebrit Deep. These mcrA gene sequences clustered into four OTUs at a 6% amino acid 312 

sequence distance cutoff. Two mcrA OTUs (OTU1 and OTU2, representing ~99% of the 313 

retrieved mcrA sequences) grouped together with cultured species of the genera 314 
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Methanohalophilus and Methanococcoides, along with clones from various hypersaline 315 

environments including the deep-sea hypersaline Lake Thetis [16], Lake Medee [43],  Discovery 316 

Basin in the Mediterranean Sea [47], and Discovery Deep in the Red Sea [17]. The cultivated 317 

representatives of these genera utilize methylated compounds as methanogenic substrates and 318 

can produce methane in media with salinities of up to 4M NaCl [53]. This implies that the 319 

dismutation of methanol and methylamines is potentially the main methanogenic pathway in 320 

diverse hypersaline deep-sea basins. Previous studies have suggested that both methanogenesis 321 

and sulfate reduction are major energy-generating processes in the deep-sea hypersaline 322 

environment [4, 8]. However, members of methanogens are in competition with sulfate-reducing 323 

bacteria for their mutual substrates (H2 and acetate). They are also more negatively affected by 324 

increased redox potential (e.g. the increase in DO2) and by the availability of other terminal 325 

electron acceptors (e.g., nitrate, iron, and sulfate); these conditions do exist in the brine pools. 326 

Thus, hydrogenotrophic or acetoclastic methanogens tend to be less common in hypersaline 327 

environments due to thermodynamic constraints [54]. Instead, methanogens in hypersaline 328 

habitats are thought to be restricted to non-competitive substrates such as methylated amines, 329 

which occur as derivatives of compatible solutes [55]. Our results are consistent with this notion. 330 

The remaining two rare OTUs were present only in Kebrit BSI clone library. OTU3 331 

grouped with a previously unidentified cluster formed by clones recovered from rice field soil 332 

[56] and could not be assigned to any of the known methanogens. Interestingly, we found that 333 

OTU3 is related to Candidatus ‘Methanoperedens nitroreducens’ (78% similarity) and thus could 334 

represent an anaerobic methane-oxidizing microorganism. OTU4 clustered with cultivable 335 

species of Methanomassiliicoccales [50], but with low amino acid sequences similarities (63%–336 

79%) [57]. Methanomassiliicoccales are rarely associated with deep-sea hypersaline locations, 337 
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and to our best knowledge, this is the first report of this phylotype from Red Sea brine pools, 338 

after their detection from Lake Kyros in the Mediterranean Sea [39]. Previously reported 339 

sequences associated with this order stemmed from various environments such as rumen, feces, 340 

hindguts, sludge, rice field soil, sediments, and anaerobic digesters. To date, 341 

Methanomassiliicoccus luminyensis is the only described species in this order [58]. Based on the 342 

physiology and the genome content of this isolate, this new order utilizes an H2-dependent 343 

methylotrophic pathway for methanogenesis.  344 

High concentrations of methane gas seem to be a common trait of most DHABs that have 345 

been studied to-date, including those studied here (Table 1). However, the link between these 346 

geochemical data and the major methane-producing taxa in such locations is still obscure. Our 347 

study showed a low diversity of methanogens in our samples and a distribution seemingly 348 

restricted to certain layers. Several previous studies have hypothesized that members of the 349 

Candidate division MSBL1 could be the enigmatic methanogens in brine pools, given their 350 

numerical predominance among Archaea and occurrence in methane-containing layers [4, 43]. 351 

So far, however, there is no conclusive evidence to support this hypothesis based on the 352 

following observations. In this study, we retrieved abundant MSBL1-related 16S rRNA genes 353 

from multiple samples, but except for a single phylotype from Kebrit BSI, no novel clusters of 354 

mcrA genes were detected. Thus, we assume that the Candidate division MSBL1 does not 355 

possess mcrA genes. Still, our study does not conclusively rule out the possibility that novel 356 

mcrA genes have been missed due to primer bias or undersampling of the present clone libraries. 357 

Additionally, the fact that the abundance of MSBL1 16S rRNA genes seems to be correlated 358 

with locations that possess high methane concentrations might be misleading, as the methane 359 

could either be produced abiotically [59] or biotically in deeper layers of the brine pool. 360 
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3.5. Molecular diversity of dsrA genes  361 

Sulfate-reducing prokaryotes are a phylogenetically diverse group of anaerobes, with the 362 

majority of them belonging to the Deltaproteobacteria [60]. To yield energy, this group oxidizes 363 

hydrogen or small organic compounds and reduces sulfate to sulfide. The dissimilatory sulfite 364 

reductase (dsr), which contains two subunits (dsrA and dsrB), is the key enzyme in this process 365 

and is widely used as molecular marker to study the diversity of sulfate-reducing communities 366 

[61]. 367 

In the present study, dsrA clone libraries consisting of 220 sequences were constructed 368 

from the interfaces of five different brine pools in the Red Sea (Table 1). The dsrA gene 369 

sequences were clustered into 27 OTUs with a 6 % distance cutoff (Table S2). This is the first 370 

report on the diversity of sulfate-reducing bacteria (SRB) communities inhabiting the Red Sea 371 

brine pools. Phylogenetic analysis based on deduced amino acid sequences of dsrA clones 372 

revealed a high diversity of sulfate-reducing communities throughout the BSIs. Compared with 373 

the other brines in Mediterranean Sea [39], the Red Sea brine pools seem to possess a relatively 374 

higher diversity of SRB. 375 

The majority of dsrA gene sequences in Erba Deep, Kebrit Deep, and Nereus Deep were 376 

affiliated with Desulfohalobiaceae and the members of Desulfobacteraceae such as 377 

Desulfatiglans, Desulfosalsimonas, Desulfobacterium, and Desulfobacula (Fig. 4). In contrast, in 378 

the warmer brines of Atlantis II and Discovery Deep, most of the OTUs formed distinct 379 

phylogenetic lineages clustering together with environmental sequences (Fig. 4). This result 380 

indicated a different composition of sulfate-reducing communities for each geochemically 381 

distinct brine pool. In addition, the diversity of sulfate-reducing communities based on dsrA 382 
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genes is in good agreement with the presence of sequences related to the members of 383 

Desulfobacteraceae and Desulfohalobiaceae in the 16S rRNA gene data (Fig. 2). 384 

As shown in Figure 4, six different phylogenetic clades of dsrA gene sequences were 385 

found in the brine-seawater interfaces of the Red Sea brine pools. In Clade BSI I, two OTUs 386 

from Kebrit Deep BSI with a relative abundance of more than 30% were affiliated with genus 387 

Desulfobacula. They formed clusters with the dsrA clones from the interface of L’Atalante Deep 388 

and Lake Kryos in the Mediterranean Sea, suggesting that the sulfate-reducing groups in these 389 

environments are specifically adapted to the conditions in the BSIs [14, 47]. In Clade BSI II, an 390 

OTU from Erba and one from Kebrit Deep BSI were affiliated with Desulfosalsimonas 391 

propionicica, a species of the Desulfobacteraceae. The sequences from Kebrit Deep in this clade 392 

were closely related to a clone obtained from the lower BSI of Lake Kryos [39]. The 393 

predominance of Desulfobacteraceae in the BSI of different brine pools might be explained by 394 

their wide range in nutritional diversity, oxygen tolerance, and metabolic plasticity [62]. 395 

Clade BSI III is constituted of an OTU recovered from Kebrit Deep BSI (18.2% salinity) 396 

that was distantly related to two isolated halophilic SRB species, Desulfohalobium retbaense 397 

[63] and Desulfohalobium utahense (both growing at salinities of up to 24%) [64]. This OTU 398 

was only present in Kebrit Deep, suggesting a preference for higher salinity environments. This 399 

finding is in a good agreement with previous analyses of dsrAB mRNA in the Discovery Basin of 400 

the Mediterranean Sea, which revealed that Desulfohalobiaceae dominated in the saltier section 401 

of the interface (from 1.60 up to 2.23 M MgCl2) [47].  402 

The OTUs in Clade BSI IV were widely distributed in the Red Sea brine pools (Fig. 4, 403 

Table S2), especially in the ecosystems with higher sulfate concentration (Table 1). They were 404 

related to Desulfatiglans anilini, a sulfate-reducing bacterium that is capable of degrading a 405 



 19 

variety of aromatic compounds including phenol [65]. Almost all halophilic and halotolerant 406 

strains of SRB isolated so far are incomplete oxidizers, which oxidize organic substrates to 407 

acetate [66]. Interestingly, sequences related to these groups are also found in Kebrit Deep 408 

(salinity 18%) and formed a cluster with a clone from the brine of L’Atalante Deep (salinity 409 

27%), which exceeds the maximum salt limit predicted for complete oxidizers (approximately 410 

13%) [67].  411 

In Clade BSI V (Fig. 4), dsrA gene sequences from Erba and Nereus Deep were distantly 412 

related to Thermodesulfatator atlanticus, a chemolithoautotrophic SRB species within the family 413 

Thermodesulfobacteriaceae that was isolated from a hydrothermal vent [68]. Some of the OTUs 414 

in the hot brines Atlantis II and Discovery Deep formed three deeply branching evolutionary 415 

lineages (Clade BSI VI) that were different from any isolated sulfate-reducing bacteria (Fig. 4). 416 

As there are no cultivated representatives, the metabolism and physiology of this clade remains 417 

obscure. However, phylogenetic analysis indicates that they are related to organisms retrieved 418 

from similar environments in the Mediterranean Sea [14], implying that these phylotypes are 419 

specifically adapted to the DHABs. Considering the high abundance of deeply branching 420 

sequences in the Clade BSI VI (Fig. 4), we assume that the interfaces of the Atlantis II and 421 

Discovery Deep harbor specific sulfate-reducing communities that are quite different to known 422 

SRB.  423 

In conclusion, the bacterial communities were very diverse and, based on 16S rRNA gene 424 

copy numbers, dominated over archaea in the majority of our samples. In the multi-layered 425 

Atlantis II Deep, archaeal and bacterial communities were stratified. Marine Group I 426 

Thaumarchaeota, MBGE and Candidate division MSBL1 Thermoplasmata, halophilic 427 

methanogens, and members of class Deltaproteobacteria were the most common microbial 428 
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groups associated with the chemoclines of the Red Sea brine pools. Methanogens were restricted 429 

to a few taxa in all studied locations, reiterating the harshness of these habitats. The sulfate-430 

reducing communities were collectively diverse based on dsrA gene sequences, with the 431 

majority of the OTUs in Erba, Kebrit, and Nereus Deep being affiliated with genus 432 

Desulfatiglans. Additionally, the high-temperature Atlantis II and Discovery Deep harbor deeply 433 

branched lineage of dsrA gene sequences, which suggest that novel lineages of SRB reside in 434 

these environments. In the broader sense, these findings provide more insights on the ubiquity of 435 

methanogenic archaea and sulfate-reducers in hypersaline habitats, and should increase the 436 

impetus for future cultivation-attempts of the novel halophilic microorganisms.  437 
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Table 648 

Table 1. Physical and geochemical parameters of the sampling locations, bacteria/archaea ratio, 649 

number of clones, and alpha diversity 650 

 651 

Sampling sitea 

Kebrit Erba Nereus Discovery Atlantis II 

Ki Ei Ni Di Ai A-UCL1 A-UCL2 A-UCL3 

Latitude (N)b 
24° 

43.41' 

20° 

43.80' 

23° 

11.53' 
21° 16.98' 

21° 

20.76' 

21° 

20.76' 

21° 

20.76' 

21° 

20.76' 

Longitude (E)b 
36° 

16.63' 

38° 

10.98' 

37° 

25.09' 
38° 3.18' 38° 4.68' 38° 4.68' 38° 4.68' 38° 4.68' 

Depth (m)b 1467 2381 2432 2038 1998 2006 2025 2048 

Thickness (m) 3 10 12 35 4 10 12 20 

Salinity (%)b 18.2 9.8 15.4 13.8 5.6 8.6 11.2 15.4 

H2S (μmol/l)b 149.8 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 

CH4 (ppmV) 28955.5 15.5 23 53 b.d.l. 85.5 330 977 

CO2 (ppmV) 103731 <400 <400 791.5 7878 18953 19288 12226 

16S rRNA gene  

copy nr. (x104) 

Bacteria 6.60 20.60 11.41 457.69 48.05 59.11 1.44 1.27 

Archaea 42.69 1.03 0.08 54.81 77.8 0.33 0.39 0.09 

Bacteria/Archaea 16S rRNA  

gene copy nr. ratioc 
  0.15 20.00 142.63 8.35 0.62 179.12 3.69 14.11 

Bacteria/Archaea ratio after 

normalizationd 
  0.07 9.07 64.07 3.79 0.28 81.26 1.67 6.40  

Nr. of 16S rRNA gene clones 

[nr. of OTUs] 

Bacteria 250 [73] 189 [91] 104 [53] 121 [53] 92 [18] 181 [59] -e 23 [12] 

Archaea 160 [22] 155 [18] 84 [9] 118 [9] 95 [7] 96 [6] 100 [12] 35 [12] 

Shannon index 
Bacteria 3.03 4.03 3.65 3.3 1.84 3.43 - 2.24 

Archaea 1.44 1.45 1.1 1.11 0.64 0.87 1.86 2.36 

Good’s coverage Bacteria 0.71 0.52 0.5 0.56 0.8 0.67 - 0.48 

  Archaea 0.93 0.97 0.96 1 0.97 1 0.99 0.94 

Nr. of clones of functional genes  

[OTUs] 

mcrA 12 [3] 152 [2] - - - - 20 [1] 15 [1] 

dsrA 42 [8] 112 [13] 31 [7] 18 [3] 5 [3] 12 [5] - - 

Good’s coverage mcrA 0.75 0.99 - - - - 0.95 0.93 

  dsrA 0.81 0.88 0.77 0.83 0.5 0.58     

 652 

a Abbreviations for sampling sites:  Ki, Kebrit Deep BSI; Ei, Erba Deep BSI; Ni, Nereus Deep BSI;  Di, Discovery Deep BSI; Ai, 653 
Atlantis II Deep BSI; A-UCL1, A-UCL2, and A-UCL3, the first, second, and third upper-convective layer, respectively. 654 
b For physicochemical data please refer to Ngugi et al. 2014                655 
c To allow for a better comparison among the different samples, copy numbers of genomic DNA were normalized based on ng of 656 
genomic DNA.         657 
d Archaeal and bacterial abundance ratios were estimated based on the qPCR results and the average 16S rRNA gene copy  (4.1 658 
per cell in Bacteria and 1.86 per cell in Achaea (Lee et al. 2009).    659 
e The bacterial library of A-UCL2 was not generated because of technical issues.      660 
     661 
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 662 

Figure legends 663 

Figure 1. Taxonomic classification and relative abundance of archaeal (A) and bacterial (B) 664 

communities in the brine-seawater interfaces of five different brine pools of the Red Sea. A total 665 

of 843 archaeal and 960 bacterial 16S rRNA gene fragments were classified using mothur based 666 

on SILVA database at 97% cutoff. The cluster dendrogram illustrates the linked hierarchical 667 

clustering of different environments based on the relative abundance of the OTUs in each 668 

sampling location. (Ai, Atlantis II Deep BSI; A-UCL1, A-UCL2, and A-UCL3, the first, second, 669 

and third upper convective layer, respectively; Di, Discovery Deep BSI; Ei, Erba Deep BSI; Ki, 670 

Kebrit Deep BSI; Ni, Nereus Deep BSI. MSBL1, Mediterranean Sea Brine Lakes Group 1; 671 

SAGMEG, South African Goldmine Euryarchaeotal Group).  672 

Figure 2. 16S rRNA gene-based phylogenetic tree of the Deltaproteobacteria group, including 673 

the representative sequences from the Atlantis II, Discovery, Erba, Kebrit, and Nereus Deep. The 674 

topology of the tree is based on maximum-likelihood algorithm with 1000 bootstraps. The scale 675 

bar represents 0.10 fixed mutation per nucleotide position. Bootstrap values above 50% are 676 

shown.  677 

Figure 3. Phylogenetic tree of mcrA genes showing the relationship of representative mcrA 678 

clones retrieved from the deep-sea brines of the Red Sea to known methanogens and 679 

environmental sequences. Taxonomy is based on FunGene (http://fungene.cme.msu.edu). 680 

Bootstrap values are based on 1000 replicates and values above 50% are shown. Percentages  in 681 

parentheses indicate the relative abundance in each sample. 682 



 33 

Figure 4. Phylogenetic tree based on deduced amino acid sequences of the dsrA clones from the 683 

brine-seawater interfaces of Red Sea brine pools, including sequences from Mediterranean 684 

DHABs. The topology of the tree is based maximum-likelihood method using 1000 bootstrap 685 

replicates. The scale bar represents 0.10 fixed mutation per nucleotide position and bootstrap 686 

values above 50% are shown. Percentages in parentheses indicate the relative abundance in each 687 

sample. 688 

  689 
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Supplementary materials 690 

Table S1. Shared OTUs among the sampled locations and the relative abundance of archaeal and 691 

bacterial 16S rRNA genes. 692 

Table S2. OTU classification and the relative abundance of dsrA genes in each sampled 693 

locations. 694 

 695 

Figure S1. Sampling locations of five brine pools in the Red Sea. 696 

Figure S2. Phylogenetic tree showing the affiliation of archaeal lineage detected from the 697 

interfaces of the Red Sea brine pools. The tree was constructed by maximum likelihood analysis 698 

using ARB. Taxonomy is based on SSURef_115_SILVA (http://www.arb-silva.de). Dots at 699 

nodes indicate bootstrap values above 50%.  700 

Figure S3. Major lineages of Bacteria (excluding Proteobacteria phylum), harboring 701 

representative sequences from the interfaces of the Red Sea brine pools. Taxonomy is based on 702 

SSURef_115_SILVA (http://www.arb-silva.de), constructed by maximum likelihood analysis 703 

using ARB. 704 

Figure S4. Rarefaction analysis of mcrA clone libraries. 705 

Figure S5. Rarefaction analysis of dsrA clone libraries. 706 
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