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Abstract

Mining large amounts of unstructured data for extracting meaningful, accu-
rate, and actionable information, is at the core of a variety of research dis-
ciplines including computer science, mathematical and statistical modelling,
as well as knowledge engineering. In particular, the ability to model complex
scenarios based on unstructured datasets is an important step towards an
integrated and accurate knowledge extraction approach. This would provide
a significant insight in any decision making process driven by big data anal-
ysis activities. However, there are multiple challenges that need to be fully
addressed in order to achieve this, especially when large and unstructured
data sets are considered.
In this article we propose and analyse a novel method to extract and build
fragments of Bayesian Networks (BNs) from unstructured large data sources.
The results of our analysis show the potential of our approach, and highlight
its accuracy and efficiency. More specifically, when compared with existing
approaches, our method addresses specific challenges posed by the automated
extraction of BNs with extensive applications to unstructured and highly dy-
namic data sources.
The aim of this work is to advance the current state-of-the-art approaches
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to the automated extraction of BNs from unstructured datasets, which pro-
vide a versatile and powerful modelling framework to facilitate knowledge
discovery in complex decision scenarios.

Keywords: Text Mining, Network Theory, Bayesian Networks

1. Introduction

Big Data has been drawing increasing attention from numerous research
communities, which has led to the development and advancement in its the-
oretical foundations and applications to address the challenges raised by this
field. Loosely speaking, Big Data is characterised by the 4 V ’s, namely
volume, velocity, variety and veracity (Trovati M, 2015 A), and different
approaches might address some of these aspects. In recent times, the anal-
ysis of unstructured data from textual sources has played a strategic role
in many activities influencing our daily life. Such data are often charac-
terised by a certain degree of uncertainty, as well as inaccuracies, which raise
numerous challenges for the accurate extraction of new knowledge (AnHai
D, 2006). Furthermore, the ability to identify useful connections between
concepts, insights and trends from such analysis (in order to automatically
build knowledge for supporting decision making processes) is at the heart of
cutting-edge research in several research fields with a multitude of applica-
tions in many disciplines (Trovati M, 2015 A).
The extraction, classification and aggregation of probabilistic information is
crucial in modelling complex systems, and the interconnections between the
relevant concepts and associated variables underpin the general properties
of such systems (Dojer N, 2013). In particular, their characteristics are
shaped by statistical properties linked to the graph-theoretic features of the
associated semantic networks. These can be modelled in terms of nodes,
corresponding to specific words or concepts, together with their mutual con-
nections, representing the semantic associations between them. Interestingly,
many of such networks exhibit a small-world structure characterised by the
combination of highly clustered neighbourhoods, a sparse connectivity and a
short average path length (Watts DJ, 1998), as well as scale-free organisa-
tion (Albert R, 2002). This is characterised by a node degree distribution
following a power law structure. Any knowledge process modelled by such
networks reflects the semantic network growth dynamics. Each new node
added to the semantic network immediately inherits some of the connections
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characterising the pre-existing nodes (identified as its neighbourhood).
Furthermore, highly connected nodes are more likely to be associated with
more significant knowledge (Watts DJ, 1998). The structural principles char-
acterising scale-free networks potentially have very important implications in
understanding the development of new knowledge. In fact, this facilitates the
abstract understanding of how semantic organisations can evolve and grow,
based on basic statistical criteria. This enables knowledge construction in
the form of probabilistic relationships between concepts (Trovati M, 2014).

Bayesian Networks (BNs) (Jensen FV, 2009), (Pearl J, 1998) are graphi-
cal structures with emphasis on cause and effect modelling in many knowledge-
related domains (Ji J, 2011), (Cruz-Ramirez N, 2009). Their main char-
acteristic is the ability of capturing the probabilistic relationship between
variables, as well as their historical information. In particular, they facili-
tate the creation of systems by modelling knowledge in a way that is easily
comprehensible by humans (Rance B, 2012), (Kuipers BJ, 1985), (Kuipers
BJ, 1984). More formally, BNs are directed acyclic graphs where their nodes
represent Bayesian random variables. In other words, they are associated
with observable quantities, unknown parameters, hypotheses, etc. Nodes
that are are conditionally dependent are joined by an edge, and each node is
associated with a probability function whose input is a set of values from its
parent nodes (i.e. the nodes connected to it). The output is the probability
of the variable represented by the node.

BNs have proved to be very successful when a scenario consisting of pre-
acknowledge information coupled with uncertain or partially known data, is
considered (Pearl J, 1998). The extraction of BNs from text is typically a
complex task due to the intrinsic ambiguity of natural language (Sanchez-
Graillet O, 2004). In fact, BNs are defined by strict topological and proba-
bilistic rules, which are difficult to fully automatise. Issues such as low recall
and precision, as well as contradictory information, must be dealt with by
any BN extraction tool. Therefore, they tend to rely on a substantial level
of human supervision and interaction (Raghuram S, 2009).

In this article, we introduce a systematic method to extract and populate
fragments of BNs (and hence structured knowledge) from textual sources,
based on grammar and lexical properties, as well as on the topological fea-
tures of networks subsequently being extracted. The aim is to provide an ag-
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Figure 1: The general architecture of the scheme presented in Section 2.

ile yet accurate method to identify and assess probabilistic relations between
concepts, which are subsequently embedded onto suitable BNs. However,
this is typically a complex problem especially, when addressing the emer-
gence of large volumes of unstructured data sets, typically referred to as Big
Data. These are now considered to be one of the most promising sources for
knowledge extraction.

The paper is structured as follows: in Section 2 we describe the main
architecture of the proposed system; Sections 3 and 4 discuss the ontology
used in this context, and the techniques and algorithms that can be used
to extract probabilistic information. Sections 5 and 6 focus on the network
topology, probabilistic information extraction, and knowledge discovery. In
Section 7 we discuss the implementation and evaluation of our approach.
Finally, Section 8 addresses future work and research directions.

2. The Architecture of the Extraction Scheme

As depicted in Figure 1, the knowledge extraction scheme, which finally
results in the creation of suitable BNs, is structured in the following basic
components:
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Figure 2: The specific components of the text analysis depicted in Figure 1.

• Ontology and external sources: two specific ontologies have been de-
fined, according to the semantic properties of concepts, as well as prob-
abilistic and statistical terms. This is discussed in Section 3.

• A text analysis component as depicted in Figure 2, which includes
the identification of specific keywords (i.e., probabilistic and statistical
terms used in this article), as well as general concepts, along with any
other relevant semantic information, including synonyms, antonyms,
meronyms, etc. This is discussed in Section 3. In particular,

– Specific text patterns have been defined for extracting probabilis-
tic relationships between concepts, as discussed in Section 4. This
approach is also reinforced by the augmentation of co-occurrence
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properties to such concepts.

– The output of the extraction includes pairs of concepts linked by
a probabilistic relationship. These can be of probabilistic depen-
dence or independence type, as discussed in Section 4. Note that
if the extraction is not successful in identifying a specific relation-
ship between any two concepts, then it is defined unknown. All
the above information can be suitably aggregated to enable a full
investigation of their types.

– Finally, following an appropriate data aggregation, any new con-
cept and probabilistic information relevant to the context de-
scribed in this article, is merged with the ontologies.

• The output of the text analysis is a multi-edge network where its nodes
are associated with the extracted concepts and each edge represents the
group of relationships between nodes. The topological properties of the
networks are subsequently analysed to assess probabilistic information
associated with them. As discussed in Section 5, the edges are re-
assessed so that they are grouped into the following categories

– Directed edges provided that the directions of the corresponding
relations have been identified. This could include a 2−loop be-
tween two nodes, say A and B, if a double relation is present,
such as A causes B and B causes A.

– Undirected if the corresponding relation is unknown.

– Finally, an independence relation resulting to no edge between
the corresponding nodes. However, the opposite does not hold
as a lack of an edge does not necessarily imply an independence
relations, as discussed later on. As a consequence, even though an
independence relation has no connecting edges, it will be different
from the case of no edges due to no relations extracted.

• Following a consistency checking process, potentially various permissi-
ble versions of BNs are created, based on the extracted network.

• Finally, the visualisation of the BNs identified, as well as knowledge
discovery, will be carried out.
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Table 1: A small selection of the relation terms as in Section 3.
Relation Terms

cause
activate
impel
inspire
excite

quicken
rouse

stimulate
influence
determine

likely
probable

independent
associated

disconnected
separated
excluded

3. Ontology Definition

Although the method introduced in this work is applicable to a variety
of contexts, our validation process is specifically focused on textual sources
from the biomedical sector. As a consequence, two ontologies were defined
to contain biomedical terms. More specifically, these were based on the
hierarchical semantic properties of suitable keywords, which include:

• Probabilistic and statistical relation terms

• Biomedical concepts

The former were automatically extracted from Wikipedia based on a general
query related to statistical and probabilistic types of relations. Their def-
initions were subsequently analysed to identify further concepts, which are
semantically related. This process generated over 2300 terms, which tend
to occur in sentences that indicate information related to uncertainty and
probabilistic states. Table 1 shows a small selection.
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More specifically, these keywords are associated with dependency and in-
dependence relations, such as “lung cancer is associated with tobacco smok-
ing”, or “an increase in aspirin assumption has been shown to be independent
from cancer occurrence”. Furthermore, (English based) WordNet (Fellbaum
C, 1998) was utilised to identify keywords that were considered to be seman-
tically equivalent. In particular, such equivalence is based on whether terms
belong to the same semantic class, or synsets (Fellbaum C, 1998).

This was also crucial in minimising the negative effects of ambiguity based
on the assumption that keywords within the same synset are deemed equiv-
alent.
Biomedical concepts were found in the Open Biological and Biomedical On-
tologies (The Open Biological and Biomedical Ontologies, 2014). This is
a collaborative research effort that identifies a set of principles and inter-
operable reference ontologies in the biomedical domain. These are encoded
into files by using a variety of formats including obo and rdf (DuCharme
B, 2011). Their analysis populated a list of over 60, 000 concepts. As dis-
cussed in the following section, the extraction of probabilistic information is
subsequently assessed and aggregated into our ontologies.

4. Text Analysis and Relation Extraction

The extraction of probabilistic information joining different concepts is
crucial in the identification of the most appropriate fragments of BNs, which
model the scenarios they represent. The concepts extracted from the Open
Biological and Biomedical Ontologies are particularly effective in minimising
the extraction of erroneous concepts, as well as those which are semantically
equivalent. In fact, the biomedical field is particularly appropriate to this
approach since most of the concepts are uniquely identifiable (Xu R, 2012),
(Yu F, 2016). Furthermore, the extraction and assessment of relationships
between biomedical concepts within the Big Data scenario has enormous po-
tential and far-reaching benefits (Mars M, 2010).

On the other hand, a general approach would be prone to to a higher
level of inaccuracy. Consider, for example “high humidity in the atmosphere
is linked to precipitation”, which suggests a connection between high humidity
and precipitation. However, we might argue that humidity is the appropriate
concept as high is just an attribute, or state. Similar cases are indeed sub-
jective as they depend on the specific scenarios that are modelled.
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In particular, specific disambiguation techniques (Manning CD, 1999) need
to be implemented to enable a better and more general identification of the
appropriate nodes in a BN by classifying and grouping together nodes refer-
ring to similar concepts. However, word synonymity and polysemy must be
fully addressed, depending on the corresponding context (Sanchez-Graillet
O, 2004), where a variety of supervised machine learning algorithms can be
potentially utilised to facilitate this task. As discussed above, the investiga-
tion of suitable node attributes will also play an important role in the correct
identification of the topology of the resulting networks. Furthermore, depen-
dency and independence relations from general textual sources are likely to
be defined by a larger set of linguistic expressions, which need to be captured
by suitable text patterns. The next steps of our research involve addressing
the above challenges by considering a variety of techniques, including more
comprehensive test patterns and various statistical and machine learning ap-
proaches.

In this article, in order to ascertain the type of probabilistic linking among
the different concepts, we consider a text pattern approach. This allows the
identification of specific text fragments that capture probabilistic information
between concepts (Feldman R, 2006). However, this approach tends to focus
on specific patterns to optimise accuracy, due to the intrinsic complexity of
human language.
The concepts and their mutual relations identified via text patterns, need to
appear within the same text fragments, such as paragraphs, or if they are
linked by specific and given relationships, such as items in a database. This
was carried out by considering the following quintuples (NP1, MOD, tense,

keyword, NP2) where:

• NP1 and NP2 are the noun phrases, i.e. phrases with a noun as the head
word, which have to contain one or more biomedical concepts.

• keyword is one or more probabilistic terms contained in the ontology
as per Section 3.

• MOD is the keyword modality. This identifies whether the corresponding
sentence refers to either a relation or a ‘non-relation’ in probabilistic
terms. In particular, this can be either positive or negative depend-
ing on whether it reinforces the existence of a probabilistic relationship,
or negates it.
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• tense refers to the tense of the action, whether active or passive. If
it cannot be determined, then it will be defined as unknown.

These quintuples are specifically extracted by analysing the syntactic struc-
ture of sentences and text fragments. As discussed in Section 7, Python
NLTK (Bird S, 2009) was used to create a prototype to tokenise, parse and
extract the relevant syntactic information which are described by the differ-
ent POS components.
A sentence such as “a small consumption of alcohol is not linked with an
increased risk of cancer” suggests a lack of any probabilistic relationship be-
tween small alcohol consumption and increased risk of cancer. The modality
not specifically determines such a state. We refer to this scenario as an inde-
pendence state. Strictly speaking, such type of assertion might only suggest
a lack of a probabilistic relation, rather than full independence. However, a
full semantic analysis of this particular issue goes beyond the scope of this
work, and as a consequence, we will assume that such type of assertion refers
indeed to an independence relation.
An independence relation can also be directly specified by the keyword com-
ponent of the aforementioned text patterns, such as “the risk of cancer ap-
pears to be independent from a small consumption of alcohol”. Clearly, the
MOD is positive, whereas keyword indicates the existence of an independence
relationship.

The above process can be summed up as the following:

• positive MOD + independence keyword = independence (proba-
bilistic) relation

• positive MOD + dependence keyword = dependence (probabilistic)
relation

• negative MOD + independence keyword = dependence (probabilis-
tic) relation

• negative MOD + dependence keyword = independence (probabilis-
tic) relation

In this approach, we also focus on the direction of the corresponding rela-
tionships between concepts. Human interpretation would consider the verb
tense and/or the type of keywords to ascertain the direction. However, such
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type of analysis is demonstrated to be difficult in NLP systems (Blanco
E, 2008). The approach used in this article attempts to identify the corre-
sponding relation depending whether an active of passive form is found, as
specified by the tense of the verb or keyword.
In future research, we are aiming to provide a better text analysis, which
would include an enhanced independence extraction, as well as the direction
of dependency relations (Trovati M, 2015 B).

5. Network Topology Extraction and Probabilistic Information Ex-
traction

The quintuples (NP1, MOD, tense, keyword, NP2) described in Sec-
tion 4, naturally define a network, where the concepts in NP1 and NP2 are
connected by an edge whose type depends on the associated relations. More
specifically, the network is defined as G = G(V,E), where V = {vi}ni=1 is
the node set and E = {evi,vj}vi,vj∈V is the edge set. Usually, such networks
are multi-graphs, where nodes may have more than one edge between them,
with the exception of self-loops, or in other words edges starting and ending
from the same node.
In fact, more than one relation between two concepts might be present, de-
pending on the nature and size of the text corpora analysed. Therefore, each
element of E is itself a non-trivial set containing the relationships between
pairs of nodes, which have been extracted via the text analysis.
These relations can be of dependency, independency, or unknown type and
will be denoted as SD(vi, vj), SI(vi, vj) and U(vi, vj), respectively, for vi, vj ∈
V . In particular, edges in SD(vi, vj) are directed, where the direction is spec-
ified by the tense component in the text, or by information contained in
the ontology. Note that, independence relations are not associated with a
direction, even though the tense of the action may suggest otherwise.
In the next section, we will discuss the assessment of the conditional proba-
bilities based on the topological properties of the network G = G(V,E).

5.1. Probabilistic Information Extraction

The estimation of the probability of a concept extracted from text cor-
pora typically depends on the frequency of its occurrences, as well as on the
topology of the network to which such concept belongs (Trovati M, 2015
A). In fact, the probability of choosing, or rather observing a concept A is
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proportional to the number of its connections. Intuitively, the higher the
connectivity of one node is, the more it is assumed to be observable. This is
evaluated by the ratio

pT (A) =
d(A)

|E|
, (1)

where d(A) is the degree of the node A, and |E| is the total number of edges.
We then define the probability of A, as

P (A) = pO(A)pT (A), (2)

where

pO(A) =
OA

OV

, (3)

and OA, OV are the number of occurrences of concept A and all the concepts
in V , respectively. Recall that a scale-free network has a degree distribution,
which asymptotically follows a power law (Albert R, 2002). In other words,
the fraction P (k) of nodes in the network having k neighbouring nodes for
large k, is described as

P (k) ≈ k−γ, (4)

where γ is typically between 2 and 3. Following Equations 1 and 4, if the
network G exhibit a scale-free structure, then we can assume that pT (A) =
1− d(A)−γ. So Equation 2 can be written as

P (A) ≈ OA

OV

(1− d(A)−γ) (5)

5.2. Conditional Probability

As discussed above, for two nodes A and B, in general more than one
relation might have been extracted, which could consist of dependency, inde-
pendent and unknown relations, that is SD(A,B), SI(A,B) and U(A,B), re-
spectively. In particular, we make the assumption that the overall relation set
between these two (connected) nodes eA,B = SD(A,B)∪ SI(A,B)∪U(A,B)
is non-empty. Furthermore, a high number of unknown relations is assumed
to suggest a weaker dependency, since by definition, they are not necessarily
associated with a specific relation type.
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We propose the following model to assess the conditional probability

P (A|B) = Λ e
− |SI (A,B)|
|SD(A,B)|+|U(A,B)|

+ P (A)

(
1− e−

|SI (A,B)|
|SD(A,B)|+|U(A,B)|

)
, (6)

where

Λ =

{
1−Ke−

|U(A,B)|2+|SD(A,B)|
|U(A,B)| if |U(A,B)| 6= 0

1 otherwise

for a constant K > 0.
In particular, Table 2 depicts all the possible outcomes of the extraction
and how to subsequently interpret and determine the conditional probability
P (A|B). The joint probability is therefore

P (A,B) = P (B)P (A|B) = Λ P (B) e
− |SI (A,B)|
|SD(A,B)|+|U(A,B)|

+ P (B)P (A)

(
1− e−

|SI (A,B)|
|SD(A,B)|+|U(A,B)|

)
(7)

Note that the factor Λ measures the strength of dependency relations com-
pared to the number of unknown relations. If |SD(A,B)| << |U(A,B)|, the
above will tend to

(
1−Ke−|U(A,B)|). This is the value that we assume to be

associated to a relation characterised by unknown relationships. Depend-
ing on the number of these unknown relationships, its range is between
[1 − K/e, 1), for |U(A,B)| = 1, and |U(A,B)| → ∞, respectively. The
value of the constant specifies the lower bound of the range, which is asso-
ciated with the conditional probability given by one and only one relation
between A and B of unknown type. In this article, we assume that such
lower bound is 0.1, which yields K = 0.9e ≈ 2.45. This assumption was
agreed upon with a group of experts, who have contributed to the validation
process as discussed in Section 7.

5.2.1. Properties of Conditional Probability

A well know property of conditional probability is the chain rule

P (
n⋂
k=1

Ak) =
n∏
k=1

P (Ak|
k−1⋂
j=1

Aj), (8)
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Table 2: The values of the conditional probabilities and relation types for the different
values of |SI(A,B)|, |SD(A,B)|, and |U(A,B)|.

P (A|B) |SI(A,B)| |SD(A,B)| |U(A,B)| Relation Type

Evaluated = 0 = 0 6= 0 Dependency
with (6)

Evaluated = 0 6= 0 6= 0 Dependency
with (6)

P (A) 6= 0 = 0 = 0 Independence

P (A) 6= 0 = 0 6= 0 Independence

Evaluated 6= 0 6= 0 = 0 If |SD(A,B)| >
with (6) |SI(A,B)|:

if dependency. Dependency
If |SD(A,B)| <
|SI(A,B)|:

P (A) if Independence
independent

Evaluated 6= 0 6= 0 6= 0 If |SD(A,B)| >
with (6) |SI(A,B)|:

if dependency. Dependency
If |SD(A,B)| <
|SI(A,B)|:

P (A) if Independence
independent

Evaluated = 0 6= 0 6= 0 Dependency
with (6)

which is used to define the joint probability of more than on concept. Equa-
tion 8 can be written explicitly as

P (A1, . . . , An) = P (A1)P (A2|A1)P (A3|A2A1) · · ·P (An|An−1 · · ·A1). (9)

In this article, we define P (An|An−1 · · ·A1) similar to Equation 6. However,
since we have to consider the influence of the nodes An−1, · · · , A1 on An,
we will only consider the minimum of each of their contribution in terms of
dependency, independence and unknown relations. Namely,

P (An|An · · ·A1) =
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(
1−Ke−

|U(An,···,A1)|
2+|SD(An,···,A1)|

|U(An,···,A1)|

)
e
− |SI (An,···,A1)|
|SD(An,···,A1)|+|U(An,···,A1)|

+P (An)

(
1− e−

|SI (An,···,A1)|
|SD(An,···,A1)|+|U(An,···,A1)|

)
, (10)

where

SD(An, · · · , A1) = min {SD(An, An−1), . . . , SD(An, A1)}
SI(An, · · · , A1) = min {SI(An, An−1), . . . , SI(An, A1)}
U(An, · · · , A1) = min {U(An, An−1), . . . , U(An, A1)}.

Furthermore, analysing Equation 6, we can see that

• If A and B are independent, then SI(A,B) is large with respect to

SD(A,B) and U(A,B), which implies that e
− |SI (A,B)|
|SD(A,B)|+|U(A,B)| → 0, and

subsequently P (A|B) ≈ P (A).

• The assertion A ⊃ B is assumed to signify that B is connected to
A with a large number of SD(A,B), both globally and relatively to

SI(A,B) and U(A,B). This implies that e
− |SI (A,B)|
|SD(A,B)|+|U(A,B)| → 1, and so

P (A|B) ≈ 1.

• For two nodes A1 and A2 such that A1 ∩ A2 = ∅, then we assume
that these two nodes have no mutual connection. This implies that
P (A1 ∪ A2|B) = P (A1|B) + P (A2|B).

• And finally, P (A|B) 6= P (B|A), which is obvious from Equation 6.

All the above is consistent with the general properties of conditional proba-
bility.

5.3. Identification of Consistent BNs

As discussed above, a BN is a directed, acyclic graph where edges are
associated with a dependence relations usually characterised by a conditional
probability. Furthermore, these depend on the direction of the corresponding
edge as, for example, P (A|B) implies a directed edge B → A, and vice-versa.
Since the conditional probability values are extracted from text, and following
the method discussed above, edges can exhibit the following types:
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• A single direction, such as A ← B, or A → B. This can be either
extracted from the text, or determined from the ontology.

• A double direction, in the sense that both P (A|B) and P (B|A) have
been extracted. This is only possible if the directions have been iden-
tified from text. Different texts, for example, could describe a variety
of information, such as “heart disease will influence lifestyle changes”
and “lifestyle changes can contribute to an increased likelihood of heart
disease”. Clearly, these two statements are not contradictory and fully
explainable within their contexts. However, a text mining analysis
might interpret them as a double dependency between lifestyle changes
and heart disease. As a consequence, in determining which direction
the linking edge should have, it might not be directly possible to as-
certain whether they refer to different contexts, as well as whether the
extraction was indeed accurate. In this article, we therefore assume
both directions have to be considered. As discussed above, this is op-
posite to knowledge from the ontology, which is assumed ‘certain’ with
a well defined dependency direction.

• A strong independence, is identified by textual analysis as an indepen-
dent relation, or from the ontology, should this be specified. This is
to diversify the lack of an edge between two concept, which does not
necessarily imply independence between them, as this might be due to
error in the the extraction, or noise in the data (Yang X, 2014).

• Finally, undirected edges correspond to unknown relations, which have
not been successfully classified. This can only be determined from
textual sources.

The ontology described in Section 3 provides the information, which has
priority over any knowledge extracted from text. As a consequence, if any
extracted relationship has a different connotation in the ontology, the former
will be discarded and the latter will be assumed to be correct.

5.4. Consistency Checking and Creation of Copies of a BN

Since BNs are directed acyclic graphs, only directions which define con-
sistent BNs need to be considered.
There is a wealth of literature on loop removal within BNs to provide consis-
tency, see (Ben-Gal I, 2007) for an overview. Therefore, in order to ensure
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consistency, networks with no cycles will be kept. These are defined as the set
of copies G = {Gi}ki=1 of G, where Gi = Gi(V,Ei) is defined by the method
above. Note that in general, |E| ≥ |Ei| for i = 1, . . . , k.
In this article, the approach to identify copies is based on the following as-
sumptions:

Unknown edges: each direction should be investigated. If neither of them
provides a consistent network, then such edge will be removed.

Double directed edges: each direction should be investigated separately,
and only directions that are consistent will be kept. If neither directions
provide consistency, then the corresponding copy will be discarded.
Recall that this type of edges are associated with relations extracted
from textual sources.

Strong independent edges: no actions are possible, as we cannot add an
edge between the corresponding nodes. This will come from both the
extraction from text and the ontology.

Directed edges determined from the ontology: as discussed above, these
types of edges are deemed certain and therefore they cannot be re-
moved.

Algorithm 1 describes the creation of the set of copies G.
In general, some edges might have values of their extracted conditional

probability too small, and their existence should be therefore assessed. Usu-
ally, such assessment is carried out manually depending on the context. In
this article, this process focuses on the idea that the threshold depends on
the distribution of the values of the conditional probability and how evenly
they are distributed over the edges. Therefore, let

P̄G =
w(Ai, Aj)P (Ai|Aj)∑
eAi,Aj

∈E w(Ai, Aj)
, (11)

where Ai, Aj ∈ V , and w(Ai, Aj) refers to the number of edges with the same
conditional probability value.
Therefore, only edges whose conditional probability is greater or equal to P̄G
will be kept.
In general, for a network G = G(V,E), where E includes d double directed
edges and u unknown ones, it is straightforward to see that there are at most
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Algorithm 1 Creation of Copies of BNs

1: Let G = G(V,E) be the network defined above.
2: Define ED and EU as the subsets of E containing the dependency and

unknown relations, respectively.
3: Let evi,vj ∈ E be an edge between the nodes vi and vj ∈ V .
4: for evi,vj ∈ ED consider both directions do
5: for evi,vj ∈ EU consider the three possible directions do
6: if the corresponding sub-network Gi is consistent then
7: Add Gi to G
8: else
9: Discard Gi

10: end if
11: end for
12: end for
13: return G

2d3u copies of corresponding BNs. Clearly, this is not computationally effi-
cient, especially when considering large networks. However, in the analysis
carried out in this article, the number of double directed edges and the un-
known relation is smaller than those identified via the ontology, due to the
context of our analysis.

6. Knowledge Discovery

As discussed above, a lack of an edge between two nodes does not im-
ply an independence relation, as no explicit relation might not have been
identified from the data. Unless two disconnected nodes have been explicitly
shown to be independent, investigating the existence of a relation between
them by adding an edge is, in principle, a permissible action. However, such
action should not invalidate the consistency of the corresponding copy.

The factors that influence the feasibility of a direct connection include
(Trovati M, 2015 A):

• The number of paths between A and B,

• The type of relations of the corresponding edges, that is dependency
and unknown,
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• The strength of such hypothetical connection in terms of the corre-
sponding conditional probabilities.

Let P lA,B be the set of all the paths with length l ≥ 2 and PA,B =
⋃
l

P lA,B

be the set of all paths between A and B.
Let

Rl(A,B) =
1

log (l)
max

pA,B∈Pl
A,B

{
1

l

l∑
i=1

P (xi|xi−1)

}
, (12)

where xi and xi−1 are two consecutive nodes along a path pA,B ∈ P lA,B. We
then define the relational strength R(A,B) as

R(A,B) = max
l
{Rl(A,B)}. (13)

Note that R(A,B) 6= R(B,A), and neither of them is defined if PA,B = ∅,
or PB,A = ∅, respectively.
Loosely speaking, R(A,B) measures the (semi-directed) “closeness” between
A and B, and it is not necessarily linked with P (A|B). Furthermore, shorter
paths between A and B will imply a higher R(A,B) value.
Typically, R(A,B) may depend on the copy of the BN, which is considered.
If the existence of a link between two nodes is supported by different copies,
then we can assume this suggests a strong closeness between the two nodes.
In other words, if R(A,B) is within an interval for several copies, then the
corresponding nodes are likely to be connected. However, not all copies may
be an accurate representation of a system, and this largely depends on the
modeller’s interpretation. Therefore, in evaluating Equation 13 we should
distinguish between choosing specific copies, as opposed to considering all of
them.

7. Implementation and Evaluation Results

The evaluation utilised in this work is based on an annotated dataset,
which was created via a variety of tools, including (but not limited to) Python
NLTK (Bird S, 2009). The analysis was carried out using a single Linux
machine, with an I7 processor and 16 Gb of memory. Although a discussion
on the optimisation of the computational time goes beyond the scope of this
work, the extraction and analysis was completed in approximately 10 hours
for a non-parallelised approach, as opposed to just over 7 hours based on
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parallel processing provided by the multiprocessing Python library. Sub-
sequently, this was manually assessed and annotated by a group of experts
in the medical sector to provide a gold-standard dataset.

Part of the above dataset was based on

• 800 articles and 1000 abstracts were randomly selected and downloaded
from PubMed Text Mining tools in xml format, based on specific key-
words as discussed in Section 7.1.

• These were POS tagged, and analysed via text patterns as described
in Section 4. The overall POS and concept extraction was manually
assessed by considering a sample of approximately 120 abstracts and 40
articles, which showed 89% recall and 79% precision. As discussed ear-
lier, such good results are also influenced by the low level of ambiguity,
which is typical of biomedical literature.

• The output of the above analysis was a list of triples

[concept_1, concept_2, Rel]

where

– concept_1 and concept_2 refer to couples of biomedical concepts,
and

– Rel is either 1 if we have a probabilistic dependence relation, or
−1 if it refers to an independence one. If Rel is of unknown type,
then it will be set to 0.

The network extracted was analysed using the approach introduced in
(Trovati M, 2015 A), which confirmed it has a scale-free structure. Finally,
the visualisation of the BN copies was carried out in Matlab.

The evaluation focused on the following components

• First the conditional probabilities were assessed by a group of experts
in the medical field and benchmarked with a variety of methods, as
discussed in Section 7.1.

• Secondly, the extraction of suitable copies of BNs was evaluated. This
was carried out by comparing our results with a manual creation of
BNs based on the experts’ findings, as described in Section 7.2.
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7.1. Evaluation of the Conditional Probability
We evaluated our approach by considering approximately 800 articles and

1000 abstracts from the biomedical sector.
First of all, we considered the method introduced in (Theobald M, 2009),
where conditional probabilities between drugs, diseases, and genes are identi-
fied from abstracts in PubMed to construct n−way Bayesian networks based
on co-occurrence statistics. This, however, might affect the precision of the
analysis as co-occurrence by itself is in general unable to distinguish between
legitimate statistical relationships. Furthermore, their proposed method is
based on pharmGKB, and no direct relations can be discovered unless specif-
ically mentioned. In this part of the evaluation, the abstracts and articles
were selected based on keywords related to (Theobald M, 2009) including
the concepts shown in Table 3. More specifically, the gold-standard dataset
discussed above was utilised, which consists of a processed and annotated
textual dataset. Note that the values highlighted in bold-face are those that
fall closest to or within the interval identified by the manual assessment car-
ried out by experts in the medical sector.

The concepts extracted and their mutual relationships defined a net-
work with over 740 nodes and 850 edges. Using the method discussed in
(Trovati M, 2015 A), we ascertained that it exhibits a scale-free structure,
with γ ≈ 2.1. Figure 3 depicts the distribution of node connectivity.

A rigorous comparison with (Theobald M, 2009) would require the same
dataset, which is not the case in this work, and as such, the results do not
imply that either method is more accurate. However, the aim of this part of
the evaluation is to demonstrate that the model discussed in Section 5.2 and
in particular Equation 10, produce meaningful results.

We also considered the well-known pharmacogenic associations described
in PharmGKB (PharmGKB, 2016), which consists of approximately 664
associated couples, where a small selection of them is reported in Table 4.
Given these relationships have been investigated and fully established, we
assumed that the joint probability of any of the couples should be above 0.8.
We ran our method over the corpus discussed above, with the exception that
we expanded the number of abstracts to approximately 1250 specifically se-
lected to include a variety of pharmacogenic associations. We obtained that
69% of them were identified with a joint probability above the threshold.

In (Jurca G, 2016), a method for analysing relationships between dif-
ferent typologies of cancer and specific genes is introduced. Using a similar
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Figure 3: The graph of a selection of values of the ratio of nodes with degree k. The line
is associated with γ = 2.1, showing it accurately describes the scale-free structure of the
extracted network.

evaluation, a query based on “breast cancer” was carried out to identify ar-
ticles with an abstract, title, authors, and a journal name during October
2014. Furthermore, these articles were grouped according to the geographical
location by extracting the main author’s affiliation.
Table 11 in (Jurca G, 2016) shows the top 10 genes mentioned by arti-
cles grouped by country, and in our evaluation we considered United States,
United Kingdom, Germany and France, as depicted in Table 5. As above,
we set a 0.8 joint probability of “breast cancer” and any of the genes for
each country. Our method correctly identified all the gene names for United
States and France, whereas PGR and KRT75, BRCA1 for United Kingdom
and Germany, respectively were not successfully captured.

In (Jochim C, 2016), a method to extract probabilities and risk events
from biomedical texts is discussed. In particular, the conditional probability
of two events A and B is assessed as

P (A|B) =
PubMed(A ∩B)

PubMed(B)
, (14)

where PubMed(A∩B) and PubMed(B) are the number of hits from PubMed
queries related to both A and B and B, respectively. Similarly to (Jochim
C, 2016), we randomly selected 5000 abstracts identified by a “breast cancer”
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Table 3: The results of our method and those produced by (Theobald M, 2009). The
highlighted values in bold-face are those closest to, or within the range specified by the
experts.

Type Our Approach in Experts’
Approach (Theobald M, 2009) Assessment

p(antidepressants|
affective disorders, 0.41 0.33 0.45− 0.55

GNB3)
p(mercaptopurine|

azathioprine, 0.72 0.84 0.7− 0.8
thioguanine,

TPMT)
p(thioguanine|
azathioprine, 0.65 0.73 0.7− 0.8

mercaptopurine
TPMT)

p(azathioprine|
mercaptopurine, 0.77 0.89 0.6− 0.75

thioguanine,
TPMT)

p(azathioprine|
thioguanine, 0.58 0.86 0.65− 0.75

TPMT)
p(thioguanine|
azathioprine, 0.65 0.44 0.5− 0.6

TPMT)
p(salmeterol|

Asthma, 0.22 0.07 0.1− 0.2
ADRB2)

p(salbutamol|
Asthma, 0.28 0.16 0.2− 0.3
ADRB2)

query. Furthermore, specific concepts related to breast cancer were identified
via the Metathesaurus provided by the Unified Medical Language System
(UMLS) (UMLS, 2017). These include
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Table 4: A small selection of well-known pharmacogenic associations as in (PharmGKB,
2016)

Drug Gene
Abacavir HLA-B

Abiraterone CYP17A1
Abiraterone CYP1A2

Acenocoumarol CYP2C9
Acenocoumarol VKORC1
Acetaminophen CYP1A2
Acetaminophen CYP2D6

Afatinib ABCB1
Afatinib ABCG2
Afatinib CYP1A2

• Malignant neoplasm of breast,

• Breast Carcinoma,

• Noninfiltrating Intraductal Carcinoma,

• Mammary Ductal Carcinoma,

• Malignant neoplasm of female breast,

• Carcinoma of Male Breast,

• Carcinoma breast stage I,

• Breast cancer stage II,

• Breast cancer recurrent,

• Lobular carcinoma.

We subsequently assumed that the conditional probability of breast cancer
given any of the above concepts is higher than 0.7, as in (Jochim C, 2016).
Our approach correctly identified the conditional probability except for lob-
ular carcinoma, as P ( breast cancer| lobular carcinoma) ≈ 0.45. Although
our method and experimental setting are slightly different from (Jochim
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Table 5: The gene names associated with “breast cancer” grouped by country as in (Jurca
G, 2016).

Country Gene Name Country Gene Name
United States ESR1 United Kingdom ESR1

ERBB2 ERBB2
EGF CYP19A1
PGR EGF

BRCA1 BRCA1
CDKN2A CDKN2A
SLC20A2 PGR

TKT BRCA2
ACAD9 SLC20A2

CYP19A1 INS
Germany ERBB2 France ESR1

ESR1 ERBB2
PGR PGR
EGF CDKN2A

CDKN2A BRCA1
SLC20A2 EGF
BRCA1 SLC20A2

CYP19A1 TKT
KRT75 CYP19A1

CTSD

C, 2016), the evaluation demonstrated a comparable, if not enhanced condi-
tional probability extraction.

In the next validation component, the following concepts were selected:

• cancer and smoking

• heart disease and beta-blocker

• organophosphate and pyrethroid

• symptom and disease

These were used to assess the methods described in Section 5.2, as de-
scribed in Table 6 and compared with a probability range given by the group
of medical experts.
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Table 6: Evaluation of the conditional probabilities.

Concept A Concept B P (A|B) Expert’s Assessment
Cancer Smoking 0.75 0.8− 0.9

Heart Disease Beta-Blockers 0.5 0.4− 0.6
Organophosphate Pyrethroid 0.21 0.2− 0.5

Symptom Disease 0.89 0.8− 0.9

7.2. Evaluation of the Extraction of Copies of BNs

The evaluation of the extraction of relevant BNs followed a similar ap-
proach. In fact, we first queried PubMed based on the following keywords:

• Liver disorder

• Heart disease

• Mental disorder

• Breast cancer

For each keyword, we further selected approximately 200 abstracts from
PubMed, which were subsequently analysed. The networks generated each
had an average of approximately 175 nodes and 350 edges. However, we only
considered a small proportion for each of them as, for part of the validation
process, they had to be compared with a manual extraction. Therefore, we
only considered selection defined by a small sub-group of nodes, as described
in Table 7.

Examples of dependency and independence relations, which were ex-
tracted include the following:

• Independence relations

– “State anxiety describes the person’s feelings at a particular time
and under particular conditions, whereas trait anxiety is indepen-
dent of conditions and reflects stable personality characteristics
and generalised feelings”

– “Our theory states that anxiety is independent of intelligence”

– “In addition, the present results show that sex- and age-related
changes in immunoglobulin concentrations are independent of po-
tential confounders such as smoking, alcohol consumption and
common metabolic abnormalities”.
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Table 7: The concepts analysed as discussed in Section 7.2

Liver Disorder Heart disease

Alcohol Abuse Diet
Liver disorder Physical Exercise

Body Hair Loss Obesity
Alkaline Phosphatase Triglycerides

Total Bilirubin Cholesterol
ESR Smoking

LE cells High Blood Pressure
Total Proteins Atherosclerosis

Direct Bilirubin Heart Disease
JaundiceItching ECG
Alpha Globulin Angina
Beta Globulin Myocardial Infarction

Gamma Globulin
IgA
IgB

Smooth Muscle Antibodies
Anti-mitochondrial Antibodies

Musculo-Skeletal Pain

Mental disorder Breast cancer

Mental Disorder Breast Cancer
Anxiety Age

Sleep Disorder Pain
Mood Disorder Menarche Age

Psychotic Disorder Nipple Discharge
Personality Disorder Asymmetry
Dissociative Disorder Calcification

Schizophrenia Calcification Density
Delusional Disorder Mass

Catatonic Schizophrenia
Paranoid Schizophrenia

• Dependency relations

– “Diet plays an important role in the cause and the prevention of
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Table 8: Properties of the network extracted in the validation process.

Network by Number of Number of Values of
Keyword Possible Networks Copies P̄G

Liver Disorder 141 27 0.55
Heart disease 113 19 0.66

Mental disorder 101 13 0.49
Breast cancer 37 11 0.33

heart disease”

– “The literature indicates that anxiety comorbidities are prevalent
in schizophrenia and conventional treatment for anxiety can help
alleviate the symptoms in those patients”

– “Research suggests that persons with schizophrenia tend to expe-
rience significant levels of anxiety”.

Table 8 shows the number of possible networks found for each network, the
number of copies, and the corresponding values of P̄G. The latter was used
to remove edges below its corresponding value.

All the copies were subsequently analysed by the experts to assess the
proportion of BNs, which adequately model the scenarios corresponding to
the different keywords. Although these copies were not ranked separately,
the experts confirmed that an average of 65% of them were considered as
valid. In particular, Figures 4 – 7 depict the full networks extracted and the
copy which was unanimously considered as the optimal one by the experts
who carried out the manual validation, confirming that at least one copy was
deemed correct.

In the final part of of the validation, for each of the above networks we
removed one of the existing edges referring to well documented dependencies
to assess whether the method described in Section 6 correctly identified their
existence. These are as follows

• Liver Disorder: “Total Bilirubin → Jaundice”,

• Heart Disease: “Physical Exercise → Obesity”,
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Table 9: The comparison of the number of copies with manual extraction.

Network by Removed Edge Edge Correctly
Keyword Identified?

Liver Disorder Total Bilirubin → No
Jaundice

Heart disease Physical Exercise → Yes
Obesity

Mental disorder Personality Disorder → Yes
Psychotic Disorder

Breast cancer Breast Cancer → Yes
Calcification

• Liver Disorder: “Personality Disorder → Psychotic Disorder”,

• Liver Disorder: “Breast Cancer → Calcification”.

As discussed in Section 6, the relational strength as defined in Equation
13, depends on a variety of parameters, including the modeller’s preferences
and the selected copies. In this work, we have set the threshold value above
which a relation is indeed discoverable and present, as 0.3. This was dis-
cussed and agreed upon with the group of experts, who took part in the
evaluation. Table 9 shows the evaluation results, and three out of four edges
were identified correctly.

8. Conclusions and Future Directions

In this work, we have introduced a novel method for extracting, assessing,
and evaluating fragments of BNs from textual sources, based on grammar
and lexical properties, as well as on the topological properties of the net-
work extracted. Furthermore, the ability to assess knowledge which is not
directly specified, allows the discovery of relations between concepts in the
corresponding BNs. The evaluation clearly shows the accuracy and potential
of the proposed approach. Our knowledge and representation of the world
relies heavily on unknown parameters, which are based on a priori knowledge
and inadequate certainty of the particular scenario to be modelled. Further-
more, the accuracy and availability of the underlying information is also a
crucial aspect to be addressed. BNs provide a very powerful tool for a broad

29



range of applications, with particular emphasis on cause and effect mod-
elling in a wide variety of domains. This clearly has a number of far reaching
applications, which have important implications in multiple contexts and re-
search fields. In particular, we are aiming to embed this effort into a wider
line of research, where text corpora from different sources and contexts are
fully analysed, and subsequently integrated with a deeper semantic analysis
to allow a full network investigation and a more comprehensive knowledge
discovery process.
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Figure 4: The complete network and the BN identified according to the keyword “liver
disorder”. 35



Figure 5: The complete network and the BN identified according to the keyword “heart
disease”.
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Figure 6: The complete network and the BN identified according to the keyword “mental
disorder”.
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Figure 7: The complete network and the BN identified according to the keyword “breast
cancer”.
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