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Abstract 

The main purpose of the present study was to compare the reference metabolic equivalent (MET) value 

and observed resting oxygen uptake (VO2) for defining cardiorespiratory fitness (VO2max) and 

characterizing the energy cost of treadmill running. A heterogeneous cohort of 114 healthy men 

volunteered to participate. In Part 1 of the study, 114 men [mean ± SD, age: 24 ± 5 years; height: 177.1 ± 

7.9  cm; body mass: 75.0 ± 10.0  kg] visited the laboratory twice for assessment of resting and maximal 

VO2 values to compare the reference MET value vs. observed resting VO2 and to investigate the 

association between resting VO2 and VO2max. In Part 2, 14 of the 114 men visited the laboratory once 

more to perform a 30-min bout of running at 8.0 km∙h-1/8.3 METs. The mean observed resting VO2 of 

3.26 mL·kg-1·min-1 was lower than the reference MET value of 3.5 mL·kg-1·min-1 (P < 0.001). Resting 

and maximal VO2 values relative to total body mass and fat-free mass were positively correlated (R = 

0.71 and 0.60, respectively; P < 0.001). The maximal MET and energy cost of treadmill running were 

consequently underestimated when calculated using the reference MET value only for those with low 

VO2max (P = 0.005 to P < 0.001). In conclusion, the reference MET value considerably overestimated 

observed resting VO2 in men with low VO2max, resulting in underestimations of the maximal MET, 

exercise intensity prescription, and the energy cost of running. 

Keywords: aerobic exercise; energy expenditure; resting metabolic rate; compendium of physical 

activities; intensity classification; cardiorespiratory fitness. 
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Introduction 

The metabolic equivalent (MET) has been used in various important applications relating to exercise and 

health, such as defining levels of cardiorespiratory fitness [17], prescribing physical exercise [11], and 

quantifying the energy cost of a wide variety of physical activities [1]. By convention, one MET is 

defined as a resting oxygen uptake (VO2) of 3.5 mL·kg-1·min-1. A potential limitation in the application of 

this reference MET value, is that it seems to have been derived from the observed resting VO2 of a single 

40-year-old man with a body mass of approximately 70 kg [7,14,30]. There is a growing body of 

empirical evidence that the reference MET value significantly overestimates mean resting VO2 in healthy 

adults [7,10,19]. A study involving 642 women and 127 men aged 18-74 years, for example, observed 

that the mean resting VO2 of 2.56 mLkg-1min-1 was 29% lower than the reference MET value [7]. 

Savage et al. [27] assessed the resting VO2 in a group of 109 (60 men and 49 women) overweight 

individuals with coronary heart disease. The mean VO2 at rest was 2.6±0.4 mL⋅kg-1⋅min-1. This value was 

36% lower than the widely accepted MET value of 3.5 mL⋅kg-1⋅min-1 and was similar to that reported by 

Byrne and Hills [6]. In another study with 125 healthy males aged 17-38 years, the mean resting VO2 of 

3.21 mL⋅kg-1⋅min-1 was significantly lower (8.3%) than the standard MET value of 3.5 mL⋅kg-1⋅min-1 

[10]. Errors when employing the reference MET value for different practical applications are therefore 

likely to occur. However, the extent of such errors has not been established. 

Another issue is that a large inter-individual variation in resting VO2 has been observed. Age, sex, and 

body composition are well-established in explaining some of this variation [3,24,29], but a factor that 

could help identify unexplained variance that has received little attention is cardiorespiratory fitness, as 

represented by the maximal oxygen uptake (VO2max). Kozey et al. [19] categorized 118 men and 134 

women according to quintiles of VO2max. The mean ± SD resting VO2 of 2.7 ± 0.28 mL⋅kg-1⋅min-1 

observed in the lowest VO2max quintile was 18% lower than the 3.3 ± 0.39 mLkg-1min-1 in the highest 

VO2max quintile, and 23% lower than the reference MET value of 3.5 mLkg-1min-1. A limitation of this 

study, however, is that VO2max was not directly assessed, but estimated using an equation proposed by 

Matthews et al. [22] based on age, height, sex, body mass, and a self-reported indicator of physical 

activity status. Further support for the influence of VO2max on resting VO2 comes from a study that 

directly assessed VO2max in a group of 26 highly trained cyclists with mean ± SD VO2max of 70.9 ± 1.2 
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mL⋅kg-1⋅min-1 [21]. The observed mean ± SD resting VO2 of 4.3 ± 0.2 mL⋅kg-1⋅min-1 was 29% higher than 

the reference MET value of 3.5 mL⋅kg-1⋅min-1. To our knowledge, however, the relationship between 

directly assessed VO2max and resting VO2 in a heterogeneous cohort has not been investigated. 

Errors of overestimation and underestimation of resting VO2 have clear potential to influence the 

categorization of fitness when using the maximal MET, and determination of the energy cost of treadmill 

running. Hence the main purpose of the present study was to compare the reference MET value and 

observed resting VO2 with respect to these applications and the extent to which VO2max is associated with 

resting VO2. We hypothesized that the resting VO2 would be lower than the standard value in individuals 

with low VO2max, therefore resulting in underestimations of the classification of fitness based on the 

maximal MET, exercise intensity prescription, and energy cost of running. 

Materials and methods  

Participants 

A total of 114 apparently healthy men recruited from two university communities and fitness centers 

located in Rio de Janeiro, regardless of training status (i.e. physically active or sedentary), volunteered to 

participate in the study. Exclusion criteria were: a) use of medication influencing the cardiovascular or 

metabolic responses to exercise; b) smoking or use of ergogenic substances that could affect exercise 

performance; and c) any cardiovascular, respiratory, bone, muscle, or joint problems that could 

compromise the safety of physical exercise; and/or positive response to the Physical Activity Readiness 

Questionnaire. The study was performed in accordance with the ethical standards required by the journal 

[12] and was approved by institutional ethics committee board (reference 3082/2011). All participants 

provided written informed consent.  

Procedures 

In the first part of the study, 114 participants visited the laboratory on two occasions. During the first visit 

resting VO2 was determined, anthropometric measurements were taken, and participants were 

familiarized with the equipment and test protocols. On the second visit a maximal cardiopulmonary 

exercise test (CPET) for determining VO2max was performed. The first part of the study allowed to 

compare the reference MET value vs. observed resting VO2 and to investigate the association between 
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resting VO2 and VO2max. In the second part of the experiment, 14 of the total 114 participants volunteered 

for one additional visit to perform a submaximal exercise bout with continuous work rate. This allowed to 

investigate the accuracy of the reference MET value to determine the energy expenditure of the 

submaximal running as proposed by the Compendium of Physical Activities [1]. All running tests were 

performed on the same motorized treadmill (InbramedTM Super ATL, Porto Alegre, RS, Brazil). 

Anthropometry 

Total body mass and height were assessed respectively by digital balance scales (WelmyTM, São Paulo, 

Brazil) and a stadiometer graded in millimeters (American Medical do BrazilTM, São Paulo, Brazil). 

Skinfold thicknesses were obtained at three sites (chest, abdomen and thigh) using a LangeTM compass 

(Beta Technology Incorporated, Cambridge, Maryland, EUA) and body density and percentage body fat 

were estimated using the equations of Siri [28] and Jackson and Pollock [16]. Fat mass and fat-free mass 

were derived from total body mass and percentage body fat values. The same experienced investigator 

obtained all skinfold measurements. 

Resting VO2 assessment 

The resting VO2 was determined in accordance with the recommendations of Compher et al. [8]: 

abstention of physical exercise, alcohol, soft drinks and caffeine in the 24 h preceding the assessment, 

fasting for 8 h preceding the assessment, and minimum effort when travelling to the laboratory. In the 

laboratory, the participants laid in a calm thermoneutral environment (mean ± SD temperature, 22.5 ± 

1.5°C) for an acclimation period of 10-min, after which the VO2 was measured for 30-min in a supine 

position. The resting VO2 was taken as the average of the last 5 min of steady-state data (i.e. coefficient 

of variation ≤10% during 5 min), since this time period has been previously shown to elicit a VO2 steady-

state and high test-retest reliability [9]. 

Maximal and submaximal exercise tests 

A ramp protocol was used to determine the VO2max. The workload increments were individualized to 

elicit each subject’s limit of tolerance in 8-12 min [5]. The tests were considered maximal if at least three 

of the four following criteria were satisfied: a) maximum voluntary exhaustion defined by attaining a 10 

on the Borg CR-10 scale; b) 90% of predicted HRmax [220–age] or presence of heart rate plateau (HR 
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between two consecutive work rates ≤4 beats∙min-1); c) presence of VO2 plateau (VO2 between two 

consecutive work rates of less than 2.1 mL∙kg-1∙min-1); and d) maximal respiratory exchange ratio 

(RERmax) > 1.10 [15]. Based on the VO2max values, observed and reference METmax values were 

calculated (i.e. observed METmax = VO2max ÷ resting VO2 in mL∙kg-1∙min-1; reference METmax = VO2max ÷ 

3.5 mL∙kg-1∙min-1). 

Seventy-two hours after performing the maximal CPET, a subgroup of 14 participants performed a 30-

min bout of running at 8.0 km∙h-1, which is an exercise intensity equivalent to 8.3 METs according to the 

Compendium of Physical Activities [1]. The treadmill grade was set at 1%, which has been found to 

reflect the energetic cost of outdoor, level overground running [18]. The running bout was preceded by a 

5-min warm-up at 5.5 kmh-1 and 1% grade. The intensity classification for treadmill running was 

calculated from two different methods: a) observed METs = average VO2 during exercise ÷ resting VO2 

in mL∙kg-1∙min-1; and b) reference METs: average VO2 during exercise ÷ 3.5 in mL∙kg-1∙min-1. The energy 

cost of the running bout was calculated by the following formula: energy cost (kcal) = intensity 

classification based on observed or reference METs × body mass in kg × duration in hours [1]. To negate 

the confounding effects of the initial (fast) VO2 on-kinetics, the data for the first 3-min of the running 

bout were omitted from all analyses [19]. 

Expired gases were collected during the maximal CPET and 30-min running bout using a VO2000 

analyser (Medical GraphicsTM, Saint Louis, MO, USA) and a silicone face mask (Hans RudolphTM, 

Kansas, MO, USA). The gas analysers and pneumotacograph were calibrated according to the 

manufacturer’s instructions. Immediately prior to each exercise bout, the gas analysers were calibrated 

using a certified standard mixture of oxygen (17.01%) and carbon dioxide (5.00%), balanced with 

nitrogen (AGATM, Rio de Janeiro, RJ, Brazil). The flows and volumes of the pneumotacograph were 

calibrated using a syringe graduated for a 3 L capacity (Hans RudolphTM, Kansas, MO, USA). Heart rate 

was measured continuously using a cardiotachometer (RS800cx, PolarTM, Kempele, Finland) and beat-by-

beat data were 30-s stationary time-averaged. 

Statistical analyses 

All statistical analyses were performed using Statistica 10 software (StatSoftTM, Tulsa, OK, USA). 

Descriptive sample statistics are reported as the mean and standard deviation (SD). One-sample t tests 
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were used to test the null hypotheses that there were no mean differences between the MET value and 

observed resting VO2, METmax, MET exercise intensity classification, and the energy cost of the running 

bout. The Pearson correlation was used to determine the relationship between VO2max and observed 

resting VO2. In addition, the median VO2max value was used as the criterion to categorize participants into 

low and high VO2max groups to investigate the influence of VO2max on the differences between the 

reference MET value and observed resting VO2 [lower VO2max (1st part of the study: n = 55, 

VO2max < 49.9 mL∙kg-1∙min-1; 2nd part of the study: n = 7, VO2max < 43.3.0 mL∙kg-1∙min-1) and higher 

VO2max (1st part of the study: n = 59, VO2max ≥ 49.9 mL∙kg-1∙min-1; 2nd part of the study: n = 7; VO2max ≥ 

43.3 mL∙kg-1∙min-1)]. 

Results 

Sample descriptive statistics for age, anthropometric variables, resting VO2, and CPET outcomes are 

shown in Table 1. The mean observed resting VO2 of 3.26 (95% CI = 3.17 to 3.34) and 3.07 mL·kg-1·min-

1 (95% CI = 2.79 to 3.34) for the 1st and 2nd parts of the study were significantly lower than the reference 

MET value of 3.5 mL·kg-1·min-1  (mean difference = 0.25, 95% CI = 0.16 to 0.32, t = 6.02, P < 0.001 and 

mean difference = 0.43, 95% CI = 0.15 to 0.70, t = 3.3, P = 0.005, respectively). With regard to the group 

with lower VO2max, the reference MET value of 3.5 mL·kg-1·min-1 was significantly higher than the mean 

observed resting VO2 values of 3.01 (mean difference = 0.48, 95% CI = 0.38 to 0.59, t = 9.2, P < 0.001) 

and 2.67 (mean difference = 0.83, 95% CI = 0.60 to 1.05, t = 9.0, P < 0.001) mL·kg-1·min-1 determined 

during the 1st and 2nd parts of the study, respectively. However, no statistically significant difference was 

detected between the reference MET value and observed resting VO2 values for the groups with higher 

VO2max (1st part of the study: P = 0.842; 2nd part of the study P = 0.778). 

INSERT TABLE 1  

Figure 1 shows the relationships between VO2max and resting VO2 relative to total body mass (A) and fat-

free mass (B), which were strongly positively correlated in the 1st part of the study (R = 0.71, P < 0.001; 

R = 0.60; P < 0.001, respectively). 

INSERT FIGURE 1 
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Table 2 shows the METmax, and the exercise intensity classification and energy cost of the 30-min running 

bout, calculated from the reference MET value and observed resting VO2. Overall, the values for METmax, 

exercise intensity, and energy cost of treadmill running were significantly underestimated when derived 

from the reference MET value of 3.5 mL·kg-1·min-1 (P = 0.007 to P < 0.001), especially for the groups 

with lower VO2max. In the 1st part of the study, for example, the mean difference between reference vs. 

observed METmax values increased from 8% (mean difference: 1.1 METs; P < 0.001) to 17% (mean 

difference: 2.1 METs; P < 0.001) when considering all participants vs. only the lower VO2max group. In 

the 2nd part of the study, the level of underestimation of the observed exercise intensity and energy cost 

increased substantially from 14% (mean difference: 1.3 METs; P = 0.007) to 24% (mean difference: 2.6 

METs; P = 0.007) and 15% (mean difference: 62 kcals; P = 0.005) to 24% (mean difference: 101 kcals; P 

= 0.001) (see Table 2). Unlike the lower VO2max group, there was no significant difference between the 

reference and observed MET intensities (P = 0.674) and energy cost of the treadmill running bout (P = 

0.679) for the higher VO2max group. 

INSERT TABLE 2  

Discussion 

The present study compared the reference MET value and observed resting VO2 for defining fitness using 

the maximal MET, prescribing exercise intensity, and quantifying the energy cost of treadmill running in 

a heterogeneous cohort of healthy men. The extent to which VO2max explained variance in resting VO2 

also was investigated. The main finding was that the reference MET value of 3.5 mL·kg-1·min-1 

overestimated resting VO2 in men with low VO2max, which resulted in underestimations of the maximal 

MET, exercise intensity prescription, and the energy cost of running.  

The findings of the present study concur with previous studies [7,10,19] that one MET is not equivalent 

to a resting VO2 of 3.5 mL·kg-1·min-1 in heterogeneous adult cohorts. In fact, 74 (65%) of the 114 

participants in the present study had observed resting VO2 values lower than 3.5 mL·kg-1·min-1. There 

was, however, a strong positive correlation between directly assessed VO2max and observed resting VO2, 

meaning that overestimation errors in resting VO2 tended to mostly affect those with low VO2max. 
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The MET system has been used in research for defining levels of fitness as METmax values, particularly 

with respect to evaluating its prognostic value in predicting cardiovascular risk [2,23]. The METmax is 

quantified using tables of the energy cost of running based upon treadmill speed and slope and dividing 

by the reference MET value of 3.5 mL·kg-1·min-1. The findings of the present study revealed that METmax 

was significantly underestimated in low cardiorespiratory groups when calculated from the widely 

accepted reference MET value. The same limitation of the MET system was reported within the context 

of exercise prescription, where the adoption of the reference MET value resulted in unacceptably large 

underestimation errors for treadmill running intensity and energy cost compared to when the observed 

resting VO2 was used. These errors therefore mostly affect low fitness individuals, which are the least 

likely to be meeting physical exercise recommendations for promoting health. 

Another issue is the large inter-individual variation in observed resting VO2 identified in previous 

research [7,10,19], as well as the participants in the present study (see Table 1). Byrne et al. [7] reported 

that 62% of this variation could be explained by differences in fat mass and fat-free mass, whilst age 

explained only 14%. Additionally, BMI was strongly positively correlated with fat mass (r2 = 0.93, P < 

0.001), and the variance in resting VO2 was also well explained by a combination of BMI, age and 

gender. These findings were not supported by Cunha et al. [10], however, as BMI explained only 0.15% 

of the variance in the resting VO2 of 125 healthy men. A question therefore arises as to what additional 

factors might explain the unexplained variance. One factor is VO2max, which is thought to potentiate the 

energy requirements of tissue thereby increasing resting metabolic rate (RMR) and resting VO2 [25,26]. 

Poehlman et al. [25], for example, compared the RMR and resting VO2 of 18 healthy men aged 18 to 37 

yr, who were classified as either trained (n = 9, VO2max = 70.5 ± 1.8 mL·kg-1·min-1) or untrained (n = 9, 

VO2max  =  53.0 ± 2.4 mL·kg-1·min-1). The authors observed a higher RMR (i.e. 9%) and resting VO2 (i.e. 

18%) in the trained vs. untrained participants (i.e. 1.29 vs. 1.17 kcal.min-1 and ~3.69 vs. 3.01 mL·kg-

1·min-1, respectively). This effect persisted even when participants were matched for body fat content. 

These authors subsequently observed a strong positive correlation between RMR and VO2max (r = 0.77 

and P < 0.01) in 28 healthy men, aged 19 to 36 yr, and a wide VO2max range of 40 to 80 mL·kg-1·min-1 

[26]. Our findings concur with those studies; however, other studies reported conflicting findings 

[4,13,20], which might be accounted for by two methodological issues: a) small sample sizes and 

insufficient statistical power to detect correlations between resting VO2 and VO2max; and b) failure to 

investigate a wide range of VO2max. Indeed, the sample sizes of 14 and 8 participants adopted by LeBlanc 
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et al. [20] and Hill et al. [13], respectively, are limited for investigating associations between resting VO2 

and VO2max. In a cross-sectional study designed to determine the relationship between RMR and VO2max, 

Broeder et al. [4] included 69 men exhibiting a wide range of VO2max (32.8 to 78.1 mL·kg-1·min-1). A 

significant positive correlation was observed between VO2max and RMR when expressed in kJ·kg total 

body weight·hr-1 (r = 0.68 and P < 0.001), but not when expressed relative to kJ·kg fat-free mass·hr-1 (r = 

0.04 and P < 0.75). In addition, there were no significant differences in RMR between high, moderate, 

and low VO2max groups. Even so, it is feasible that the lack of a statistically significant difference in RMR 

between the three groups was due to the limited range in VO2max between the low vs. moderate VO2max 

groups (i.e. only ~10 mL·kg-1·min-1 or 19% [41.1 ± 0.6 vs. 51.0 ± 0.6 mL·kg-1·min-1]). In the present 

study the difference between low and high cardiorespiratory groups with respect to minimum and 

maximum values of VO2max were ~35% (32.5 vs. 50.0 mL·kg-1·min-1) and ~26% (49.7 vs. 67.1 mL·kg-

1·min-1), respectively (see Table 1). 

In conclusion, the reference MET value of 3.5 mL·kg-1·min-1 overestimated resting VO2 in a relatively 

large group of apparently healthy men, aged 18-38 years. In a practical context, the reference MET value 

demonstrated relatively poor accuracy in defining fitness using the maximal MET, prescribing exercise 

intensity, and quantifying the energy cost of treadmill running in men with low VO2max, causing 

underestimation errors with respect to these three applications. On the other hand, minimal errors were 

observed in participants with high VO2max. Further research needs to be conducted to investigate the 

applicability of the reference MET value in specific populations. 
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Table 1. Mean ± SD (range) participant characteristics. 

 
Variable 1st part of study (n = 114) 2nd part of study (n = 14) 

Anthropometric assessment Age – All participants (yr) 24 ± 5 (18-38) 25 ± 6 (18-36) 

Age – lower VO2max (yr) 25 ± 5 (18-36) 30 ± 4 (23-36) 

Age – higher VO2max (yr) 24 ± 6 (18-38) 26 ± 5 (18-30) 

Height – All participants (cm) 177.0 ± 8.1 (160.8-192.3) 177.3 ±7.4 (165.6-188.8) 

Height – lower VO2max (cm) 177.1 ± 7.9 (160.8-192.3) 177.2 ± 10.1 (165.6-188.8) 

Height – higher VO2max (cm) 177.0 ± 8.4 (162.9-201.5) 177.4 ± 4.0 (169.8-183.0) 

Total body mass – All participants (kg) 75.0 ± 10.0 (52.6-110.9) 74.2 ± 9.0 (61.9-87.7) 

Total body mass – lower VO2max (kg) 77.9 ± 10.6 (52.6-110.9) 76.8 ± 9.8 (62.0-87.7) 

Total body mass – higher VO2max (kg) 72.1 ± 8.6 (54.5-100.8) 71.7 ± 8.1 (61.9-79.6) 

Body mass index – All participants (kg.m-2) 23.9 ± 2.4 (19.3-33.8) 23.6 ± 2.5 (19.6-28.2) 

Body mass index – lower VO2max (kg.m-2) 24.8 ± 2.6 (19.3-33.8) 24.5 ± 2.7 (20.6-28.2) 

Body mass index – higher (kg.m-2) 23.0 ± 1.9 (19.6-27.3) 22.7 ± 2.0 (19.6-24.8) 

Percentage of body fat – All participants (%)  11.1 ± 3.7 (5.0-23.2) 13.2 ± 3.2 (8.5-19.3) 

Percentage of body fat – lower VO2max (%) 12.5 ± 4.0 (6.3-23.2) 14.9 ± 3.2 (10.6-19.3) 

Percentage of body fat – higher VO2max (%) 9.7 ± 2.9 (5.0-20.7) 11.4 ± 2.1 (8.5-15.5) 

Fat-free mass – All participants (kg) 66.5 ± 8.2 (44.8-89.5) 64.3 ± 6.7 (55.2-74.3) 

Fat-free mass – lower VO2max (kg) 68.1 ± 9.0 (44.8-89.5) 65.2 ± 7.6 (55.2-74.3) 

Fat-free mass – higher VO2max (kg) 65.0 ± 7.3 (50.3-87.0) 63.4 ± 6.3 (56.6-70.1) 

Fat mass – All participants (kg) 8.5 ± 3.5 (3.6-21.4) 9.9 ± 3.2 (5.3-14.9) 

Fat mass – lower VO2max (kg) 9.8 ± 3.9 (4.4-21.4) 11.6 ± 3.2 (6.8-14.9) 

Fat mass – higher VO2max (kg) 7.1 ± 2.6 (3.6-14.8) 8.3 ± 2.3 (5.3-12.3) 

Resting assessment Resting oxygen uptake – All participants (mL·kg-1·min-1) 3.3 ± 0.4 (2.2-4.4) * 3.1 ± 0.5 (2.3-3.8) * 

Resting oxygen uptake – lower VO2max (mL·kg-1·min-1) 3.0 ± 0.4 (2.2-3.9) *† 2.7 ± 0.2 (2.3-2.9) *† 

Resting oxygen uptake – higher VO2max (mL·kg-1·min-1) 3.5 ± 0.3 (2.8-4.4) 3.5 ± 0.3 (3.0-3.8) 

Resting oxygen uptake – All participants (mL·kg FFM-1·min-1) 3.7 ± 0.4 (2.7-4.8) 3.5 ± 0.5 (2.8-4.3) 

Resting oxygen uptake – lower VO2max (mL·kg FFM -1·min-1) 3.5 ± 0.4 (2.2-3.9) 3.1 ± 0.3 (2.8-3.5) 

Resting oxygen uptake – higher VO2max (mL·kg FFM -1·min-1) 3.9 ± 0.4 (3.1-4.8) 3.9 ± 0.2 (3.6-4.3) 
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Maximal cardiopulmonary 

exercise test 
Maximal oxygen uptake – All participants (mL·kg -1·min-1) 48.4 ± 7.3 (32.5-67.1) 45.6 ± 6.8 (35.3-56.6) 

Maximal oxygen uptake – lower VO2max (mL·kg-1·min-1) 42.4 ± 4.7 (32.5-49.7) 40.0 ± 3.0 (35.3-42.0) 

Maximal oxygen uptake – higher VO2max (mL·kg-1·min-1) 54.3 ± 3.7 (50.0-67.1) 51.2 ± 4.1 (43.6-56.6) 

Maximal oxygen uptake – All participants (mL·kg FFM -1·min-1) 54.4 ± 7.6 (35.4-71.2) 52.4 ± 6.6 (43.7-64.2) 

Maximal oxygen uptake – lower VO2max (mL·kg FFM -1·min-1) 49.3 ± 5.0 (35.4-61.1) 47.0 ± 3.0 (43.7-51.3) 

Maximal oxygen uptake – higher VO2max (mL·kg FFM -1·min-1) 60.2 ± 4.1 (53.7-71.2) 57.8 ± 4.1 (51.6-64.2) 

FFM = fat-free mass. * Significantly lower than the reference MET value of 3.5 mL·kg-1·min-1 (P < 0.01). † Significantly lower than the observed resting VO2 for the higher 

VO2max group (P < 0.001). 
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Table 2. Sample mean ± SD METmax, MET intensity, and energy cost of running computed from the reference MET value and observed resting VO2 values. The mean 

difference (Mean diff), confidence interval (95% CI), and test statistic t (t-test) between the reference vs. observed outcomes also are included. 

Variable 
Sample size  

(n) 

Reference Observed Reference-Observed differences 

Mean ± SD (range) Mean ± SD (range)  Mean diff 95% CI t-test P-values 

Maximal cardiopulmonary exercise test 
       

       

METmax – All participants (114) 13.8 ± 2.1 (9.3-19.2) 14.9 ± 1.7 (11.2-19.7) 1.1 0.7, 1.4 6.1 < 0.001 

METmax – lower VO2max group (55) 12.1 ± 1.4 (9.3-14.2) 14.2 ± 1.7 (11.2-19.7) 2.1 1.6, 2.6 8.8 < 0.001 

METmax – higher VO2max group (59) 15.5 ± 1.1 (14.3-19.2) 15.6 ± 1.3 (12.6-19.1) 0.1 0.3, 0.5 0.6 0.552 

30-min running bout at 8.0 km∙h-1 
       

       

MET intensity – All participants (14) 8.3 9.5 ± 1.8 (7.3-13.5) 1.3 0.4, 2.3 3.2 0.007 

MET intensity – lower VO2max group (7) 8.3 10.7 ± 1.5 (9.4-13.5) 2.6 1.6, 3.6 6.1 < 0.001 

MET intensity – higher VO2max group (7) 8.3 8.2 ± 0.9 (7.3-9.7) 0.1 -0.5, 0.7 0.4 0.718 

Energy cost (kcal) – All participants (14) 302 ± 44 (241-352) 354 ± 90 (237-522) 53 17, 88 3.1 0.008 

Energy cost (kcal) – lower VO2max group (7) 313 ± 49 (241-352) 414 ± 82 (301-522) 101 57, 145 5.6 0.001 

Energy cost (kcal) – higher VO2max group (7) 291 ± 38 (243-340) 295 ± 49 (237-386) 4 -20, 28 0.4 0.679 
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Figure 1. Relationship between maximal and resting VO2 values relative to total body mass (A) and fat-

free mass (B) in the 1st part of the study (N = 114). The dashed lines represent the 95 limits of agreement 

of the best-fit line. Each point represents an individual participant. Pearson correlation coefficient is 

given. 


