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Abstract

This paper characterizes efficient networks in player and partner heterogeneity models for both the

two-way flow and the one-way flow networks. Player (partner) dependent network formation allows

benefits and costs to be player (partner) heterogeneous, which is an important extension for modeling

social networks in the real world. This paper shows that efficient networks are minimally connected

and have either a star-type or a variation of star type architectures in the two-way flow model, and

have the wheel architecture in the one-way flow model.
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1 Introduction

A growing literature on social and economic networks addresses dominant effect of networks on various

important outcomes such as labor markets, the spread of diseases, education and crime. Hence vast

research-not only in economics, but also in other disciplines has been conducted to understand how the

networks emerge and how they evolve over time. A central theme in the literature on network formation

is the conflict between the set of stable networks and the set of efficient networks. A substantial

literature focuses on individual optimization through strict Nash networks, where no agent can make

herself better off by deviating from her current strategy, given the strategies of the other players. Even

though (strict) Nash networks are very well studied, there have been few studies about efficiency. This

paper fills the gap in the literature of network formation by describing the efficient network architectures

with heterogeneous agents, and addresses the issue of efficiency in the form of maximizing the sum of the

utilities of the players in the network and compare the architectures of efficient networks with (strict)

Nash networks.

The seminal papers on network formation are Jackson and Wolinsky (1996) and Bala and Goyal

(2000). Jackson and Wolinsky (1996) provide two-sided link formation, where the cost of forming links

is shared by the participants and introduce pairwise stability. They show that there is a substantial

conflict between pairwise stable and efficient networks. Bala and Goyal (2000) provide a theoretical

framework to address network formation in a non-cooperative setting with homogeneous players, where

the cost of forming links is on one side. They discuss two different types of flow. In the two-way flow

model, the network is undirected, so the two players participating in a link can access benefits from

each other. In the one-way flow model, the network is directed; hence only the initiating player can

access the benefits of the link. This paper follows the Bala and Goyal (2000) framework, where link

costs are levied only by the person initiating the link.

Galeotti et al. (2006) relax the homogeneity assumption in the two-way flow model, so the benefits

from a link and the cost of sponsoring a link are player dependent, meaning that it only depends on who

forms the link. Galeotti et al. (2006) conclude that Nash and efficient networks coincide under linear

payoff situations; however, this study shows that with more general payoff function specifications this

result does not always hold. Galeotti (2006) extends the one-way flow model by allowing benefits and

costs to be player and partner heterogeneous. In a one-way flow model, only the node who sponsors a
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link accesses the benefit. This fact yields a wheel type efficient architecture, that coincides with strict

Nash network architecture.

Billand et al. (2011) introduce partner heterogeneity in the two-way flow model, where the benefit

and cost of making a link are partner heterogeneous, meaning that it depends only upon whom is

being accessed in terms of the benefits and costs. Although Nash networks are clearly identified under

heterogeneity, not much has been done about efficient networks under heterogeneity.

The model starts with a general payoff function in a player heterogeneity model, satisfying common

assumptions in the literature. For instance, the player’s payoffs are assumed to be strictly increasing with

respect to the benefits and strictly decreasing with respect to the costs of forming links. However, under

these common assumptions, efficient networks can still have maximal diameter and it is not possible to

characterize the architectures. Similar arguments can be made for the partner heterogeneous model.

When there is heterogeneity between players, the efficient network architectures depend on four factors:

(i) the value of players (benefit obtained by linking to each player); (ii) the number of minimum cost

players; (iii) the difference in cost between the minimum cost player(s) and the other players; and (iv)

the functional form of payoffs. The first factor is controlled by a restriction which ensures that all links

are profitable. To deal with the third factor, the widely used linearity, strict concavity and convexity

assumptions are introduced on the payoffs. The fourth factor is accounted for with the restrictions that

are already imposed, but an additional condition is imposed in the two-way flow for each model. Since

the heterogeneity in the values only affects the connectivity of the networks and only the connected

networks are considered in this paper, the values that are obtained from forming links are assumed to

be homogeneous for all players and the heterogeneity is allowed for only cost of link formation. This

assumption simplifies the complexity of the efficient networks and enables to focus on costs of link

formation.

The architecture as well as the diameter of the efficient networks are given in the paper. The

architecture provides information about how the efficient networks look, and the diameter helps to

determine the maximum distance between any two players in the network. The crucial difference

between player and partner heterogeneity models is in the change of the player who sponsors the links.

However, there are also slight differences in architecture and diameter.

The rest of the paper is organized as follows: Section 2 presents the basics of the model setup and
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some important definitions. Section 3 identifies the efficient networks in a player heterogeneity model.

Section 4 examines the efficient networks in the partner heterogeneity model. The paper concludes with

a discussion and comparison of differences in efficient network structures.

2 Model Setup

N = {1, . . . , n} denotes the set of players. A directed network g = (N,A) is a pair of sets: the set N

of nodes and the set A ⊂ N × N of arcs. A = A(g) corresponds to the links between players. The

undirected counterpart of g, ḡ is obtained by ignoring the orientation of arcs of g and treating links

between the same players as a single link.

Each player i chooses a strategy gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n) where gi,j ∈ {0, 1} for all

j ∈ N \ {i}. The interpretation of gi,j = 1 is that player i forms a link with player j 6= i, and

the interpretation of gi,j = 0 is that i forms no link with player j. A link between player i and j

can allow for either one-way(asymmetric) or two-way(symmetric) flow of information. With one-way

communication, the link gi,j = 1 enables player i to access j’s information but not vice-versa. With

two-way communication, gi,j = 1 allows both i and j to access each other’s information. It is assumed

that player i cannot form a link with herself. Only pure strategies are considered. Let Gi be the set of

all strategies of player i ∈ N . If gi,j = 1, then by definition ji ∈ A(g). A link ji is shown by an arrow

from j to i. Thus, if the player i chooses to link with j, the arc will be directed from j to i and it also

means that player i incurs the cost of the link formation.

For a directed network, g, a path from player k to player j, j 6= k, is a finite sequence j0, j1, . . . , jm

of distinct players such that j0 = j, jm = k and gj`,j`+1
= 1 for ` = 0, . . . ,m−1. A chain exists between

player k and player j, j 6= k by replacing gj`,j`+1
= 1 by max{gj`,j`+1

, gj`+1,j`} = 1.

Given a network g, a component C(g) of g is defined as a set of players such that there is a chain

between any two players who belong to C(g) and there does not exist a chain between a player in C(g)

and a player who does not belong to C(g). A network g is said to be connected if it contains one

component and all players belong to this component. Finally, a network is minimally connected if it is

not possible to preserve its connectivity whenever a link is removed.

Definition 1: Let lij denote the (geodesic) distance from players i to j. Then the diameter D(g) of a
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network g is the maximum distance lij over player pairs i j.

A network g is a star if there is a player i such that max{gi,j , gj,i} = 1 for all j ∈ N \{i} and g`,j = 0

for all ` ∈ N \ {i} and j ∈ N \ {i, `}. The network g is an inward pointing star or center-sponsored star

if it is a star and for the center player i, gj,i = 0 for all j ∈ N \{i}. The network g is an outward pointing

star or periphery-sponsored star if it is a star and for the center player i, gi,j = 0 for all j ∈ N \ {i}.

A network in which each group constitutes a star and a central player i of group l forms a link with

the central player j of group l‘ where l 6= l‘, is referred to as an interlinked star network. If each star

is center-sponsored (periphery-sponsored), the network is said to be an interlinked center-sponsored

(periphery-sponsored) star. A player is called a bridge player if she has a link to a center of at least two

star architectures. A generalized interlinked star network is an interlinked star network where there is

a bridge player between the center of each star.

Let Ni(g) be the set of players observed by player i in the network g. In the two-way flow model,

j ∈ Ni(g) whenever there is a chain between i and j in g. In the one-way flow model, j ∈ Ni(g)

whenever there is a path from j to i in g. Sometimes, to simplify notation, the number of links formed

by player i in network g0 will be denoted by N0
i instead of Ni(g

0). Moreover, the network identical to

g, except that the link ij is added (deleted) will be denoted as g + ij (g− ij).

The following two classes of model assume that the costs of a link can be different among players.

In the player heterogeneity model proposed by Galeotti et al. (2006), each player i obtains V > 0 from

each player j ∈ Ni(g), and incurs a cost ci > 0 when she forms a link with player j ∈ Ni(g). In the

partner heterogeneity model introduced by Billand et al. (2011), each player i obtains V > 0 from each

player j ∈ Ni(g), and incurs a cost cj > 0 when she forms a link with a player j ∈ Ni(g). In other

words, in the player heterogeneity model, the cost of sponsoring a link for player i to player j depends

on player i’s characteristics, while in the partner heterogeneity model, the cost of sponsoring a link for

a player i to a player j depends on j’s characteristics.

Let π : g 7→ π(g) be the payoffs of player i in the network g and φ : R2 → R be a function. In the

player heterogeneity model, the payoff function of a player i is given by

πi(g) = φ

 ∑
j∈Ni(g)

V,
∑
j∈N

gi,j ci

 , (1)
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while in the the partner heterogeneity model, the payoff function of a player i is given by:

πi(g) = φ

 ∑
j∈Ni(g)

V,
∑
j∈N

gi,j cj

 . (2)

Given the properties of the function φ, the first term x can be interpreted as the “benefits” that

player i receives from her links, while the second term y measures the “costs” associated with forming

them. It is assumed that φ(x, y) is increasing in x and decreasing in y.

The strictly convex and strictly concave payoff functions in the cost argument are defined as the

following, respectively.

Definition 2: Suppose c1, c2 ∈ (0,maxi∈N ci), c1 < c2, and κ ∈ (0, c1]. If φ(V, c1) − φ(V, c1 − κ) <

φ(V, c2)− φ(V, c2 − κ) then the payoff function is strictly convex in the cost argument.

Definition 3: Suppose c1, c2 ∈ (0,maxi∈N ci), c1 < c2, and κ ∈ (0, c1]. If φ(V, c1) − φ(V, c1 − κ) >

φ(V, c2)− φ(V, c2 − κ) then the payoff function is strictly concave in the cost argument.

The following definitions are used throughout the paper.

Definition 4: Let Smin be the set of players who have the minimum cost of forming a link in network

g. Then, Smin = {j ∈ N : j ∈ arg minl∈N cl}. Define nmin as the number of minimum cost players in

network g so that nmin = |Smin|.

Definition 5: Let Smax be the set of players who have the highest cost of forming a link in network g.

Then, Smax = {j ∈ N : j ∈ arg maxl∈N cl}. Define nmax as the number of the highest cost players in

network g so that nmax = |Smax|.

For simplicity it is assumed that the benefits that are obtained from forming links are the same for

each player and the heterogeneity exists for cost of link formation within the players. Hence, it follows

that, if network g is connected, then each player obtains a benefit equal to V̄ = nV .

Given a network g, the aggregate payoff is defined by: W (g) =
∑n

i=1 πi(g). A network is said to be

efficient if W (g) ≥W (g
′
) for any network g

′ 6= g.
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3 Player Heterogeneity Models

3.1 Player Heterogeneity in the Two-way Flow Model

3.1.1 General Payoff Function

In this section, the efficient network architectures with heterogeneous players in two-way flow informa-

tion is studied. The payoff function is given by (1). Note that the payoff function does not assume

any particular functional form and it does not impose any restriction on the cost of forming links. One

immediate result is that the set of efficient networks is very large. In particular, there might be some

players who are not connected to the other players; in that case, the diameter of the efficient network

goes to infinity. However, the following proposition shows that it is possible to obtain minimal networks

as the efficient networks.

Proposition 1: Suppose the payoff function is given by (1). Then, any efficient network g is minimal.

Proof : Suppose the network g is not minimal. Then, there is a minimal network g
′

that allows each

player to obtain the same total benefits and involves fewer links. Hence g is not an efficient network.

This results in a contradiction.

The above proposition shows that the players access each other with a minimum number of links

in the efficient networks. This indicates that if players i and j are connected in the efficient network,

there will be only one path from player i to j. This means that any redundant links are eliminated

to maximize the aggregate payoff of the players. It follows that the efficient networks are minimal

in a two-way flow player heterogeneity model. Note that this result also holds for a two-way flow

partner heterogeneity model. To ensure connectivity in the efficient network, the following assumption

is imposed.

A1: φ(x+ V, y + gijci) ≥ φ(x, y), for all i ∈ N .

A1 eliminates the efficient networks that contain singletons or disconnected components. Once A1

is satisfied, efficient networks are connected.

Lemma 1: Suppose the payoff function is given by (1) and A1 is satisfied. Then, any efficient network,

g is minimally connected.
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Proof : Suppose not. Then there exists an efficient network, g
′
with two components C1(g

′
) and C2(g

′
).

Consider two players k and m such that k ∈ C1(g
′
) and m ∈ C2(g

′
). Let g be a network such that

g = g
′
+ km. Then, by A1, it follows that W (g) > W (g

′
). Therefore g

′
cannot be an efficient network

and the proof follows. From the above contradiction, if A1 is satisfied, then the efficient networks do not

have any singletons or disconnected components. As shown in Proposition 1, to maximize the aggregate

payoff any redundant links in the network are eliminated. Combining these results, it can be argued

that the efficient networks are minimally connected.

The next proposition indicates that when the benefits and costs of link formation are allowed to

vary freely, it is possible to have decentralized architectures and even maximal diameter.

Proposition 2: Suppose the payoff function is given by (1) and satisfies A1. There exists parameter

values V and ci such that the efficient network, g, has maximum diameter, (n− 1).

Formal proof is omitted. To illustrate an efficient network, which has maximal diameter, the follow-

ing example which utilizes an additively separable form, where the benefits and costs of link formation

can be expressed as separate terms1 is provided.

Example 1: Suppose the payoff function of player i is given by:

πi(g) =

 ∑
j∈Ni(g)

V

1/2

−

∑
j∈N

gi,jci

2

Suppose n = 4. Moreover, suppose there is one minimum cost player represented by L and 3 high cost

players represented by H. Let cL and cH be equal to 2 and 3 respectively2. Assume that V = 100. Note

that A1 holds for these parameter values. Now suppose that all links are sponsored by L, which can

be represented by an inward pointing star. For this case, πL =
√

400− (3× 2)2 = −16 and πH =
√

400

which implies W (g
′
) =

∑
i πi(g

′) = 44. Compare this with the efficient network g, where each player

sponsors a single link except one H type player. For this case, πL = 16 and πH = 20 for the H type

player who does not sponsor any link and πH = 11 for the ones who sponsors a single link. This yields

1Here, an additively separable form which has economic interpretation and easy to construct is considered. The below
function satisfies the assumptions of being strictly increasing in value and strictly decreasing in cost.

2For simplicity, two types of players represented by L and H are introduced. However, it is possible to have any
heterogeneity between players in the costs of sponsoring links.
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W (g) = 58. This example shows that the diameter can be as high as (n− 1) depending on the payoff

function. Due to general payoff function specification, it cannot be ensured that all the links will be

sponsored by the minimum cost player in the efficient network. After sponsoring a single link, the

marginal cost of sponsoring another link to the minimum cost player is 16 − 4 = 12. However, the

marginal cost of sponsoring a single link for a high cost player is 32 = 9.

The above example provides the intuition to determine the factors that affect the architecture of

the efficient networks. It also demonstrates that strict concavity or convexity of the payoff function in

terms of cost plays a role in determining the diameter of the efficient network.3 Therefore, restrictions

on the payoff function are imposed. This study considers the following cases: linear payoffs, and strictly

convex and concave payoffs in the cost argument.

3.1.2 Linear Payoffs

Suppose the payoff function of player i is given by:

πi(g) =
∑

j∈Ni(g)

V −
∑
j∈N

gi,jci. (3)

Proposition 3: Suppose the payoff function is given by (3) and
∑

i∈N V ≥ c where c = mini∈N ci. If g

is an efficient network, then it is minimally connected and 2 ≤ D(g) ≤ 2 nmin. Moreover, the efficient

network is either a center-sponsored star or a interlinked center-sponsored star.

Proof :The proof is provided in Appendix A.

Observe that if there is a single minimum cost player, then the efficient network is a center-sponsored

star. If there is more than one minimum cost player, then the star architecture is still efficient. Galeotti

et al. (2006) conclude that the efficient networks and strict Nash networks are the same when a linear

payoff specification is assumed. However, if there is more than one minimum cost player in the network,

then the interlinked center-sponsored star, where the links are sponsored by the minimum cost players

is also efficient. This points out a minor conflict between stability and efficiency since the set of strict

Nash networks is a subset of the set of efficient networks.

3In Example 1, if the cost term is taken as square root instead of square then the efficient network has diameter equal
to 2.
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Figure 1 illustrates the possible efficient networks associated with Proposition 3.4
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(c) Generalized Interlinked Star

Figure 1: Examples of Efficient Networks

A linear payoff specification is the simplest case and it is possible to identify the diameter and

architecture of the efficient network without A1.5

3.1.3 Strictly Convex Payoffs in Cost

With a linear payoff function, it is possible to determine the diameter and architecture of efficient

networks without any strong restrictions. However, the interpretation of the model is limited. Strict

convexity specifications are widely used in the literature to address this limitation.

Proposition 4: Suppose the payoff function is given by (1) and φ(x, y) satisfies strict convexity in cost

and A1. If g is an efficient network, then g is a center-sponsored star, with a minimum cost player as

the center of the star.

Proof : The proof is provided in Appendix A.

3.1.4 Strictly Concave Payoffs in Cost

It can easily be shown through modifying Example 1 that the diameter can be as high as (n− 1) when

the payoff function is strictly concave in cost. This result contrasts with the result that is obtained

under the strict convexity in costs property. Therefore, an additional condition is imposed to restrict

the set of efficient networks.

4In the below figures, L represents minimum cost players and H represents high cost players. H type players can have
any cost c+ ε where ε > 0.

5Assuming A1 will provide the same result, however note that A1 is stronger than assuming
∑

i∈N Vi ≥ c where
c = mini∈N{ci}.
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Condition 1: Let c = mini∈N ci. Suppose φ(x, y) satisfies φ(V, (k + 1)c) − φ(V, kc) > φ(V, k′ci) −

φ(V, (k′ − 1)ci)∀ci 6= c, and k ∈ {0, ..., n− 2}, k′ ∈ {1, ..., n− 1}.

Note that this condition is not on the functional form of the payoffs. Condition 1 eliminates cases

where the marginal cost of sponsoring a link for a high cost player is less than the marginal cost of

sponsoring a link for a minimum cost player. Once Condition 1 is satisfied, all the links will be sponsored

by the minimum cost player(s).

The following lemma provides intuition for the architecture of the efficient networks when the payoff

functions are strictly concave in cost.

Lemma 2: Suppose the payoff function is given by (1). Also suppose φ(x, y) satisfies the strict concavity

in the cost argument and satisfies A1. If nmin > 1, then ||Ni(g)| − |Nj(g)|| ≤ 1 for all i, j ∈ Smin.

Proof : The proof is provided in Appendix.

Proposition 5: Suppose the payoff function is given by (1). Also suppose φ(x, y) satisfies the strict

concavity in the cost argument and satisfies A1 and Condition 1 about the degree of concavity in cost. If

g is an efficient network, then it is minimally connected and 2 ≤ D(g) ≤ 2 nmin. The efficient network

is a center-sponsored star for nmin = 1 and a (generalized) interlinked star for nmin > 1.

Proof : The proof is provided in Appendix.

Note that by Lemma 2, if there is more than one minimum cost player in g, then a (generalized)

interlinked center-sponsored star is the efficient architecture as opposed to the star architecture. The

intuition for this case is that it becomes inefficient for a single minimum cost player to sponsor all the

links since the payoff is strictly concave in cost. Note that maximal diameter occurs with generalized

interlinked star, hence maximal diameter in an efficient network is 2 nmin. Figure 1(b) and 1(c) provide

representatives for this case.

3.2 Player Heterogeneity in the One-way Flow Model

In this subsection, the efficient networks in the one-way flow models are identified for player hetero-

geneity. In the one-way flow model, only the player who sponsors the link accesses the benefit of the

link. The model in Galeotti (2006), which is extension of Bala and Goyal (2000) is considered. This
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paper establishes strict Nash networks; however, it gives little information about the efficient networks.

The next proposition identifies the efficient network for the player heterogeneous one-way flow model.

Let πi : g 7→ πi(g) be such that φ(x, y) is strictly increasing in x and strictly decreasing in y. Let

the payoff function for player i be:

πi(g) = φ

V,∑
j∈N

gi,jci

 . (4)

Proposition 6: Suppose the payoff function is given by (4) and Condition (A1) is satisfied. Then the

unique efficient architecture is a wheel.

Proof : First, we can use the same arguments as in Proposition 1 to show that an efficient network

is minimal. Second, when (A1) is satisfied, we can use the same arguments as in Lemma 1 to show

that any efficient network is connected. Therefore, any efficient network is minimally connected. In the

one-way flow model, the wheel is the only minimally connected network. The result follows.

In a wheel architecture, sponsoring a single link allows all the agents to access each other and

maximizes the total benefit for players with the least amount of cost of link formation. Note that the

number of minimum cost players has no impact on the efficient architecture.

4 Partner Heterogeneity Models

4.1 Partner Heterogeneity in the Two-way Flow Model

4.1.1 General Payoff Function

The partner heterogeneity model introduced by Billand et al. (2011) considers a framework where

the benefits and costs of link formation vary according to who is being accessed. With this type

of heterogeneity, the set of strict Nash networks substantially increases and new architectures arise.

This section characterizes the efficient network architectures with partner heterogeneous agents in two-

way flow information. Partner heterogeneity allows each player to obtain partner specific cost of link

formation. Hence, cost of link formation only depends on the attributes and abilities of the player

whom players access. For example, suppose players i and j have a link which allows them to access
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information from each other. Without loss of generality suppose that player i is sponsoring the link.

Then, the cost of link formation incurred by i is represented by cj .

Proposition 7: Suppose the payoff function is given by (2). Then, any efficient network g is minimal.

Proof : The proof is similar to proof of Proposition 1, and is omitted.

Let πi : g 7→ πi(g) and φ : R2 → R such that φ(x, y) is strictly increasing in x and strictly decreasing

in y. Suppose that the payoff function is given by (2). The following assumption, A2, is imposed to

ensure connectivity in the efficient network.

A2: φ(x+ V, y + gijcj) ≥ φ(x, y), for all j ∈ N .

Lemma 3: Suppose the payoff function is given by (2) and A2 is satisfied. Then, any efficient network,

g is minimally connected.

Proof : The proof follows from the proof of Lemma 1, and is omitted.

Proposition 8: Suppose the payoff function is given by (2) and satisfies A2. There exists parameter

values Vj and cj such that the efficient network, g, has maximum diameter, (n− 1).

The proof is omitted since this can easily be shown by modifying Example 1, where cj replaces ci.

Therefore, additional restrictions are enforced on the payoffs, as in the player heterogeneity model. As

before, the linear payoffs, strictly concave and convex payoffs in cost cases are considered.

4.1.2 Linear Payoffs

Remark 1 Partner Heterogeneity with Linear Payoffs: The diameter of the efficient architecture for

this case is essentially the same as with player heterogeneity with linear payoffs. The main difference

between the efficient networks in the player heterogeneity model and the partner heterogeneity model

is who sponsors the links. In the player heterogeneity case, the minimum cost players sponsor the links.

However, in the partner heterogeneity case, the links are sponsored by non-minimum cost players.

Therefore, for nmin = 1, the efficient network has periphery-sponsored star architecture for the partner

heterogeneity case. However, for nmin > 1, the network might be either star or a generalized interlinked

star since both architectures are efficient.
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4.1.3 Strictly Convex Payoffs in Cost

For the partner heterogeneity model with strictly convex payoff function, it is possible to construct

examples with different architectures with diameter up to n − 1. This happens especially when there

is a substantial variation in the costs of forming links between the players. Therefore, an additional

condition is needed in order to characterize the diameter of the network.

Condition 2: Let players h, l be such that h ∈ Smax and gh,l = 0. Suppose φ(x, y) satisfies

φ(V,
∑

j∈Nh∪{l} cj)−φ(V,
∑

j∈Nh
cj) > φ(V,

∑
j∈Ni∪{l} cj)−φ(V,

∑
j∈Ni

cj) ∀i ∈ N \Smax with gi,l = 0.

Note that this condition is a very strong assumption and it implies that the marginal cost of

sponsoring a link for the highest cost player is less than the marginal cost of sponsoring a link for

any other player for the partner heterogeneous models. Once Condition 2 is satisfied, all the links will

be sponsored by the highest cost player(s).

Proposition 9: Suppose the payoff function is given by (2) and φ(x, y) satisfies strict convexity in

cost, A2 and Condition 2. If g is an efficient network, then 2 ≤ D(g) ≤ 2 nmax.

Proof : The proof is provided in Appendix B.

Note that the diameter and the architecture can be different from the player heterogeneity case. If

the marginal cost of adding links for a high cost player becomes very little after sponsoring links with

the other players, the efficient network can have a center-sponsored star architecture. This is also true

when nmax = 1. However, if nmax > 1 and the marginal cost of adding links for the highest cost player

does not decrease enough, it is possible to have network with diameter at most 2nmax.

4.1.4 Strictly Concave Payoffs in Cost

Lemma 4: Suppose the payoff function is given by (2). Also suppose φ(x, y) satisfies the strict concavity

in the cost argument and satisfies A2. Then players only sponsor a link with a minimum cost player

and the number of links sponsored by each player is at most 1.

Proof : The proof is provided in Appendix B.

Proposition 10: Suppose the payoff function is given by (2). Also suppose φ(x, y) satisfies the strict
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concavity in the cost argument and satisfies A2. If g is an efficient network, then it is minimally

connected and 2 ≤ D(g) ≤ 1 + nmin. The efficient network is either a periphery-sponsored star or an

interlinked periphery-sponsored star.

Proof : The proof is provided in Appendix B.

Note that this architecture is different from the player heterogeneity case. In player heterogeneity,

a non-minimum cost player can serve as a bridge player as seen in Figure 1. However, in partner

heterogeneity, an efficient network does not have such architecture. Observe that to have a bridge,

the player in the player heterogeneity model is not sponsoring any links. These links are sponsored

by the minimum cost players around the bridge player. However, such a bridge player in the partner

heterogeneity model requires sponsoring two links for that player, which is not efficient when the payoff

is strictly concave in cost.

4.2 Partner Heterogeneity in the One-way Flow Model

In this subsection, the efficient networks in the one-way flow model are identified, and the model in

Billand et al. (2011) is considered.

Remark 2 Partner Heterogeneity in one-way flow model : For this case only the condition to have a

connected efficient architecture changes. If φ(V̄ , cj) > φ(V, 0) for all j = 1, ..., n then the unique efficient

architecture is a wheel. If φ(V̄ , cj) < φ(V, 0) for all j = 1, ..., n then the empty network is efficient.

Note that the partner heterogeneity setting yields the same result as the player heterogeneity model

in the one-way flow model. Again, by sponsoring a single link and incurring the cost cj , each player

can access all players in the network.

5 Discussions and Conclusion

This paper identifies the efficient networks in the player and partner heterogeneity models with vari-

ous functional forms. There are some notable differences between the efficient architectures under the

player and partner heterogeneity models. The first difference is that in the player heterogeneity model,

minimum cost player(s) sponsor all the links. However, in partner heterogeneity, a high cost player

can also sponsor some links depending on the properties of the payoff function. In the homogeneous
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model discussed by Bala and Goyal (2000), efficient networks have a star architecture. However, when

heterogeneity in costs is considered, a rather decentralized efficient architecture in the form of (general-

ized) interlinked stars can occur. This also yields a change in the diameter of the network. Specifically,

when the payoff function is linear in cost, the diameter of the network is always 2 if there is only one

minimum cost player, whereas the diameter is at most 2 nmin if there is more than one minimum cost

player for both player and partner heterogeneous cases. When the payoff function is strictly convex

in cost, the diameter of the efficient network is 2 in the player heterogeneous case, whereas for the

partner heterogeneous case, 2 ≤ D(g) ≤ 2nmax. And lastly, for the networks where the payoff function

is strictly concave in cost, the diameter is 2 ≤ D(g) ≤ 2 nmin for the player heterogeneous case and

2 ≤ D(g) ≤ nmin + 1 for the partner heterogeneous case.

In the one-way flow model, the architecture of the efficient network with player and partner het-

erogeneity is identical. The only connected efficient architecture is a wheel for these cases, where each

agent can access all other agents by sponsoring a single link.

One common property between Nash and efficient networks is that they are both minimal. Galeotti

et al. (2006) conclude that Nash and efficient networks coincide if the payoff function is linear in

benefits and costs. This is especially true if the number of minimum cost players is one, since the

efficient network architecture is a center sponsored star in this case. However, when there is more

than one minimum cost player, the set of architectures becomes larger since efficient networks in this

case also includes interlinked center-sponsored stars. Billand et al (2011) find that introducing partner

heterogeneity increases the set of strict Nash networks and allows to exhibit new architectures such as

minimally point contrabasis networks and branching. This holds true for efficiency as well.

Note that not all of the payoff function specifications are comparable in terms of Nash and efficient

networks since additional conditions are imposed to identify link formation in some cases.
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Appendix A: Player Heterogeneity Model

Proof of Proposition 3: Suppose the payoff function is given by (3). It is clear that if g is an efficient

network and
∑

i∈N Vi ≥ c then g is minimally connected. As n ≥ 3, it follows that D(g) ≥ 2. It remains

to show that D(g) ≤ 2 nmin, and the efficient network is either a center-sponsored star or a interlinked

center-sponsored star.

Let V̄ =
∑

i∈N Vi = nV be the total value obtained by each player in the complete network. Since

an efficient network is connected, each player obtains a value equal to V̄ in an efficient network.

Note that in the centered-sponsored star gcss, the total costs of links are equal to (n−1)c. Toward a

contradiction, suppose a minimally connected efficient network g whose diameter is larger than 2nmin.

Then there exists in g a chain Ci,k between two players i and k whose length is strictly larger than

2nmin. This chain contains at least a player who is not a minimum cost player. It follows that the total

cost of links in g is strictly larger than (n− 1)c, and g is not a minimally connected efficient network,

a contradiction.

Now, suppose there are nmin minimum cost players in the network g. Since the payoff function is

linear in cost, then the total payoff of the network has the same value if all the links are sponsored by

only one of the minimum cost player or each of the minimum cost players sponsor the links. Thus, the
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architecture of the network is either a center-sponsored star or a interlinked center-sponsored star with

the minimum cost player(s) at the center.

Proof of Proposition 4: Suppose the payoff function is given by (1) and (x, y) satisfies strict convexity

in costs and A1. Suppose that the network g is efficient.

By Lemma 1, it is clear that g is minimally connected. Next step is to show that g is a center-

sponsored star, with a minimum cost player as the center of the star.

First, since an efficient network is connected, each player obtains a value equal to V̄ = nV in an

efficient network. Second, wlog let c1 = minj∈N cj .

Denote by gcss the center-sponsored star, with player 1 as the center of the star. Suppose a network

g0 6= gcss. Then, we show that gcss yields more aggregate payoff than g0.

Let the vector (|N0
1 |, |N0

2 |, ..., |N0
n|) be the vector of the number of links formed by the players in g0,

with |N0
i | the number of links formed by player i in g0.

The following process is built. In this process, Nt = (|N t
1|, |N t

2|, ..., |N t
n|) is the vector of number of

links obtained at the end of Step t, with |N t
i | the number of links formed by player i at the end of Step

t.

Step 1:

Since g0 6= gcss, then |N0
i | > 0 for at least one player i 6= 1. Let i1 6= 1 be a player such that

|Ni1(g0)| > 0.

Let N1 be such that |N1
1 | = |N0

1 |+ |N0
i1
| and |N1

i1
| = 0 and |N1

i | = |N0
i | for all i 6= 1, i1.

φ(V̄ , |N1
1 |c1) + φ(V̄ , |N1

i1 |ci1) = φ(V̄ , (|N0
1 |+ |N0

i1 |)c1) + φ(V̄ , 0)

> Φ(V̄ , |N0
1 |c1) + φ(V̄ , |N0

i1 |c1)

≥ φ(V̄ , |N0
1 |c1) + φ(V̄ , |N0

i1 |ci1)

The first inequality comes from the convexity of φ with regard to its second argument, while the

second inequality is due to the decreasing of φ in its second argument.

If gcss is the network associated with N1, then the process stops. Otherwise we go to Step 2.

Step 2:

Let i2 6= 1, i1 be a player such that |N1
i2
| > 0. Let N2 be such that |N2

1 | = |N1
1 |+ |N1

i2
| and |N2

i2
| = 0
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and |N2
i | = |N1

i | for all i 6= 1, i2. By the same argument as in Step 1, it can be shown that

φ(V̄ , |N2
1 |c1) + φ(V̄ , |N2

i2 |ci2) = φ(V̄ , (|N1
1 |+ |N1

i2 |)c1) + φ(V̄ , 0)

> Φ(V̄ , |N1
1 |c1) + φ(V̄ , |N1

i2 |ci2).

If gcss is the network associated with N2, then the process stops. Otherwise we go to Step 3.

Since n is finite there exists a number k such that gcss is the network associated with Nk.

Now, it remains to show that W (gcss)−W (g0) = W (gk)−W (g0) > 0.

First note that

φ(V̄ , N t
1c1)− φ(V̄ , N t−1

1 c1) + φ(V̄ , 0)− φ(V̄ , |N t−1
it
|ck) > 0,

for all 1 ≤ t ≤ k.

Moreover,for player 1, φ(V̄ , |Nk
1 |c1) = φ(V̄ , (n − 1)c1), and for each player i 6= 1, they payoffs are

φ(V̄ , |Nk
i |ci) = φ(V̄ , 0). Therefore, it follows that:

W (gcss)−W (g0) = φ(V̄ , (n− 1)c1)− φ(V̄ , |N0
1 |c1) +

∑
it:|Ngcss |6=|N0

i |

(φ(V̄ , 0)− φ(V̄ , |N0
it |ct))

=
[
φ(V̄ , (n− 1)c1)− φ(V̄ , |Nk−1

1 |c1)
]

+
[
φ(V̄ , |Nk−1

1 |c1)− φ(V̄ , |Nk−2
1 |c1)

]
+ ...+[

φ(V̄ , |N1
1 |c1)− φ(V̄ , |N0

1 |c1)
]

+
∑

it:|Ngcss |6=|N0
i |

(φ(V̄ , 0)− φ(V̄ , |N t−1
it
|ct))

=
[
φ(V̄ , (n− 1)c1)− φ(V̄ , |Nk−1

1 |c1) + φ(V̄ , 0)− φ(V̄ , |Nk−1
ik
|ck)
]

+ ...+[
φ(V̄ , |N1

1 |c1)− φ(V̄ , |N0
1 |c1) + φ(V̄ , 0)− φ(V̄ , |N0

ik
|ci1)

]
> 0

since each term of the last sum is positive.

This concludes that the efficient network is the center-sponsored star, with player 1 as the center of

the star.

Proof of Lemma 2: Suppose nmin > 1 and let g0 be an efficient network. First, since an efficient

network is connected, each player obtains a value V̄ = n V in g0. Second, let players 1 and 2 belong to
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Smin, with c1 = c2 = c, and suppose wlog that |N0
1 | = |N0

2 |+ 2. Suppose a network g1 where one of the

links sponsored by player 1 in g0 is now sponsored by player 2. i.e., |N1
1 | = |N0

1 | − 1, |N1
2 | = |N0

2 |+ 1,

and |N1
i | = |N0

i | for all i 6= 1, 2. We have

W (g1)−W (g0) = φ(V̄ , |N1
1 |c1) + φ(V̄ , |N1

2 |c2)− φ(V̄ , |N0
1 |c1)− φ(V̄ , |N0

2 |c2)

= φ(V̄ , (|N0
1 | − 1)c1) + φ(V̄ , (|N0

2 |+ 1)c2)− φ(V̄ , |N0
1 |c1)− φ(V̄ , |N0

2 |c2)

= φ(V̄ , (|N0
2 |+ 1)c1) + φ(V̄ , (|N0

2 |+ 1)c2)− φ(V̄ , (|N0
2 |+ 2)c1)− φ(V̄ , |N0

2 |c2)

=
[
φ(V̄ , (|N0

2 |+ 1)c)− φ(V̄ , |N0
2 |c)

]
−
[
φ(V̄ , (|N0

2 |+ 2)c)− φ(V̄ , (|N0
2 |+ 1)c)

]
> 0

where last inequality is because φ is decreasing and strictly concave in the cost argument.

Note that using the same method as above, one can show that W (gk−1) > W (g0) for |N0
1 | = |N0

2 |+k

where k ≥ 2.

Proof of Proposition 5: Suppose the payoff function is given by (2) and φ(x, y) satisfies strict

concavity in costs, A1 and Condition 1, and let g0 be an efficient network. By Lemma 1, g0 is minimally

connected. Since n ≥ 3, D(g0) ≥ 2.

To obtain a contradiction, suppose D(g0) ≥ 2nmin+1, and let c1 = minj∈Ncj . Since D(g0) ≥ 2nmin+1,

there is a player i1 /∈ Smin such that |Ni1(g0)| > 0, and a player j 6= i1 such that i1j ∈ g0. Either (i)

j ∈ Smin or (ii) j /∈ Smin.

(i) Suppose j ∈ Smin. Then if we replace the link i1j by the link ji1, by Condition 1 the sum of the

payoffs of player i1 and j increases while the payoffs of the other players do not change. Hence g0 is

not efficient, a contradiction.

(ii) Suppose j /∈ Smin. Since g0 is minimally connected, there exists a player k ∈ Smin such that

k /∈ Ni1(g0− i1j) or k /∈ Nj(g
0− i1j). In the first case, if we replace the link i1j by the ki1, the network

will still be connected and the players will obtain the same value. Moreover, by Condition 1 the sum

of the payoffs of player i1 and k increases while the payoffs of the other players do not change. Hence

g0 is not efficient, a contradiction. In the second case, if we replace the link i1j by the link kj , then

we obtain the same result.

Now, suppose there are nmin minimum cost players in the network g. If nmin = 1, then g is center-
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sponsored star with the minimum cost player as the center of the star. However, if nmin > 1, then by

Lemma 2, the architecture of g becomes a generalized interlinked center-sponsored star where a high

cost player can stay in the center as a bridge player without sponsoring any links; see Figure 1(c).

Appendix B: Partner Heterogeneity Model

Proof of Lemma 4: Let g0 be an efficient network. In what follows, let g1 = g0−
∑

`∈Ni
i`+ ij. Since

g0 is minimally connected, it is a tree.

(i) We begin to prove that players only sponsor links with minimum cost players. To introduce a

contradiction suppose there exists a player i in g0 who has formed a link with a player j /∈ Smin.

First suppose j is a leaf of the tree g0. We have ci ≥ cj , otherwise by concavity, we have W (g0 − i, j +

j, i) > W (g0), and g0 is not an efficient network, a contradiction. Therefore i /∈ Smin. Then there exists

a player k 6= i, j such that k ∈ Smin. By concavity we have W (g0 − i, j + j, k) > W (g0), and g0 is not

an efficient network, a contradiction.

Second, suppose j is a not leaf of the tree g0. There are two cases:

Case 1. i is a leaf of the tree g0. We have i /∈ Smin, otherwise by concavity we have W (g0− i, j+ j, i) >

W (g0), and g0 is not an efficient network, a contradiction. Therefore there exists a player k 6= i, j such

that k ∈ Smin. However, we have W (g0 − i, j + i, k) > W (g0), and g0 is not an efficient network, a

contradiction.

Case 2. i and j are not leaves of the tree g0.

Note that for all players k ∈ Ni(g
1), we have k /∈ Smin. Otherwise, we have W (g0− i, j+ i, k) > W (g0),

and g0 is not an efficient network, a contradiction.

Let ` ∈ Smin. We know that we have ` /∈ N1(g
1). Let k ∈ N1(g

1) be a leaf of the tree g0. There exists

a player k′ ∈ N1(g
1) such that gk,k′ = 1 or gk′,k = 1.

Suppose gk,k′ = 1. Since ck′ > c`, we have W (g0 − k, k′ + k, `) > W (g0), and g0 is not an efficient

network, a contradiction.

Suppose gk′,k = 1. Since ck′ > c`, and Nk′(g
0) ≥ Nk(g0), by concavity, we have W (g0 − k′, k + k, `) >

W (g0), and g0 is not an efficient network, a contradiction.

The result follows.
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(ii) We now show that |Ni(g
0)| ≤ 1 for all i in N. To introduce a contradiction, wlog, suppose there

exists in g0 a player i that has formed two links, and let players j, j′ such that gi,j = 1, and gi,j′ = 1.

To show that g0 is not efficient, we consider a player k who is a leaf of the tree g0 such that k ∈ Ni(g
1)

and a player t such that gt,k = 1 or gk,t = 1.

Suppose gt,k = 1. Since, |Nk(g0)| < |Ni(g
0)|, by concavity we have W (g0− i, j+ k, j) > W (g0), and g0

is not an efficient network, a contradiction.

Suppose gk,t = 1. Since gi,j = 1, there is a player ` who belongs to a chain between k and i who has

not formed any link in g0. Since j′ ∈ Smin, by concavity we have W (g0 − i, j + `, j′) > W (g0), and g0

is not an efficient network, a contradiction.

Proof of Proposition 9: Note that this proof follows similar steps as in the proof of the Proposition

5. Suppose the payoff function is given by (2) and φ(x, y) satisfies strict convexity in cost, A2 and

Condition 2, and let g0 be an efficient network. By Lemma 3, it is clear that g0 is minimally connected.

Since n ≥ 3, it follows that D(g0) ≥ 2. Now, we want to prove that D(g) ≤ 2nmax.

Suppose D(g0) ≥ 2nmax + 1. Then there is at least one player i1 /∈ Smax such that |Ni1(g0)| > 0,

and a player j 6= i1 such that i1j ∈ g0. Either (i) j ∈ Smax or (ii) j /∈ Smax.

(i) Suppose j ∈ Smax. Then if we replace the link i1j by the link ji1, by Condition 2 the sum of the

payoffs of players i1 and j increases while the payoffs of the other players do not change. Hence g0 is

not efficient, a contradiction.

(ii) Suppose j /∈ Smax. Since g0 is minimally connected. Thus, the network g0 − i1j is a disconnected

network with two components. There exists a player k ∈ Smax such that k /∈ Ni1(g0 − i1j) or k /∈

Nj(g
0 − i1j). In the first case, if we replace the link i1j by the ki1, the network will still be connected

and the players will obtain the same value. Moreover, by Condition 2 the sum of the payoffs of player

i1 and k increases while the payoffs of the other players do not change. Hence g0 is not efficient, a

contradiction. In the second case, if we replace the link i1j by the link kj , then we obtain the same

result.

Thus, the above cases show that the g0 where D(g0) ≥ 2nmax + 1 is not an efficient network.

In the case of nmax = 1, the

Proof of Proposition 10: Suppose the payoff function is given by (2). Also suppose φ(x, y) satisfies
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the strict concavity in the cost argument and satisfies A2. By Lemma 3, it is clear that g is minimally

connected. Since n ≥ 3, it follows that D(g) ≥ 2. If nmin = 1, then by Lemma 4, the unique efficient

architecture is periphery-sponsored star. Now, it remains to show that D(g) ≤ nmin + 1 and the

architecture is either periphery-sponsored star or interlinked periphery-sponsored star.

Suppose, on the contrary that D(g) ≥ nmin + 2, then there exists a player such that either she acts

as a bridge and sponsored two links or she sponsors a link with a player outside of Smin. The former

case is not possible since, by Lemma 4, each player sponsors at most one link. Moreover, the latter case

is not possible since again by Lemma 4, the players only sponsors links with players who have minimum

cost of forming links. Therefore, a contradiction is obtained with an efficient network with diameter

greater than nmin + 1 .
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