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Abstract 

In this paper we present an investigation into the use of visual cues during number 

line estimation, and their influence on cognitive processes for reducing number 

line estimation error. Participants completed a 0-1000 number line estimation task 

pre and post a brief intervention in which they observed static-visual or dynamic-

visual cues (control, anchor, gaze cursor, mouse cursor) and also made estimation 

marks to test effective number-target estimation.  Results indicated that a 

significant pre-test to post-test reduction in estimation error was present for 

dynamic visual cues of modelled eye-gaze and mouse-cursor. However, there was 

no significant performance difference between pre and post-test for the control or 

static anchor conditions. Findings are discussed in relation to the extent to which 

anchor points alone are meaningful in promoting successful segmentation of the 

number line, and whether dynamic cues promote the utility of these locations in 

reducing error through attentional guidance.  

 

 

Keywords: number line; attentional guidance; gaze following; gaze transfer; eye 

movement modelling. 
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Introduction 

 

 

Eye movements have long been considered as a window into the mind (Wade & 

Tatler, 2005). It is well established that eye movement behaviours reflect what is 

likely to be the object of our thoughts (Ferreira, Apel, & Henderson, 2008; Knoblich, 

Ohlsson, & Raney, 2001; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995), 

and that increased fixation durations are related to increased processing on the object 

of fixation (Just & Carpenter, 1976; Rayner, 1998, 2009). Research on numerical 

cognition has recently started to appreciate the value of employing eye-tracking 

studies (Haartman & Fisher, 2016; Mock, Huber, Klein, & Moeller, 2016), with key 

studies involving adults (Reinhart, Huber, Nuerk & Moeller, 2015; Sullivan, Juhasz, 

Slattery, & Barth, 2011) and both typically (Schneider et al., 2008)  and atypically 

developing children (van’t Noordende, van Hoogmoed, Schot & Kroesbergen, 2015) 

already revealing new insights into the online processes and strategies used in number 

line estimations.  

The number line estimation task involves participants positioning a series of 

numbers on blank number line scales, generally using paper and pencil (Siegler & 

Booth, 2004), but more recently using tablet computers (LeFevre et al., 2013). The 

scale of the number line presented to participants varies with age, with young children 

being presented with small scales (e.g. 0-10, 0-20 or 0-100) and older children and 

adults being presented with larger scales (e.g. 0-1000, etc.) reflecting the anticipated 

extent of their number familiarity. In addition, manipulations of the presented scale 

have been used to experimentally investigate more complex numerical knowledge 

such as that of fractions (Schneider, Grabner & Paetsch, 2009). Unbounded number 

lines have also been utilised to further understand what precisely is measured by this 

task with a growing body of evidence suggesting that proportional judgements are 
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important for bounded, but not necessarily unbounded, number line estimation 

(Ashcraft & Moore, 2012; Barth & Paladino, 2011; Link, Huber, Nuerk & Mueller, 

2014; Rouder & Geary, 2014). It is argued that when using unbounded number lines 

participants must make use of a ‘dead-reckoning’ strategy based upon the spatial unit 

information given (e.g. target value of 25 to estimate, spatial unit information shown 

of 1). Dependent on the target number and spatial unit information provided, 

participants may need to make an increased number of ‘dead-reckoning’ steps to 

estimate the spatial location of the target value (e.g. target of 30 would require half 

the amount of steps with spatial-unit information of 10 compared to 5). The use of a 

greater number of ‘dead-reckoning’ steps (or self-generated points of reference) in the 

case of bounded number lines may result in increased acuity of association between 

number magnitude and spatial extent reducing overall estimation error (Ashcraft & 

Moore, 2012; Barth, Slusser, Cohen & Paladino, 2011). 

Typically, the number line task is analysed in one of two ways. Curve 

estimation provides an indication of the function of the estimates across the number 

line, with the actual position of the numbers being regressed onto the estimated points 

that participants have made, producing best-fit values for linear (R2
LIN) and 

logarithmic (R2
LOG) functions of the values of the estimates. An average value of 

accuracy of estimates is also typically calculated (PAE; percentage absolute error), 

with the average of the absolute difference between estimated and actual positions 

being calculated for each individual on each scale that they have completed, 

irrespective of the directionality of the error.  

The task has gained increasing interest because of the consistently observed 

relationship between number line estimation and more complex mathematical 

achievement (see Siegler, 2016 for a review) with both more accurate and linear 
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estimations being associated with better addition skills (Siegler & Booth, 2004), more 

successful mathematical learning (Booth & Siegler, 2008) and better general 

mathematical achievement (Muldoon et al., 2013). Due to implied importance of 

number line estimation for mathematical achievement there has been increasing 

interest in interventions to improve performance on this task. Siegler and Ramani 

(2008) observed that children who completed a simple linear board game intervention 

displayed more linear estimations post intervention compared to a control group. This 

improved estimation performance was also associated with increased addition 

accuracy. These findings have been replicated with children from low socio-economic 

backgrounds (Wilson, Dehaene, Dubois & Fayol, 2009). More recently, a number of 

studies have utilised an embodied cognition approach using physical large-scale 

movements in board games and have observed similar findings (Fischer, Moeller, 

Bientzle, Cress & Nuerk, 2011; Link, Moeller, Huber, Fischer & Nuerk, 2013).  

These intervention studies provide evidence suggesting a causal relationship 

between numerical estimation and mathematical achievement (Moeller, Fischer, 

Nuerk & Cress, 2015). Nevertheless, it is currently debated what precisely the 

bounded number line task measures, for example numerical representations (Siegler, 

2016), proportional judgments skills (Cohen & Blanc-Goldhammer, 2011) or perhaps 

vital visuo-spatial skills to complete the task (Simms et al., 2016). As such, there has 

been a call to further understand the processes that underpin number line estimation 

responses and a recent special issue by Hartman and Fischer (2016) highlights how 

eye-tracking may help shed new light on the cognitive processes involved in solving 

numerical tasks.   

With regard to possible strategy use, relative increases in fixations at the 

beginning, middle and end points of number lines indicate that children and adults use 
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these key areas as references points to estimate the target number on a line (Schneider 

et al., 2008; Sullivan & Barner, 2014; Sullivan et al., 2011). Moreover, these 

measures of online processing prior to making a response add to the growing support 

that proportional judgment models (e.g., Barth & Paladino, 2011) may offer a better 

fit of number line estimation data than traditional linear and logarithmic models 

(Siegler & Opfer, 2003; Siegler, Thompson, & Opfer, 2009). Since the processing 

involved in number line estimation has been linked to these reference points, making 

these task-specific areas more salient by adding visible anchor points at these key 

intervals should improve accuracy in number line estimations (Peters et al., in press; 

Siegler &Thompson, 2014). In addition, research suggests that number line 

estimations can be improved if there is some form of local feedback indicating the 

correct location of the target number values (Barth, et al., 2016). We investigate these 

collective issues, but also examine whether it is more beneficial for participants to 

observe another person make number line estimations using these anchor points, as 

shown by either their gaze position or mouse position.  

Recording eye movement behaviour can help us understand visual and cognitive 

processes but eye movements also have a communicative role in social and learning 

interactions by attracting and directing another’s attention (Kleinke, 1986; Sheperd, 

2010). From an early age we are highly sensitive to other people’s gaze (Brooks & 

Meltzoff, 2005; Symons, Lee, Cedrone, & Nishimura, 2004) and by following 

another’s gaze our attention is guided towards relevant aspects of our environment 

(Flom & Pick, 2007; Hanna & Brennan, 2007). Indeed, through joint attention and 

viewing where another person looks, we alter our processing of the environment 

based on the processing modelled by others (Becchio, Bertone, & Castiello, 2008).  
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With this communicative role of gaze in mind, there have recently been a 

number of studies that have recorded eye movement behaviour of one observer and 

presented these eye movement recordings to others. The goal of these studies has 

been to understand whether knowing where a person looks changes the observer’s 

perceptions and decision-making ability, and ultimately whether guiding their 

attention in this way helps observers complete tasks. Such gaze transfer studies have 

been employed in a wide range of tasks from medical image perception (Litchfield, 

Ball, Donovan, Manning, & Crawford, 2010; Seppänen, & Gegenfurtner, 2012) and 

visual inspection tasks (Jarodzka, van Gog, Dorr, Scheiter, & Gerjets, 2013; 

Nalanagula, Greenstein, & Gramopadhye, 2006) to problem solving (Litchfield & 

Ball, 2011; van Gog, Jarodzka, Scheiter, Gerjets, & Paas, 2009).  

In line with the growing view that social cognition processes need to be 

understood on the basis of their interactive nature (Cole, Skarrat & Kuhn, 2016; 

Schilbach et al., 2013), research has also enabled real-time interaction with another 

person via their gaze and demonstrated benefits in performance and coordination from 

this type of joint attention (Brennan, Chen, Dickinson, Neider, & Zelinsky, 2008; 

Carletta, et al., 2010; Leff et al. 2015; Müller, Helmert, & Pannasch, 2014; Müller, 

Helmert, Pannasch, & Velichkovsky, 2013; Neider, Chen, Dickinson, Brennan & 

Zelinsky, 2010; Velichkovsky, 1995; Wilson et al. 2011). Taken together, whether 

using pre-recorded videos of where a person looked during a task or using real-time 

gaze exchanges between two (or more) observers, gaze cursors representing where a 

person is looking can guide observers’ attention towards task relevant areas and 

enhance performance. 

Whilst people can follow and make use of simple gaze cursor information to 

help make decisions (Brennan et al., 2008; Litchfield et al., 2010; Litchfield & Ball, 
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2011; Zelinsky, Peng, & Samaras, 2013), the ability to maintain precise eye position 

is offset by normal oculomotor activity (tremors, drifts, microsaccades) which means 

that gaze is often moving, even if only slightly (Holmqvist et al., 2011). In relation to 

the number line task where precision is key, this inherent movement may mean that 

when showing a gaze cursor to other observers it may be difficult for them to follow 

and infer precisely where the model is looking on the number line. In contrast, mouse 

position only moves by the explicit intentional actions of the model and can remain in 

a stable location until the model decides otherwise.  Indeed, previous research by 

Velichkovsky and colleagues (Velichkovsky, 1995; Müller et al., 2013; Müller et al., 

2014), has shown that whilst gaze can be communicative and direct attention, 

presenting the mouse position of a model can function as a deictic pointing device 

that leads to equivalent improvements in participant performance (or better 

performance in certain contexts, cf. Müller et al., 2014). As a result, it is an open 

question whether observers would learn best from seeing where a model looked when 

making number line estimations, or whether they would learn just as well from seeing 

where the model intentionally moved the mouse cursor to make these estimations. To 

investigate these issues, we examine whether number line estimations are improved 

when anchor positions are used, and whether viewing another person’s gaze cursor or 

mouse cursor leads to additional improvements in accuracy.  

 

Method 

 

Participants: 

 

133 Participants (44 male, 89 female) aged between 18-55 years (M=22.06, 

SD= 8.35) were recruited from two universities in England and Northern Ireland to 

participate in one of four number line estimation tasks. All participants were 

undergraduate Psychology students recruited through online participant schemes and 
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were rewarded equally at both sites, either in the form course credit or a small 

monetary payment. All participants had normal or corrected-to-normal vision, and 

each provided informed consent before completing the study. 

 

Materials and Procedure: 

 

All participants completed a 0–1000 number-line task with a pretest block (30 

trials), followed by a cueing block (10 trials), and then a post-test block (30 trials). 

There were four conditions in the cueing block (Control, Anchor, Gaze Cursor, 

Mouse Cursor) and these were run as a between-participants experiment to avoid 

practice effects from the similar task demands across the procedures. In each of the 

four conditions the following parameters were consistent. Eprime 2.0 was used to 

present a horizontal line across the screen 10cm in length, which was bounded by the 

values 0 and 1000, presented beneath the line at the left and right extremes. The target 

number value for each trial was presented above the midpoint of the number line on 

each trial and remained on screen until a response was given.  

Participants used the computer mouse to select the location on the blank number 

line of the target value presented on screen. In the Control condition participants 

completed 5 practice trials followed by responses to 30 different randomized target 

values (2, 7, 10, 19, 42, 62, 103, 158, 198, 230, 289, 297, 346, 391, 438, 470, 508, 

591, 613, 694, 728, 760, 835, 879, 902, 942, 971, 984, 990), the next block consisted 

of responses to ten further target numbers presented in a pseudo-randomized order 

(20, 560, 700, 220, 980, 800, 60, 430, 950, 980), the final block was a repeat of the 

first with the same target numbers being estimated presented in a randomized order. 

In all response blocks the instructions emphasized location estimation accuracy over 

response speed. 
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In the following three conditions the target values, block order and target 

number order were the same as the control condition, and only differ in the middle 

cueing block. In the Anchor condition the pre-test and post-test blocks were presented 

as a blank bounded number line, whereas the middle cueing block of ten trials had 

visual anchor markers presented along the number line in the following locations: 

origin (0), 1st quartile (250), midpoint (500), 3rd quartile (750) and endpoint (1000).  

No explicit attention was drawn to these and participants were instructed to perform 

the task as directed previously. In the Gaze Cursor condition, rather than asking 

participants to complete 10 trials using the Anchor points, participants were shown 10 

videos of where another person was looking (eye-gaze cue depicted as a dynamic 1° 

red dot overlaid the screen), with participants watching the model move their eyegaze 

to an appropriate anchor mark to then estimate a final value location e.g. target value 

of 800 would be shown using the 3rd quartile anchor to estimate from. No mouse 

position information was provided where the person actually pointed to the number 

location with participants only seeing eye-gaze information.  In the Mouse Cursor 

condition, participants were shown 10 videos indicating where this same person 

moved the mouse cursor to estimate the location of the target number value (but no 

information provided where the person was actually looking during the task).  To 

create these 10 Gaze Cursor and 10 Mouse Cursor videos, one of the authors 

performed the number line task whilst their eye movements were recorded using an 

Eyelink 1000 eye-tracker (SR Research Ltd, Mississauga, Canada). Following a 9 

point calibration using a chin-rest and seated 57cm from the screen (average 

calibration error 0.22°), 10 videos were created in Dataviewer (SR Research) showing 

either where the model was looking (Gaze Cursor) or where the model was pointing 

the mouse (Mouse Cursor), when estimating the target number value. Each video 
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lasted approx. 20sec (M = 17.1 SD = 1.79) and were embedded into the appropriate 

cueing block using Eprime. Both the gaze cursor and mouse cursor videos displayed a 

model which moved towards the most relevant anchor point and then shifted to the 

correct position of the number. Once the final video was shown participants 

proceeded immediately to the time 2 (post-test) block. 

 

Data analytic strategy 

 Participants’ judgments were converted from the x-y coordinates to a 

numerical value along the number line in the 0-1000 estimation parameters, allowing 

calculation of a percentage absolute error (PAE); ((response estimate-target 

number)/length of number line)*100, for example if the target number was 600 and 

the participant estimated 650 then the PAE would equal, ((650-600)/1000)*100= 5%.  

Average percent absolute error (PAE) values per participant were calculated for both 

pre-test (Time 1) and post-test (Time 2). An analysis of covariance (ANCOVA) was 

conducted with the dependent factor of Time 2 PAE, the fixed factor of group 

(anchor, expert video, cursor and control) and the covariate of Time 1 PAE. For post-

hoc analyses, paired-samples t-tests were used to assess differences between Time 1 

and Time 2 performance for each group separately. Partial eta squared values were 

used as a measure of effect size for ANCOVAs and Cohen’s d was used for paired 

sample t-tests. 

 

Results 

 The results of the ANCOVA revealed that there was a main effect of group, 

F(4,128)= 13.85, p < .001,  ηp
2= .25, this was a medium effect size. The covariate 
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(PAE at Time 1) was also significant, F(1,128)= 202.21, p < .001,  ηp
2= .61 and was a 

large effect size. 

 

   < Insert Table 1 around here> 

   <Insert Table 2 around here> 

 

Pairwise comparisons revealed that after controlling for PAE at Time 1 there 

were significant differences between the following groups at Time 2: Gaze Cursor 

and Anchor, M diff = -.90, p = .002, Gaze Cursor and Control, M diff  = -1.35, p < .001. 

There were also significant differences between Mouse Cursor and Anchor, M diff = 

1.20, p <.001 and Mouse Cursor and Control, M diff  = -1.66, p < .001. Bonferroni 

corrections were applied due to multiple comparisons, thus reducing the Alpha value 

to p< .007. Therefore all significant differences remained after correction for multiple 

comparisons. There were no other significant differences. 

Paired samples t-tests revealed that there was a significant difference in PAE 

between Time 1 and Time 2 for the Gaze Cursor condition, t(33)= 4.10, p < .001, d = 

0.69 and for the Mouse Cursor condition, t(29)= 7.07, p <.001, d = 1.16 (see Figure 

1). There were no significant differences between Time 1 and Time 2 for the Anchor 

or Control group (both ps > .05). 

   <Insert Figure 1 around here> 

 

Further exploratory analysis was conducted to assess any changes in estimation 

accuracy around the five anchor point locations.  In order to assess estimation 

accuracy at these locations in each task an average PAE was generated for each 

participant in each of the experimental conditions. The estimation values from which 
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the PAE values were obtained were as follows: Origin (2,7), first quartile (230/289), 

midpoint (470, 508),  third quartile (728,760), and endpoint (950/980). The values 

were selected as the two closest to that of the visual anchor locations provided. 

Contour analyses were generated for both the pre- and post-test blank number lines. 

 

< Insert Table 3 around here> 

 

In order to compare whether accuracy in participants’ estimates were improved 

at the locations where visual anchors had been provided in the cuing blocks paired-

samples t-tests were conducted separately for each of the experimental conditions 

between pre-test and post-test at each of the anchor locations. Bonferroni correction 

was applied resulting in an adjusted Alpha level of p<.01 to correct for multiple 

comparisons. The analysis showed that there were no significant improvements in 

estimation accuracy for the blank Control condition or the visual Anchor conditions 

where only static visual cues were present. However under task conditions where 

dynamic visual cues were presented there was evidence of improved estimation 

accuracy. In the Gaze Cursor condition there was a marginally significant difference 

in estimation performance at the first quartile, pre (M=5.62) and post (M=4.06), 

t(32)=2.512, p=.017, d = 0.90, yet, no other comparisons reached significance. In the 

mouse cursor condition a significant reduction in estimation error was found at the 

first quartile, pre (M=2.13) and post (M=1.73), t(29)=2.96, p=.006, d = 1.12, though 

again no other comparisons reached significance.  

 

Findings from the contour analysis therefore suggest that there was additional benefit 

in reducing estimation error with transfer of information from dynamic visual cues, 
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however such benefit was not found with static visual cues at the anchor locations, 

and this performance benefit was not consistent across the number estimation range.  

  

 

 

Discussion 

The aim of this study was to examine whether number line estimations are 

improved when anchor-based number lines highlight interval regions, and specifically 

whether viewing another person’s gaze cursor or mouse cursor leads to additional 

improvements in accuracy. Contrary to expectations, participants in the Anchor 

condition did not show an improvement in performance in Time 2, and were 

equivalent in performance to the control condition in which no anchor lines were 

provided.  

However, viewing another person’s gaze during number line estimation led to 

increased performance (reduction in estimation error) on post-test trials compared to 

control conditions with or without anchor points. These findings are consistent with 

previous research that has found that presenting a cursor representing where another 

person looked during a task can enhance observer performance (e.g., Litchfield et al., 

2010; Litchfield & Ball, 2011; Nalanagula et al., 2006). In addition, Litchfield et al. 

(2010) demonstrated that it is the task-specificity of the presented gaze that causally 

determines improvements in performance, as presenting eye movements that are 

random, or not aligned to the specific task does not lead to improved performance. 

Therefore, our finding that number line estimation improved were not due to the mere 

presence of a moving stimulus during the intervention trials, but instead driven by 

increased attention directed at task-relevant areas.  
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Moreover, presenting the mouse position of where an observer estimated 

number lines also led to increased performance compared to control conditions with 

or without anchor points. This corroborates existing research that suggests that mouse 

position can also provide a stable deictic cue that can guide observers’ attention and 

enhance performance just as well as gaze cues (Müller et al., 2013, Müller et al., 

2014; Velichkovsky 1995). After controlling for baseline error rates at Time 1, there 

was no statistically significant difference in error rates between participants in the 

Mouse Cursor condition and Gaze Cursor at Time 2 (Table 2), although performance 

in the Mouse Cursor condition was marginally more accurate.  

As mentioned earlier, attention can be guided by another’s gaze (Litchfield & 

Ball, 2011; Neider et al., 2010) or mouse position (Velichkovsky, 1995), yet the 

Mouse Cursor may have been easier to follow more precisely since its position is 

more stable and is only moved under explicit intentional actions by the model, 

whereas the Gaze Cursor is often also accompanied with some form of oculomotor 

motion. The stability of the mouse cursor may help explain why viewing mouse 

position was marginally superior to viewing gaze position in this task. Findings from 

the contour analysis also support the benefit of a dynamic cue which was found to be 

most informative at a location along the number line where greater estimation error 

was found to occur in the pre-test block (first quartile), with this being most apparent 

for the stable mouse cursor cue. The impact of this cue was not shown to have a 

consistent impact across the number range or at all estimation anchors, which may 

suggest that information for such cues is interpreted most readily when participants 

have less knowledge of a number-value location (e.g. there was already high accuracy 

at the origin and midpoint so less need to make use of additional cue information).  
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In addition, the visual representation of a mouse cursor was most similar to the 

dynamic feedback from participants’ own location estimations in the pre-test block, 

therefore the saliency with which this cue may transmit meaningful number-location 

information may be greater than that of other dynamic representations. Therefore, if 

the goal is to explicitly direct an observer to a precise area in the environment or 

provide a worked example (Atkinson, Derry, Renkl, & Wortham, 2000; Skuballa, 

Fortunski, & Renkl, A. 2015), then it is understandable that mouse movement may be 

just as appropriate in this regard. Establishing that the Mouse Cursor and Gaze Cursor 

models had similar impact on performance emphasises that they both can be a deictic 

pointing device that can deliberately guide attention (Neider et al., 2010). However, 

gaze cursors also reflect underlying thought processes that may be implicit to the 

model and which they are not directly trying to communicate to the observer. That is, 

even when the model providing the eye movements is not trying to actively and 

didactically convey the ideal problem solution to subsequent observers in a bid to 

maximize learning, viewing their attentional processes is nonetheless informative 

(Litchfield et al., 2010; Litchfield & Ball, 2011). The strengths and weaknesses of 

these Mouse and Gaze Cursor models may explain the similar error rates observed in 

these conditions at Time 2.  

Taken together, our findings build on previous research showing that number 

line estimations can be improved following local feedback indicating the correct 

location of target number values (Barth, et al., 2015). By presenting visual recordings 

of where a model thought these number values were along the number line, alongside 

visual anchor representations, we hypothesised that this would help observers 

establish (with greater precision) the likely locations of numbers on this 0-1000 

number line in subsequent trials. Whilst an enhancement in performance accuracy 
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was found in conditions where a dynamic cue was present, with reasons for this being 

previously discussed, no difference was found between the control and visual anchor 

conditions. Ashcraft and Moore (2012) suggest that marked landmarks may not 

influence estimation accuracy where participants may generate subjective landmarks. 

In our current task conditions participants may have generated their own subjective 

landmarks in the pre-test block. With no explicit instructions to make use of the visual 

anchors in the middle block, the mere presence of a visual cue may have had little 

impact on reducing estimation error.  A recent study by Peters, Verschaffel and Luwel 

(In press) observed that the presence of landmarks improved adults’ estimation 

performance. However, in contrast to the current study, the landmarks in the Peters et 

al. study were present throughout task completion.  Siegler and Thompson (2014, 

p41) suggest that visual anchors are “…structurally important features that are not 

encoded spontaneously but that make useful strategies possible”. Thus, although 

present landmarks may improve concurrent estimation our data suggest that transfer 

to increased accuracy in performance when they are removed can be facilitated by the 

additional presence of dynamic cues (i.e. Gaze cursor or Mouse Cursor interventions). 

Our study indicates that that the dynamic cues drive the utility of visual anchors as 

meaningful features for greater estimation accuracy.   

This study focused on adult participants and increased accuracy on the number 

line estimation task was observed in the mouse and gaze cursor intervention. Given 

the relationship between number line estimation and more complex mathematical 

achievement (Siegler, 2016), it would be interesting to investigate if similar, or 

stronger, effects can be observed with children or individuals with specific difficulties 

in number line estimation. Our study sample were highly educated students, thus 

extreme caution must be taken when generalizing our results. Nevertheless, the ability 
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to use reference points to make number line estimations appears to have a 

developmental trajectory as children and adults are more likely to fixate interval 

regions (beginning, middle and end points) and make greater use of these areas with 

age and experience (Ashcraft & Moore, 2012). As eye movements were not recorded 

during the trials we cannot confirm whether observers changed where and how they 

fixated interval regions when presented with the anchor number line compared to the 

control condition. Similarly, it was not possible to establish how accurate observers 

were at following the gaze and mouse cursors respectively, and whether the precise 

coupling of observer’s gaze with the model’s gaze/mouse was key to the 

improvements in performance. i.e. those that tightly followed the mouse/gaze cursor 

showed the largest improvements. Future studies should incorporate both gaze 

following and gaze tracking in order to unpack the influence of the intervention 

further. 

 

 

 

 

 



1 
 

References 

Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation 

in children. Journal of Experimental Child Psychology, 111, 246–267.  

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from 

examples: Instructional principles from the worked examples research. Review 

of Educational Research, 70, 181-214. 

Barth, H., & Paladino, A. (2011). The development of numerical estimation in 

children: Evidence against a representational shift. Developmental Science, 14, 

125-135. 

Barth, H., Slusser, E., Cohen, D., & Paladino, A. (2011). A sense of proportion: 

Commentry on Opfer, Siegler, and Young. Developmental Science, 1205-1206. 

Barth, H., Slusser, E., Kanjlia, S., Garcia, J., Taggart, J., & Chase, E. (2016). How 

feedback improves children’s numerical estimation. Psychonomic Bulletin & 

Review, 23, 1198-1205. 

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence 

arithmetic learning. Child Development, 79, 1016-1031. 

Becchio, C., Bertone, C., & Castiello, U. (2008). How the gaze of others influences 

object processing. Trends in Cognitive Sciences, 12, 254-258. 

Brennan, S. E., Chen, X., Dickinson, C. A., Neider, M. B., & Zelinsky, G. J. (2008). 

Coordinating cognition: The costs and benefits of shared gaze during 

collaborative search. Cognition, 106, 1465-1477.  

Brooks, R., & Meltzoff, A. N. (2005). The development of gaze following and its 

relation to language. Developmental Science, 8, 535-543. 



2 
 

Carletta, J., Hill, R. L., Nicol, C., Taylor, T., de Ruiter, J.P., & Bard, E. G. (2010). 

Eyetracking for two-person tasks with manipulation of a virtual world. Behavior 

Research Methods, 42, 254–265.  

Cole, G. G., Skarratt, P. A., & Kuhn, G. (2016). Real person interaction in visual 

attention research. European Psychologist.  

Ferreira, F., Apel, J., & Henderson, J. M. (2008). Taking a new look at looking at 

nothing. Trends in Cognitive Sciences, 12, 405-410. 

Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H.C. (2011). Sensori-

motor spatial training of number magnitude representation. Psychonomic Bulletin 

Review, 18(1), 177-183.  

Flom, R., & Pick, A. D. (2007). Increasing specificity and the development of joint 

visual attention. In R. Flom, K. Lee, & D. Muir (Eds.), Gaze following: Its 

development and significance (pp. 95–111). London, England: Erlbaum. 

Foulsham, T., & Lock, M. (2014). How the eyes tell lies: Social gaze during a 

preference task. Cognitive Science, 39,1704-1726.  

Hanna, J. E., & Brennan, S. E. (2007). Speakers’ eye gaze disambiguates referring 

expressions early during face-to-face conversation. Journal of Memory & 

Language, 57, 596-615. 

Hartmann, M., & Fischer, M. H. (2016). Exploring the numerical mind by eye-

tracking: a special issue. Psychological Research, 80, 325-333. 

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de 

Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and 

measures. Oxford: Oxford University Press. 



3 
 

Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, K. (2013). Learning to 

see: Guiding students’ attention via a model’s eye movements fosters learning. 

Learning and Instruction, 25, 62-70.  

Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. 

Cognitive Psychology, 8,441–480.  

Kleinke, C. L. (1986). Gaze and eye contact: A research review. Psychological 

Bulletin, 100, 78–100. 

Knoblich, G., Ohlsson, S., & Raney, G. E. (2001). An eye movement study of insight 

problem solving. Memory & Cognition, 29, 1000–1009. 

LeFevre, J., Lira, C.J., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S. 

(2013). Charting the role of the number line in mathematical development. 

Frontiers in Psychology, 4(641). DOI:  10.3389/fpsyg.2013.00641 

Leff, D. R., James, D. R., Orihuela-Espina, F., Kwok, K. W., Sun, L. W., Mylonas, 

G., ... & Yang, G. Z. (2015). The impact of expert visual guidance on trainee 

visual search strategy, visual attention and motor skills. Frontiers in Human 

Neuroscience, 9, 526. 

Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Unbounding the mental 

number line - new evidence on children’s spatial representation of numbers. 

Frontiers in Psychology, 4, 1021.  

Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.C. (2013). Walk the number 

line – An embodied training of numerical concepts. Trends in Neuroscience and 

Education, 2, 74-84.  

Litchfield, D., & Ball, L. J. (2011). Using another’s gaze as an explicit aid to insight 

problem solving. The Quarterly Journal of Experimental Psychology, 64, 649-

656. 



4 
 

Litchfield, D., Ball, L. J., Donovan, T., Manning, D. J., & Crawford, T. (2010). 

Viewing another person’s eye movements improves identification of pulmonary 

nodules in chest x-ray inspection. Journal of Experimental Psychology: Applied, 

16, 251-262. 

Mock, J., Huber, S., Klein, E., & Moeller, K. (2016). Insights into numerical 

cognition: considering eye-fixations in number processing and arithmetic. 

Psychological Research, 80, 334-359. 

Moeller, K., Fischer, U., Nuerk, H.-C., & Cress, U. (2015). Computers in 

mathematics education - Training the mental number line. Computers in Human 

Behavior, 48, 597-607. 

Muldoon, K., Towse, J., Simms, V., Perra, O., & Menzies, V. (2013). A longitudinal 

analysis of number estimation counting skills and mathematical ability across the 

first school year. Developmental Psychology, 49(2), 250-7. 

Müller, R., Helmert, J. R., & Pannasch, S. (2014). Limitations of gaze transfer: 

Without visual context, eye movements do not to help to coordinate joint action, 

whereas mouse movements do. Acta Psychologica, 152, 19-28. 

Müller, R., Helmert, J. R., Pannasch, S., & Velichkovsky, B. M. (2013). Gaze transfer 

in remote cooperation: Is it always helpful to see what your partner is attending 

to? The Quarterly Journal of Experimental Psychology, 66, 1302-1316. 

Nalanagula, D., Greenstein, J. S., & Gramopadhye, A. K. (2006). Evaluation of the 

effect of feedforward training displays of search strategy on visual search 

performance. International Journal of Industrial Ergonomics, 36, 289–300. 

Neider, M. B., Chen, X., Dickinson, C. A., Brennan, S. E., & Zelinsky, G. J. (2010). 

Coordinating spatial referencing using shared gaze. Psychonomic Bulletin & 

Review, 17, 718-724. 



5 
 

Peters, D., Verschaffel, L., & Luwel, K. (In press). Benchmark-based strategies in 

whole number estimation. British Journal of Psychology. 

Rayner, K. (1998). Eye movements in reading and information processing: 20 years 

of research. Psychological Bulletin, 124, 372-422. 

Rayner, K. (2009). Eye movements and attention in reading, scene perception, and 

visual search. The Quarterly Journal of Experimental Psychology, 62, 1457-

1506. 

Reinhart, R., Huber, S., Nuerk, H., & Moeller, K. (2015). Strategies in unbounded 

number line estimation? Evidence from eye-tracking. Cognitive Processes, 16, 

359-363. 

Rouder, J., & Geary, D. (2014). Children’s cognitive representation of the 

mathematical number line. Developmental Science, 17(4), 525-536. 

Seppänen, M., & Gegenfurtner, A. (2012). Seeing through a teacher’s eyes improves 

students’ imaging interpretation. Medical Education, 1,1113–1114.R.  

Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & 

Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain 

Sciences, 36, 393-414. 

Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line 

estimation, and mathematical achievement: Their interrelations in grades 5 and 

6. Journal of Educational Psychology, 101, 359. 

Schneider, M., Heine, A., Thaler, V., Torbeyns, J., De Smedt, B., Verschaffel, L., ... 

& Stern, E. (2008). A validation of eye movements as a measure of elementary 

school children's developing number sense. Cognitive Development, 23, 409-422. 

Shepherd, S. V. (2010). Following gaze: Gaze-following behavior as a window into 

social cognition. Frontiers in Integrative Neuroscience, 4, 1-13.  



6 
 

Siegler, R. (2016). Magnitude knowledge: the common core of numerical 

development. Developmental Science, 19, 341-361. 

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young 

children. Child Development, 75, 428-444. 

Siegler, R., & Opfer, J. (2003). The development of numerical estimation: evidence 

for multiple representations of numerical quantity. Psychological Science, 14, 

237-243. 

Siegler, R.S., & Ramani, G.B. (2008). Playing linear numerical board games 

promotes low-income children's numerical development. Developmental Science, 

11, 655–661. 

Siegler, R. S., & Thompson, C. A. (2014). Numerical landmarks are useful—except 

when they’re not. Journal of Experimental Child Psychology, 120, 39-58. 

Siegler, R., Thompson, C., & Opfer, J. (2009). The logarithmic-to-linear shift: one 

learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3, 

143-150. 

Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the 

relationship between number line estimation and mathematical achievement: The 

role of visuo-motor integration and visuo-spatial skills. Journal of Experimental 

Child Psychology, 145, 22-33. 

Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training 

fosters the comprehension of processes and functions in technical systems. 

Frontiers in Psychology, 6, 598. 

Sullivan, J., Juhasz, B., Slattery, T., & Barth, H. (2011). Adults’ number-line 

estimation strategies: Evidence from eye movements.  Psychonomic Bulletin & 

Review, 18, 557-563. 

http://uir.ulster.ac.uk/33024
http://uir.ulster.ac.uk/33024
http://uir.ulster.ac.uk/33024


7 
 

Symons, L. A., Lee, K., Cedrone, C. C., & Nishimura, M. (2004). What are you 

looking at? Acuity for triadic eye gaze. The Journal of General Psychology, 131, 

451–469. 

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). 

Integration of visual and linguistic information in spoken language 

comprehension. Science, 268, 1632-1634. 

van Gog, T., Jarodzka, H., Scheiter, K., Gerjets, P., & Paas, F. (2009). Attention 

guidance during example study via the model’s eye movements. Computers in 

Human Behavior, 25, 785-791. 

van’t Noordende, J., van Hoogmoed, A., Schot, W., & Kroesbergen, E. (2015). 

Number line estimation strategies in children with mathematical difficulties 

measured by eyetracking. Psychological Research, 80, 368-378. 

Velichkovsky, B. M. (1995). Communicating attention: Gaze position transfer in 

cooperative problem solving. Pragmatics and Cognition, 3, 199-222. 

Wade, N., & Tatler, B. W. (2005). The moving tablet of the eye: The origins of 

modern eye movement research. Oxford: Oxford University Press. 

Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an Adaptive 

Game Intervention on Accessing Number Sense in Low‐Socioeconomic‐Status 

Kindergarten Children. Mind, Brain, and Education, 3, 224-234. 

Wilson, M. R., Vine, S. J., Bright, E., Masters, R. S., Defriend, D., & McGrath, J. S. 

(2011). Gaze training enhances laparoscopic technical skill acquisition and multi-

tasking performance: a randomized, controlled study. Surgical Endoscopy, 25, 

3731-3739. 

Zelinsky, G. J., Peng, Y., & Samaras, D. (2013). Eye can read your mind: Decoding 

gaze fixations to reveal categorical search targets. Journal of Vision, 13, 1-13.  



8 
 

 
 

Figure 1. Average PAE at Time 1 and 2 for all groups (Control, Anchor, Gaze Cursor 

and Mouse Cursor) 
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Table 1. Descriptive statistics of the average PAE for each group (anchor, video, 

cursor and control) at Time 1 and 2. 

  Time 1 Time 2 

 N Mean  SD Mean  SD 

Control 35 4.49 2.47 4.64 3.06 

Anchor 35 3.45 1.91 3.41 1.55 

Gaze Cursor 33 3.97 1.93 2.90 1.03 

Mouse Cursor 30 3.01 1.18 1.88 0.71 
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Table 2. Estimates of PAE at Time 2 for each group, controlling for PAE at Time 1 

 Time 2 

 N Mean  SE 

Control 35 4.10 .20 

Anchor 35 3.63 .20 

Gaze Cursor 33 2.74 .20 

Mouse Cursor 30 2.44 .22 
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Table 3. Mean Percentage absolute error (PAE) of values at anchor points displayed for each experimental condition. 

Note: Contour analyses were conducted as paired-samples t-tests pre/post at each of the anchor locations (Origin, 1st Quartile, Midpoint, 3rd 

Quartile, and Endpoint) separately for each of the experimental conditions. Significant change in PAE after bonferroni correction for multiple 

comparisons with adjusted Alpha (p< .01) are identified as follows: †=marginal significance, *=p< .01. 

 
 

 

 

Condition Origin pre Origin post 1st Quart pre 1st Quart post Mid pre Mid post 3rd Quart pre 3rd Quart post End pre End post 

 

Anchor 0.61 0.72 5.75 4.77 2.02 1.92 4.50 4.11 2.01 1.90 

 

Gaze Cursor 0.59 0.44 5.62 4.06† 2.61 1.88 4.72 3.24 2.01 2.14 

 

Mouse Cursor 0.39 0.22 2.13 1.73* 0.77 0.73 1.94 1.41 0.45 0.38 

 

Control 0.85 0.83 6.16 7.32 2.31 2.98 4.29 5.63 2.99 2.17 

 


