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Purpose: To examine whether exercise induced muscle damage (EIMD) and muscle

soreness reduce treadmill maximal incremental exercise (MIE) test duration, and true

maximal physiological performance as a consequence of exercise induced pain (EIP)

and perceived effort.

Methods: Fifty (14 female), apparently healthy participants randomly allocated into a

control group (CON, n = 10), or experimental group (EXP, n = 40) visited the laboratory

a total of six times: visit 1 (familiarization), visit 2 (pre 1), visit 3 (pre 2), visit 4 (intervention),

visit 5 (24 h post) and visit 6 (48 h post). Both groups performed identical testing during

all visits, except during visit 4, where only EXP performed a 30min downhill run and

CON performed no exercise. During visits 2, 3, and 6 all participants performed MIE,

and the following measurements were obtained: time to exhaustion (TTE), EIP, maximal

oxygen consumption (V̇O2max), rate of perceived exertion (RPE), maximum heart rate

(HRmax), maximum blood lactate (BLamax), and the contribution of pain to terminating

the MIE (assessed using a questionnaire). Additionally during visits 1, 2, 3, 5, and 6

the following markers of EIMD were obtained: muscle soreness, maximum voluntary

contraction (MVC), voluntary activation (VA), creatine kinase (CK).

Results: There were no significant differences (p ≥ 0.32) between any trials for any of

the measures obtained during MIE for CON. In EXP, TTE decreased by 34 s (3%), from

pre 2 to 48 h post (p < 0.001). There was a significant association between group (EXP,

CON) and termination of the MIE due to “pain” during 48 h post (χ2 = 14.7, p = 0.002).

Conclusion: EIMD resulted in premature termination of a MIE test (decreased TTE),

which was associated with EIP, MVC, and VA. The exact mechanisms responsible for

this require further investigation.

Keywords: muscle soreness, maximum voluntary contraction, perception of effort, fatigue, exhaustion

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227102907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00135
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00135&domain=pdf&date_stamp=2017-03-09
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:bchrismas@qu.edu.qa
https://doi.org/10.3389/fphys.2017.00135
http://journal.frontiersin.org/article/10.3389/fphys.2017.00135/abstract
http://loop.frontiersin.org/people/305440/overview
http://loop.frontiersin.org/people/136762/overview
http://loop.frontiersin.org/people/379516/overview
http://loop.frontiersin.org/people/366807/overview


Chrismas et al. Muscle Damage and Maximal Exercise

INTRODUCTION

Maximal incremental exercise (MIE) testing is utilized
ubiquitously in research environments (Bassett and Howley,
2000), to provide a global overview of an individual’s cardio-
respiratory function (Astorino, 2009), which is of importance in
both a clinical (Ingle, 2008) and an exercise physiology setting
(Bentley et al., 2007). The nature of MIE requires participants to
continue exercising until volitional exhaustion (Wagner, 2000),
and consequently there is a high conscious and subconscious
component to this test (Gibson et al., 1999). True maximal
physiological variables may not be achieved during MIE if an
individual fails to give a maximal effort (Taylor et al., 1955;
Moffatt et al., 1994), and the termination of MIE is thought
to be dependent on perceived effort (Gibson et al., 2003).
Perception of effort is a complex interaction of feedforward-
feedback mechanisms, and interpretation of afferent and efferent
feedback. Subsequently any internal or external factor that
could affect this feedback loop could influence perception of
effort, and ultimately MIE test termination. One such factor
is the physical condition of the participant upon arrival at the
laboratory (McConnell, 1988). Disruption to an individual’s
physical condition could occur due to lack of sleep, fatigue and
exercise induced muscle damage (EIMD).

Eccentric exercise (e.g., downhill running) causes preferential
and increased disruption to type II muscle fibers (McHugh et al.,
2000; Proske and Morgan, 2001) which is a known symptom
of EIMD. Additionally, muscle fiber disruption within itself
can activate mechano-sensitive fibers (i.e., group III/IV afferent
fibers), which could increase perceived effort. Furthermore,
this muscle fiber disruption can also increases noxious (e.g.,
bradykinin, prostaglandin, hydrogen ions) stimuli (Clarkson
and Hubal, 2002), which could stimulate group III/IV metabo-
sensitive afferent fibers responsible for feedback to the brain
(Amann et al., 2010) and explain EIMD derived pain (i.e.,
delayed onset muscle soreness). This muscle soreness could
be associated with an increased sense of effort during MIE
exercise (Davies et al., 2011) as a result of an increase in
motor unit recruitment following EIMD (Eston et al., 2000).
Damage to selective fibers may require additional motor units
to be recruited in order to achieve the same force output,
which could increase an individual’s perception of effort (Braun
and Dutto, 2003). One study showed that EIMD had no
effect on maximum rate of perceived exertion (RPE) despite
a shorter TTE and subsequently a lower power output during
cycling based MIE 48 h following eccentric squats (Davies et al.,
2011). Similarly, increased ventilation was observed when EIMD
signs and symptoms were present during MIE on a cycle
ergometer, though no significant increase in perceived effort
was shown (Yunoki et al., 2011). Yunoki et al. (2011) included
both eccentric and concentric contractions (3 × 10 sets of
leg press) 24 h prior to the MIE, compared to 100 eccentric
squats utilized by Davies and colleagues, which may explain
differential, though, similar experimental findings to Davies
et al. (2011). Nevertheless, despite postulations from previous
research that EIMD is likely to increase perceived effort during
subsequent exercise, to date, no study has shown this. In fact,

the aforementioned research suggests that there is no change in
perceived effort.

Muscle soreness derived from EIMD could increase exercise
induced pain (EIP), which is a measure of subjective “pain”
experienced by an individual during exercise. However, the
aforementioned studies only measured EIMD associated muscle
soreness (i.e., using a visual analog scale) prior to the MIE test,
for confirmation that EIMD had indeed occurred. The authors
did not measure EIP (i.e., the pain experienced during the
MIE test), which should not be confused with EIMD associated
muscle soreness. Increased release of noxious substances and
disruption to muscle fibers (Ellingson et al., 2014), could increase
EIP via afferent feedback to the brain during exercise. EIP
is likely to contribute to perceived effort (Mauger, 2014) and
therefore, EIMD and associated muscle soreness could decrease
performance in a MIE test due to increased perceived effort as
a result of higher levels of EIP experienced during exercise. No
previous study has examined the effect of EIP following EIMD
on physiological performance during subsequent treadmill based
MIE. Physiological differences (e.g., muscle recruitment, aerobic
and anaerobic energy transfer) between cycling and running
(Millet et al., 2009) may affect the relationship between perceived
effort, EIP and treadmill based MIE outcome variables seen
elsewhere (Davies et al., 2011; Yunoki et al., 2011). Given
the important and multifaceted use of MIE derived outcome
variables in research and in clinically and athletically focussed
fields, it is essential that research investigates the effect of EIMD
and muscle soreness on EIP and the perception of effort during
MIE. One common method utilized within research to induce
EIMD is a downhill run (Close et al., 2004; Cleary et al., 2006).
Consequently, the novel aims of the present study were to (i)
examine the effects of EIMD and muscle soreness on EIP and
perception of effort during subsequent treadmill based MIE, (ii)
explore the relationship between EIP, muscle soreness, EIMD
and test duration in theMIE test, (iii) examine the effect of EIMD
and muscle soreness on the physiological variables derived from
treadmill MIE. It was hypothesized that the downhill run would
result in a significant reduction in physiological performance and
test duration in the MIE test and that this would be associated
with increased EIP, with no change in perceived effort.

METHODS

Participant Characteristics
The fifty (14 female), apparently healthy participants who
volunteered for this study had the following characteristics:
[median (min - max)] age = 26 (18–49) y; mean (SD) height
= 1.76 (0.09) m and mean (SD) mass = 70.7 (11.8) kg.
Participants were free frommusculoskeletal injury, non-smokers,
and engaged in regular physical activity (> 30min, three times
a week for at least 6 months) and were familiar with treadmill
running. Participants provided written informed consent, and
were asked to adhere to written pre-measurement procedures for
the duration of the study. These pre-measurement procedures
stipulated that participants did not engage in any unaccustomed
or high-intensity physical activity for 7 d prior to visit 1, that
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no large meals or stimulants were consumed within 4 h of each
measurement, and that at least 500ml of fluid was consumed 2 h
prior to each measurement. Adherence to these procedures was
monitored using a pre-measurement procedure checklist, which
participants completed and signed prior to the commencement
of each measurement. The apparent adherence was 100% in
all instances. Test instructions and verbal encouragement were
written down, and therefore, standardized for all trials, to
ensure the investigator did not influence the results. Participants
were free to leave the study at any point without reason, and
anonymity, and confidentiality were ensured. Furthermore, all
females completed the testing at the same phase of the menstrual
cycle (follicular phase) to ensure differences in menstrual
cycle did not affect the results. Ethical approval was granted
by the University of Hull, Department of Sport & Exercise
Science Ethics Committee, and all experimental procedures
conformed to the Declaration of Helsinki, and National
Institute of Health (NIH) standards for research with human
participants.

General Experimental Design
Participants, randomly allocated into a control group (CON, n =

10, 3 female) or experimental group (EXP, n = 40, 11 female)
visited the laboratory a total of six times: visit 1 (familiarization),
visit 2 (pre 1), visit 3 (pre 2), visit 4 (intervention), visit 5
(24 h post) and visit 6 (48 h post). Both males and females were
block randomized separately in to either group using the online
software Randomizer (http://www.randomizer.org). Both groups
performed identical testing during all visits, except during visit 4
(intervention), where EXP only performed a 30min downhill run
and CON performed no exercise (Figure 1). MIE was performed
48 h post intervention (visit 6) as this is the typical length
of time recommended to abstain from exercise within pre-test
guidelines for the majority of studies to attenuate any negative
effects of muscle damage on the outcome variables. Testing
times were held constant within individuals (± 1 h) to control
for the confounding effects of circadian variation on exercise
performance (Drust et al., 2005), and tests were performed in
the order listed within the schematic (Figure 1). Data from the

familiarization trial (visit 1) has not been included or used in any
analyses as this trial was for familiarization purposes only.

Upon arrival to the laboratory tests were performed as
described below. Times between each test were standardized
within participants.

Maximal Incremental Exercise Tests
MIE was performed on a h/p/cosmos pulsar motorized treadmill
(h/p/cosmos sports & medical gmbh, Nussdorf-Traunstein,
Germany) at a gradient of 1% in order to reproduce the energetic
cost of outdoor running on a flat surface (Jones and Doust, 1996).
Initial treadmill velocity (median 6 km·h−1; range 4–9 km·h−1)
was selected based on an estimated maximum treadmill velocity
and/or the participants race time for 5 km, 10 km or a half
marathon (if known), and replicated for all trials. If race time was
unknown, initial starting velocity was set at 2 km·h−1 below the
participants walk to run transition speed. These initial starting
velocities were individualized in order to ensure participants
completed the test within the recommended duration (Midgley
et al., 2008). All participants completed a 5min warm-up at the
initial treadmill velocity before commencing the ramp protocol.
Each stage of the ramp protocol was 1min in duration and
treadmill velocity increased by 0.1 km·h−1 every 6 s (i.e., 1
km·h−1 each stage) until volitional termination of the test.
Terminal velocity was on average 13 km·h−1 (range 12–19
km·h−1). TTE was recorded as the total test duration (i.e.,
inclusive of the 5min warm-up). Heart rate was measured
continuously during all tests using short range radio telemetry.
A Polar heart rate transmitter belt (Polar FS1, Polar Electro,
OY, Finland) coated with electro-conductive gel (ECG gel,
Meditec, Italy) to enhance signal detection, was fitted around the
participants chest. For determination of HRmax the highest value
obtained during the test was recorded. Additionally, throughout
each test the rates of pulmonary oxygen uptake (V̇O2), and
carbon dioxide output ˙(VCO2) and minute ventilation (V̇E)
were measured continuously using an automated open circuit
gas analysis system (Oxycon Pro, Jaegger, Hoechberg, Germany).
Breath-by-breath data were reduced to 30 s stationary retrograde
time average intervals and the highest averaged V̇O2,V̇CO2,V̇E,

FIGURE 1 | Experimental schematic. Measurements were obtained in the sequence listed for the control (CON) and experimental (EXP) groups. ROM, range of

motion; CMJ, countermovement jump; SJ, squat jump; MVC, maximum voluntary contraction; VA, voluntary activation; MIE, maximal incremental exercise; DHR,

downhill run; Vmax, maximal treadmill velocity.
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and respiratory exchange ratio (RER) values attained during
the incremental test were recorded. Additionally, maximum
treadmill velocity (Vmax) was recorded. Following termination of
the test BLamax was measured immediately post using standard
fingertip capillary blood sampling techniques. Capillary blood
(∼50µL) was collected into a heparin coated plastic capillary
tube (Radiometer Ltd, West Sussex, UK) and immediately
analyzed using an ABL77 blood gas analyser (Radiometer, West
Sussex, UK). Intra-assay CV for duplicate samples was 1.8%.

Measurement of Psycho-physiological Variables

Ratings of perceived exertion (RPE) (Borg 6–20 scale), and EIP
(Cook et al., 1997) were assessed during MIE. The EIP scale is
a category scale with ratio properties. The authors provide the
following information and instructions for use of the EIP scale.
The scale ranges from 0 (no pain at all) to 10 (extremely intense
pain, almost unbearable). If the subjective intensity increases
above 10 the participant is free to choose any number larger in
proportion to 10 that describes the proportionate growth of the
sensation (Cook et al., 1997). Prior to each test the participants
were provided with standardized verbal and written instructions
for each scale, which were replicated for each trial. During the last
15 s of each incremental phase of the MIE (i.e., the last minute) a
value for RPE and EIP was obtained in a random order. Only the
maximum values for both RPE and EIP obtained during the MIE
test are reported in the results.

Reasons for Termination

Following completion of each MIE test, participants were
asked to complete a self-designed questionnaire relating to
the contributory factors to the termination of the test. This
questionnaire consisted of 16 contributory factors, and an
“other” factor box where participants could specify a factor if
not listed. The 16 contributory factors included pain, overall
exhaustion, discomfort, nausea, boredom, lack of motivation and
concerns about injury. Participants had to provide an answer
for each factor by ticking one box only, which was either “not
a contributory factor,” “a minor contributory factor,” “a major
contributory factor,” or “the only contributory factor.”

Downhill Run Protocol
Participants in EXP performed a 30min downhill run (-12.5%
grade) at 70% of their Vmax determined by averaging themaximal
treadmill velocity from visits 2 and 3. This protocol was employed
as previous research employing a similar downhill run protocol
reported signs and symptoms associated with EIMD (Close et al.,
2004; Cleary et al., 2006).

Anthropometry
Body mass (kg) and height (m) were measured using SECA
balance scales (Vogel & Halke, Hamburg, Germany) and a wall-
mounted Holtain Stadiometer (Holtain Ltd., Crymych, Dyfed)
respectively.

Blood Collection and Analyses
Fingertip capillary blood samples were collected using standard
techniques following 10min rest in a supine position, at the

time points shown in Figure 1 for the determination of plasma
creatine kinase (CK), hemoglobin

(

Hb
)

and haematocrit (Hct).
Plasma CK was determined from a 32µl fingertip capillary

blood sample while participants were semi-recumbent on a
treatment couch. The sample of whole blood was immediately
pipetted to a test strip and analyzed for CK using a colorimetric
assay procedure (Reflotron, Boehringer Mannheim, Germany).
The intra-assay coefficient of variation (CV) for this was 9.0%.

For the analysis of Hb and Hct all samples were measured in
triplicate and averaged. In order to determine Hct concentration,
blood was collected into sodium heparinised microhaematocrit
capillary tubes (Hawksley, Lancing, Sussex, UK) before being
centrifuged in a Hawksley HaematoSpin 1400 (Hawksley,
Lancing, Sussex, UK) for 2min at 14,000 G. Subsequently,
capillary tubes were placed on a Hawskley microhaematocrit
tube reader (Hawksley, Lancing, Sussex, UK) and the Hct (%)
recorded. The intra-assay CV was 3.2%. For Hb determination,
10µl of blood was collected onto a HemoCue R© Hb 201
microcuvette (HemoCue R© Ltd., Dronfield, Derbyshire, UK) and
placed into a HemoCue R© Hb 201+ (HemoCue R© Ltd., Dronfield,
Derbyshire, UK) in accordance with manufacturer’s instructions.
The intra-assay CV for this procedure was 1.2%. Hb and Hct
concentrations were used to measure changes in plasma volume
according to the Dill and Costill method using the following
equation (Dill and Costill, 1974):

((100 ∗ (Hbpre/Hbpost)) ∗ ((1− (Hctpost − 100))/

(1− (Hctpre− 100)))− 100 (1)

CK measures were subsequently adjusted to account for shifts
in plasma volume. The percentage change in plasma volume
was either added or subtracted from the concentration of CK as
required.

Assessment of Muscle Soreness
Perceived muscle soreness was measured using a visual analog
scale consisting of a 100mm horizontal line which ranged
from 0mm (no soreness) to 100mm (unbearable soreness)
in order to confirm if the downhill run induced EIMD.
The soreness quantification was determined by measuring the
distance from the left edge of the 100mm line to the marked
point in millimeters and this value was used for the analysis.
Muscle soreness was assessed during 5min of treadmill running
at a speed of 0.5 km·h−1 above each participant’s walk-to-
run transition speed (preferred transition speed). Soreness
measurements were obtained at the end of the first minute
(Chrismas et al., 2017). The 5min treadmill run also served as a
warm-up. Preferred transition speed was determined during the
first visit and used for all subsequent tests. Initially participants
started walking at 2 km.h−1. Velocity was increased by 0.1
km.h−1 every 6 s and participants were instructed to transition
from a walk to a run when they felt comfortable doing so. This
was also verbally confirmed by each participant, and repeated
three times, and an average taken.
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Maximum Voluntary Contraction
Bilateral MVC of the quadriceps was assessed using a Biodex
isokinetic dynamometer (Biodex System 3, Biodex Medical
Systems, Inc., Shirley, NY). Previous research has demonstrated
that maximum voluntary peak torque is highly reproducible
(TE ≤ 6.1%, ICC ≥ 0.85) in physical active individuals using
a Biodex System 3 (Almosnino et al., 2011). Participants were
seated comfortably on the adjustable chair of the dynamometer
with hip flexion at 85◦. The chair position was modified until
the lateral femoral condyle was aligned with the axis of rotation
of the dynamometer. Seat length and height were recorded
for each participant and replicated during subsequent testing.
Restraining straps were fixed across the chest, pelvis, and thigh
of the exercising leg to prevent any extraneous movement. The
exercising leg was secured to the dynamometer arm by attaching
the ankle cuff proximal to the lateral malleolus. Range of motion
and gravity corrections for limbmass were performed before each
assessment. Participants always performed three MVC separated
by a 3min rest, in an attempt to reduce the effects of fatigue
(Newman et al., 2003). Testing of the right leg always preceded
that of the left leg. Participants were instructed to keep their
hands crossed in front of their chest during each contraction.
Bilateral isometric MVC of the knee extensors was assessed at
an angle of 70◦ in accordance with previously published research
(Christou et al., 2002; Howatson and Milak, 2009). Each MVC
lasted for 5–6 s. The peak of the threeMVCswas used for analysis,
determined from the highest point of the peak torque curve.

During each isometric MVCVAwas measured using electrical
stimulation. Twitches were evoked using a percutaneous
neuromuscular electrical stimulator (Digitimer model DS7AH,
Welwyn Garden City, UK) applied to the quadriceps muscles
via two (8 × 10 cm) carbon rubber moistened surface electrodes
(Platimum 895340, PALS, Axelgaard, CA, USA) positioned
proximally over the vastus lateralis, and distally over the vastus
medialis. This method of electrical stimulation was chosen as
it has been suggested that percutaneous electrical stimulation
(single or paired) provides a similar force to nerve stimulation
in either the fatigued or non-fatigued quadriceps muscle (Verges
et al., 2009). A permanent pen was used to outline the position
of each electrode, so as to minimize variability in electrode
placement between repeated testing. Electrodes were secured
in place by Velcro. Initially, maximal current intensity was
determined by stimulating the quadriceps with an electrical
impulse (200µs, 400V) of increasing current steps of 50mA,
until a plateau in torque was observed. The current was
further increased by 50mA to ensure maximal activation.
During each MVC a superimposed twitch was evoked once the
participant had reached maximum torque and a plateau was
observed. The resting twitch was imposed approximately 3 s
after the contraction. Muscle activation was calculated using the
interpolated twitch technique (ITT) from the superimposed and
resting twitch using the following equation: ITT (%) = [1 –
size of interpolated twitch/size of resting twitch] ×100. The ITT
was chosen over the central activation ratio, as previous findings
reported that the central activation ratio overestimates VA and
is not sensitive enough to detect minor fluctuations in voluntary
force (Morton et al., 2005).

Statistical Analyses
The number of participants required for this study was
determined a priori with an alpha level of 0.05 using a 2 tailed t-
test for the main outcome measures of TTE and muscle soreness
using Power Analysis and Sample Size Software (PASS) version
13.0 (NCSS, LLC, Utah, USA). Group sample sizes of 10 for
the control group, and 40 for the experimental group, achieved
99 and 94% power to detect minimum worthwhile effects of
30 s (TTE) and 15mm (muscle soreness) respectively. Analyses
were completed using the statistical software package IBM SPSS
Statistics version 19.0 (SPSS Inc, Chicago, IL, USA) and graphs
created using SigmaPlot version 12.3 (Systat Software Inc, CA,
USA). For descriptive purposes the mean and standard deviation
have been used to report the central tendency and dispersion of
the observed data where normally distributed, and the median
and range were used where not normally distributed.

Data obtained in visit 2 (pre 1) and visit 3 (pre 2) were
used for reproducibility analyses. Combinations of statistical
methods were chosen in order to compare reproducibility
between different measures and different studies. First systematic
bias was tested using two-tailed dependent t-tests. Absolute
measurement error was determined using repeatedmeasures CV.
The CV (expressed as a percentage) was calculated by dividing
the standard deviation of the differences by the square root
of two and dividing the answer by the grand mean (Hopkins,
2000). Relative reliability was determined using a two-way
random model intraclass correlation coefficient (ICC), which is
a measure of the ratio of between-subject variance to within-
subject variance.

Only the data obtained from visit 3 (pre 2) visit 4
(intervention), visit 5 (24 h post) and visit 6 (48 h post) were
used for subsequent experimental analyses. Independent t-tests
were used to check there were no significant differences in visit
3 (pre 2) between the control group and experimental group.
Linear mixed models were chosen to determine if there were any
differences in the dependent variables between CON and EXP
across trials. This type of analysis was preferred as it allows for
missing data and can specify different covariate structures for
repeated measures data. First fixed and random factors for the
linear mixed model were fit for each dependent variable and
the main effects for trial, group and the interaction effect (trial
x group) were analyzed by plotting the mean values. The most
appropriatemodel was chosen using the likelihood ratio test. This
method uses the χ

2 critical test statistic to decide which model is
the best fit based on the change in the−2 restricted log likelihood
of two nested models. Second, normality and homogeneity of
variance of the residuals were checked using quantile-quantile
plots and scatter plots respectively, and deemed plausible in each
instance. Pearson’s r was used to examine the relationship of TTE
during visit 6 (48 h post) with EIP, soreness, VA, andMVCduring
visit 5 (24 h post) and visit 6 (48 h post). Chi square analysis
was used to investigate the association between group (EXP and
CON) and termination of the MIE due to “pain” during visit 6
(48 h post). Data were analyzed separately by sex to investigate
whether there were any significant differences between males
and females. However, as there were no significant differences
between males and females (p ≥ 0.23) the data set was collapsed
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for the final analyses. Additionally, age was entered into the
model as a covariate, but as this did not make any significant
difference it was removed for the final analyses to increase
statistical power, and satisfy the principal of parsimony. One
participants data for RPE was removed from analysis as it was
unusually low throughout all trials (10, 11). However, it was clear
from this participants physiological data (e.g., V̇O2, V̇CO2, V̇E

etc.) that a maximal effort was provided. Nevertheless, despite
familiarization, this participant was clearly unable to convey their
true perception of effort, and subsequently their RPE data has
been omitted. The two-tailed alpha level for significance testing
was set as p ≤ 0.05.

RESULTS

Reproducibility
The mean responses to the indirect markers of EIMD and MIE
completed during visit 2 (pre 1) and visit 3 (pre 2) are shown in
Table 1. Dependent t-tests indicated there was no systematic bias
(p = 0.05) between trials for any of the variables (Table 1).

The CV, and ICC for the indirect markers of EIMD and MIE
are reported in Table 2. Reproducibility of the measurements
employed in the present study is shown for quality assurance
purposes only.

Maximal Incremental Exercise Test Results
There were no significant differences (p ≥ 0.32) between visit 3
(pre 2) and visit 6 (48 h post) for any of the measures obtained
during MIE for CON (Table 3).

In EXP there was a significant group x trial interaction effect
(F = 7.9, p = 0.007) for TTE. Post-hoc comparisons revealed a
mean decrease of 34 s (3%), from pre 2 to 48 h post (p < 0.001).
Furthermore, there was a significant group x trial interaction
effect for BLamax (F = 5.0, p = 0.03), and HRmax (F = 3.8,
p = 0.04). Post-hoc comparisons revealed a mean decrease of
0.9mmol/L (9%) for BLamax (p < 0.001), and 5 b.min−1 (3%) for
HRmax (p < 0.001) from pre 2 to 48 h post (Table 3). In addition
there was a significant group x trial interaction effect (F = 13.3,
p = 0.001) for perceived pain. Post-hoc comparisons revealed a
mean increase of 100%, from pre 2 to 48 h post (p < 0.001). No
statistically significant differences (p = 0.08) between pre 2 to
48 h post were observed in the experimental group for any of the
other measures obtained (Table 3).

Indirect Markers of Exercise Induced
Muscle Damage
In EXP there was a significant group x trial interaction effect
(F = 4.5, p < 0.01) for CK. Post-hoc comparisons (p < 0.001)
revealed a mean increase of 111.0 IU/L (96%) from pre 2 to 48 h
post (Table 3). Additionally, there was a significant group x trial
interaction effect (F = 34.8, p < 0.001) for muscle soreness.
Post-hoc comparisons (p < 0.001) demonstrated a mean increase
of 51mm from pre 2 to 48 h post (Table 3). Furthermore, there
was a significant group x trial interaction effect for MVC in the
dominant leg (F = 9.5, p < 0.001), and non-dominant leg
(F = 7.5, p = 0.001). Post-hoc comparisons revealed a mean
decrease of 12.2 N.m (8%) in the dominant leg (p < 0.001),
and 11.6 N.m (8%) in the non-dominant leg (p < 0.001) from

TABLE 1 | Values obtained during visit 2 (pre 1) and visit 3 (pre 2) for the indirect markers of EIMD tests and the MIE tests completed for CON and EXP

(n = 50) combined. Values are reported as mean (SD).

Measure Visit 2 Visit 3 Visit 2–Visit 3 differences

Mean SD Range Mean SD Range Mean diff 95% CI Sd p-value

EIPmax 1.8 1.2 0–4 2.0 1.2 0–4 0.2 −0.02, 0.4 0.6 0.07

TTE (s) 998 86 798–1210 1000 92 784–1229 2 −2.5, 5.4 14.0 0.48

Soreness (mm) 11 12 0–38 10 11 0–34 −1 −2.6, 0.9 6.0 0.35

CK (IU/L) 109.8 40.4 42.6–283.0 108.7 42.7 41.3–210.0 −1.0 −7.9, 10.0 31.6 0.82

MVC dom (N.m) 158.9 49.5 72.6–254.7 155.1 47.3 62.8–253.0 −3.7 −9.3, 1.9 18.2 0.19

MVC non-dom (N.m) 148.7 46.3 64.5–226.6 147.4 46.0 58.4–226.9 −1.3 −6.8, 4.1 17.8 0.62

VA dom (%) 83 10 67–97 86 8 68–96 3 −0.3, 5.4 9.2 0.07

VA non-dom (%) 83 11 66–97 84 9 63–96 1 −1.8, 4.3 10.0 0.42

V̇O2max (L.min−1 ) 3.09 0.71 1.76–4.21 3.13 0.72 1.78–4.20 0.04 -0.04, 0.1 0.24 0.30

V̇CO2max (L.min−1) 3.60 0.87 2.02–4.85 3.64 0.82 1.53–5.33 0.04 -0.06, 0.15 0.3 0.43

VEmax (L.min−1) 112 27 61–165 113 25 64–157 0 −2.5, 3.1 9.0 0.85

VT (km.h−1) 11.1 1.5 7.3–14.3 11.2 1.6 7.0–14.5 0.1 −0.1, 0.4 0.86 0.32

HRmax (b.min−1 ) 196 9 176–218 195 9 171–216 −1 −1.5, 0.3 3.0 0.21

BLamax (mmol/L) 11.4 2.8 5.5–16.0 11.3 2.9 5.5–16.0 −0.1 −0.3, 0.2 0.9 0.67

RERmax 1.17 0.07 1.01–1.34 1.17 0.06 1.01–1.31 0.01 −0.02, 0.02 0.1 0.94

RPEmax 19 2 17–20 19 2 17–20 0 −0.2, 0.2 0.5 0.89

Any discrepancies between the mean diff and means is due to rounding error; EIMD, exercise induced muscle damage; MIE, maximal incremental exercise; CON, control; EXP,

experimental; SD, between subject standard deviation; mean diff, mean difference; 95% CI, lower and upper bounds of the 95% confidence interval for the mean difference; Sd ,

within-subject standard deviation; CK, creatine kinase; MVC, maximum voluntary contraction; dom, dominant; non-dom, non-dominant; VA, voluntary activation; V̇O2max , maximum

oxygen consumption; TTE, time to exhaustion (total test duration inclusive of 5 min warm-up); V̇CO2max , maximum velocity of carbon dioxide; VEmax , maximum ventilation; VT, ventilatory

threshold; HRmax , maximum heart rate; RERmax , maximum respiratory exchange ratio; BLamax , maximum blood lactate concentration; RPE, maximum rating of perceived exertion (i.e.,

at exhaustion), EIP, exercise induced pain.
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TABLE 2 | Reproducibility statistics for the indirect markers of EIMD and

the MIE outcomes (n = 50).

Measure CV (%) ICC

EIPmax 23.3 0.82

TTE (s) 1.9 0.98

Soreness (mm) 8.0 0.89

CK (IU/L) 20.0 0.90

MVC dom (N.m) 8.2 0.93

MVC non-dom (N.m) 8.5 0.93

VA dom (%) 7.7 0.79

VA non-dom (%) 8.5 0.82

V̇O2max (L.min−1 ) 5.5 0.94

V̇CO2max (L.min−1) 6.2 0.93

VEmax (L.min−1) 5.4 0.95

VT (km.h−1) 3.8 0.85

HRmax (b.min−1 ) 1.1 0.94

BLamax (mmol/L) 5.6 0.95

RERmax 3.6 0.78

RPEmax 4.9 0.88

EIMD, exercise induced muscle damage; MIE, maximal incremental exercise; CV,

coefficient of variation for repeated measures; ICC, intraclass correlation coefficient (two-

way random model for a single rater); range ICC’s = 0.78–0.98. See footnotes of Table 1

for definitions of the other abbreviations not listed.

pre 2 to 48 h post (Table 3). There was a significant group x trial
interaction effect for VA in the dominant leg (F = 3.9, p = 0.02),
and non-dominant leg (F = 4.8, p = 0.03). Post-hoc comparisons
revealed a mean decrease of 8% in the dominant leg (p < 0.001),
and 6% in the non-dominant leg (p < 0.001) from pre 2 to
48 h post (Table 3). There were no significant differences between
any trials (p = 0.51) for any of the markers of EIMD in CON
(Table 3).

Pearson’s r
There was a significant relationship between EIP, MVC, and VA
with TTE during visit 6 (48 h post) (p = 0.05) please see Table 4.

Chi Square
There was a significant association between group (EXP, CON)
and the contribution of “pain” to termination of the MIE during
visit 6 (48 h post) (χ2 = 14.7, p = 0.002). In the CON group
60% of the participants said pain was “not a contributory factor”
to them terminating the test, 30% reported pain as “a minor
contributory factor,” 10% “a major contributory factor,” and 0%
“the only contributory factor” to them terminating the MIE test.
In the EXP group 13% reported that pain was “not a contributory
factor,” 13% reported pain as “a minor contributory factor,” 72%
“a major contributory factor,” and 3% reported pain as “the only
contributory factor” to them terminating the MIE test.

DISCUSSION

The main aims of the present study were to (i) examine the
effects of EIMD and muscle soreness on EIP and perception
of effort during subsequent treadmill based MIE, (ii) explore

the relationship between EIP, muscle soreness, EIMD and test
duration in the MIE test, (iii) examine the effect of EIMD and
muscle soreness on the physiological variables derived from
treadmill MIE. The main findings in the present study were
that a 30min downhill run increased maximum EIP during
MIE, and decreased TTE despite no change in V̇O2max and
RPE. Additionally, there was a significant association between
EIP, MVC, and VA, with TTE during visit 6 (48 h post) (p ≤

0.05) please see Table 4. Furthermore, there was a significant
reduction in physiological variables obtained from the MIE
test following the downhill run (e.g., decreased HRmax). The
significant (100%) increase in maximum EIP 48 h post, despite
no change in V̇O2max and RPE with concomitant decreases in
TTE, BLamax and HRmax following the downhill run suggests a
“mismatch” between perceived effort and actual metabolic cost,
resulting in the individual terminating the MIE test prematurely
(Table 3).

TTE decreased on average by 34 s, 48 h post in EXP only,
congruent with reports of a decrease in TTE during exercise
to exhaustion (Davies et al., 2008, 2009, 2011; Doncaster and
Twist, 2012; Chrismas et al., 2017), and distance covered during
time-trials (Marcora and Bosio, 2007; Burt and Twist, 2011),
following muscle damaging exercise. The test durations observed
in the present study (Tables 1, 3) are considered valid for
the determination of V̇O2max testing (Midgley et al., 2008).
The mechanisms underpinning the decrement in BLamax are
currently ambiguous within the literature; with reports of a
decrease (Le Gallais et al., 1999), increase (Gleeson et al., 1998)
and no change (Davies et al., 2011) during cycle ergometry
based MIE under the presence of EIMD. The decrease in
BLamax observed in the present study may be due to preferential
damage of type II (glycolitic) fibers during the downhill run,
and therefore, a greater reliance on type I fibers 48 h post.
However, it may also be due to a reduction in TTE as shown
previously in treadmill based MIE. Similarly, the effects of
muscle damaging exercise on HRmax during cycle ergometry (Le
Gallais et al., 1999; Davies et al., 2011) and treadmill (Chrismas
et al., 2017) based MIE are equally as inconsistent. Heart rate
typically plateaus toward the end of MIE and HRmax may be
achieved well before an individual terminates the test, which
may help explain this finding. A higher V̇O2max is typically
observed in running compared to cycling due to the larger
amount of muscle mass used, although this can be dependent on
the characteristics of the population tested (Millet et al., 2009).
However higher BLamax may be expected following a cycling
based MIE test due to the differences in energy metabolism
between these two modalities (Millet et al., 2009). Furthermore
HRmax has been reported to be approximately 5% higher in
treadmill MIE tests compared to cycling MIE tests (Millet et al.,
2009). Moreover, these differences between cycling and running,
are also dependent on various confounding factors such as
population demographics, laboratory environment, and protocol
used, which makes the comparison between studies problematic.
Nevertheless, as BLamax and HRmax are commonly used as
secondary criteria to establish if an individual has provided a
maximal effort, if exercise tolerance following EIMD effects the
“normal” BLamax and HRmax response, verification of whether
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TABLE 3 | Values obtained during visit 3 (pre 2) and visit 6 (48 h post) for the indirect markers of EIMD tests and the MIE tests completed for CON and

EXP (n = 50).

Measure CON (n = 10) EXP (n = 40)

Visit 3 Visit 6 Mean diff 95% CI Visit 3 Visit 6 Mean diff 95% CI

EIPmax [median,(min – max)] 2 (0–3) 1 (0–3) 0 −1.3, 0.8 2 (0–4) 4 (0–7)a+b 2 1.4, 2.5

TTE (s) 997 (90) 1003 (83) 6 −18.4, 31.4 997 (94) 964 (98)a+b −34 −45.2, −19.7

Soreness (mm) 8 (5) 11 (14) 3 −18, 10 11 (12) 62 (21)a+b 51 44, 58

CK (IU/L) 112 (44) 116 (109) 4 −132, 142 116 (80) 227 (131)a+b 111 42, 179

MVC dom (N.m) 158 (68) 157 (60) −1 −9, 11 156 (42) 142 (49)a+b −14 −19, −9

MVC non−dom (N.m) 153 (62) 145 (59) −8 −19, 3 145 (42) 131 (44)a+b −14 −19, −8

VA dom (%) 85 (9) 86 (8) 1 −8, 5 86 (8) 81 (13)a+b −5 −8, −2

VA non-dom (%) 88 (7) 86 (8) −2 −6, 8 83 (9) 78 (11)a+b −5 −9, −2

V̇O2max (L.min−1 ) 3.20 (0.84) 3.07 (0.77) −0.13 −0.41, 0.16 3.08 (0.74) 3.00 (0.77) −0.09 −0.21, 0.04

V̇CO2max (L.min−1) 3.73 (0.98) 3.82 (0.98) 0.09 −0.31, 0.48 3.53 (0.57) 3.43 (0.54) −0.09 −0.89, 0.10

V̇Emax (L.min−1 ) 120 (34) 118 (35) −2 −13.5, 8.4 107 (24) 108 (25) 1 −6.0, 4.7

VT (km.h.−1) 11.1 (1.0) 10.9 (0.8) −0.2 −2.2, 1.7 11.2 (1.7) 11.0 (1.5) −0.2 −1.1, 0.7

HRmax (b.min−1 ) 194 (7) 194 (7) 0 −4.2, 4.7 195 (9) 190 (11)a+b −5 −6.8, −2.4

BLamax (mmol/L) 12.3 (3.2) 12.2 (3.5) −0.1 −1.5, 1.3 10.5 (2.9) 9.6 (2.7)a+b −0.9 −1.6, −0.2

RERmax 1.17 (0.06) 1.21(0.07) 0.04 −0.01, 0.08 1.16 (0.07) 1.16 (0.08) 0 −0.03, 0.02

RPEmax [median,(min – max)] 19 (17–20) 19 (17–19) 0 −0.3, 0.2 19 (17–20) 19 (17–20) 0 −0.1, 0.3

Values are reported as mean (SD) unless otherwise specified.
a+b significant interaction effect (group x trial). MIE, maximal incremental exercise; EIMD, exercise induced muscle damage; CON, control; EXP, experimental. See footnote of Table 1

for definitions of the abbreviations and lettering not listed.

TABLE 4 | Relationship between TTE, EIP, MVC, VA, and soreness during

visit 6 (48 h post) analyzed using Pearson’s r (n = 50).

Soreness VA MVC EIPmax

TTE r = −0.16,

p = 0.26

r = 0.32,

p = 0.04*

r = 0.36,

p = 0.02*

r = 0.29,

p = 0.05*

See footnote of Table 1 for definitions of the abbreviations; *statistically significant

relationship.

they provided a maximal effort could indeed be compromised,
which would affect the accuracy of the results.

A higher percentage of participants in the EXP group reported
pain as a major contributory factor 48 h post compared to CON.
The increase in maximum EIP and decrease in physiological
measures (i.e., BLamax and HRmax) during visit 6 (48 h post)
arose without any change in RPE. Therefore, supporting the
premise of a “mismatch” between perception of effort and actual
metabolic cost following the downhill run. Once an individual
has reached their tolerance for exercise (Ekkekakis et al., 2005)
they will disengage from the task (Gibson et al., 2003). Previous
research has suggested that EIP tolerance can predict cycling time
trial performance (Astokorki and Mauger, 2016). Participants
who had a higher EIP tolerance were able to produce faster time
trials, and those with lower levels of EIP tolerance had slower
time trial performance, therefore, demonstrating the importance
of EIP tolerance. Subsequently, following a bout of muscle
damaging exercise it appears individuals reach their tolerance
for exercise quicker than they would do without any signs
and symptoms of EIMD, and therefore, terminate the test (34 s
decrease in TTE 48 h post in EXP - Table 3) prior to reaching

their physiological maximum (determined in pre 1– Table 1).
In support of these findings there was a significant relationship
between TTE, and maximum EIP during visit 6 (48 h post) (p =

0.05) suggesting that maximum EIP can account for 8% (R2

value for maximum EIP) of the variance in TTE respectively
(Table 4). The reasons for this premature termination of the
test are likely due to the combination of noxious substance
release (i.e., muscle soreness), and increased disruption to muscle
fibers (i.e., impaired neuromuscular function). For the former,
noxious substances released following the downhill run could
subsequently stimulate group III/IV metabo-sensitive fibers, and
provide afferent feedback to the motor cortex (Cheung et al.,
2003), which in turn, may decrease central drive, and therefore,
may be associated with decreased exercise duration (Amann
et al., 2010). Additionally, afferent feedback from these receptors
may also increase the conscious awareness of “discomfort,”
in turn reducing the voluntary effort, ultimately resulting in
an individual stopping the exercise (Hough, 1902). However,
afferent feedback was not estimated in the present study, and
therefore, caution must be taken when extrapolating the findings
in this study in terms of afferent involvement of metabo-sensitive
fibers. Additionally, as shown in Table 2, the CV for EIP is
relatively high (23%), suggesting low reproducibility (Atkinson

and Nevill, 1998). However, the average difference in maximum
EIP between EXP and CON during visit 6 (48 h post) was 75%,
demonstrating that the average minimum worthwhile difference

(i.e., 75%) is significantly greater than the CV (23%).
The significant decrease in both MVC and VA in EXP visit 6

(48 h post) supports the notion that damage to the muscle fibers
may have impaired neuromuscular function (i.e., peripheral
fatigue), and decreased central drive (i.e., central fatigue).
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Damage to the structural proteins within the muscle fibers (i.e.,
decreased MVC) has been shown to lead to the perception of
pain (Miller et al., 2004). Further indirect evidence for muscle
fiber damage is supported by the significant increase in CK in the
present study. CK does not typically leak out of undamaged cells
(Lee and Clarkson, 2003), and therefore, an increase is primarily
interpreted as an increased permeability or breakdown of the
muscle cell membrane (Fridén and Lieber, 2001). Subsequently,
increased CK efflux provides indirect evidence of ultrastructural
damage from the downhill run (Allen et al., 1995). However,
as shown in Table 2, the CV for CK is relatively high (20%),
suggesting low reproducibility (Atkinson and Nevill, 1998).
Subsequently, this measurement should not be used in isolation
to determine the magnitude of EIMD. Nevertheless, as long as
the CV of the measurement tool is smaller than the minimum
worthwhile difference, the measurement tool can be deemed
appropriate. The decrease in VA suggests that either there was
a reduction in the number of motor neurons recruited, and/or
they were firing at a sub-optimal rate (Behrens et al., 2012).
The reduction in TTE was also significantly correlated with
the decrease in both MVC and VA during visit 6 (48 h post)
(p ≤ 0.05) supporting the premise that impaired neuromuscular
function can account for 13% (R2 value for MVC), and 10%
(R2 value for VA) of the variance in TTE respectively (Table 4).
Ultrastructural damage to the muscle fibers as a consequence of
the downhill run, may have increased muscle fiber recruitment
in EXP during visit 6 (48 h post), in order to maintain the
required exercise intensity (Eston et al., 2003). However, the likely
preferential damage to type II fibers, may have resulted in the
capacity to utilize only type I fibers, which due to their distinct
physiological characteristics could account for the significant
reduction in both MVC and BLamax.

CONCLUSIONS

The findings in the present study demonstrate that a bout of
downhill running induces the signs and symptoms of EIMD (i.e.,
muscle soreness), significantly increasing maximum EIP during
a subsequent MIE test. Both EIP and impaired neuromuscular
function as a result of this EIMD are associated with premature
task disengagement during MIE (i.e., reduced TTE) despite

no change in RPE. The exact mechanisms responsible for this
mismatch between actual metabolic cost and perceived effort
remain to be elucidated. It is presently not clear whether it is
the release of noxious stimuli (i.e., EIP) and/or ultrastructural
damage to muscle fibers that affect perception of effort. Future
research should focus on revealing these mechanisms in order to
understand the pain-perception nexus more clearly, and provide
athletes and practitioners with appropriate pre-test procedures
and recovery strategies to ensure MIE performance is not
impaired. Based on the outcomes of the present study, it is
suggested that> 48 h is required to ensure that muscle-damaging
exercise does not reduce MIE test performance. However, further
research should investigate the exact time frame necessary for
complete recovery from muscle damaging exercise.

Perception of effort and EIP are clearly key components of
not only test termination during MIE, but also fixed and self-
paced exercise performance, and therefore, are an important area
of concern for researchers, athletes and coaches. However, it
is essential to consider that pain is a subjective emotion, and
there may be large individual differences, particularly between
athletes and non-athletes (i.e., those with prior experience),
and the willingness to endure pain (Mauger, 2014). As the
participants in the present study were only recreationally active
they may have less willingness to continue to exercise whilst
enduring pain, and therefore, may have terminated the test
prematurely. Whether this relationship still exists in athletes
during MIE following EIMD, is currently unknown (Mauger,
2014).
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