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Abstract

We employ a stochastic dominance (SD) approach to derive a relative environmental degra-
dation index across countries. The variables that are considered include countries�greenhouse
gas (GHG) emissions, water pollution and the net forest depletion, as from the dataset of the
World Bank. A worst-case scenario index to measure environmental degradation across di¤er-
ent countries and at di¤erent times is constructed applying a methodology that is based on
multi-variate comparisons of country panel data over various years and consistent tests for SD
e¢ ciency. The test statistics and the estimators are computed using mixed integer program-
ming methods. It is found that in the worst-case scenario index GHG emissions contribute the
most (with a weight around 68%), net forest depletion contributes with around 30%, and water
pollution contributes the least (with a weight around 2%). Our index can be a useful tool for
policy making in conveying information on the environmental quality and a quick assessment of
sustainable performance across countries and over time.
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1 Introduction

Traditionally, wealth stock estimates have focused on produced capital, intangible capital (human
capital, social capital), health and the quality of institutions. Recently, the concept of genuine saving
has been introduced (Hamilton 1994; Hamilton and Clemens 1999; Arrow et al. 2003; Arrow et al.
2004; Agliardi 2011; Arrow et al. 2012), which provides a broader indicator of sustainability, by
evaluating changes in natural resources and environmental quality, in addition to the traditional
measure of changes in produced assets, included in net saving, and human capital. In a recent work
the World Bank (2010) has updated their previous empirical analysis (World Bank 1997 and 2006) in
per capita terms in 120 countries for the year up to 2005, building on Hamilton and Clemens (1999),
to estimate comprehensive investment, adding to net national saving the net additions to fossil fuels
and minerals, forest cover, carbon in the atmosphere and public expenditures in education. It has
been argued that growth in some countries is not sustainable because of depletion in stocks of natural
resources and deterioration in the quality of environmental services (e.g., Millennium Ecosystems
Assessment 2005).
Our paper complements the literature on genuine saving, since we aim at constructing a compre-

hensive measure of the main sub-components of wealth, or well-being. Stiglitz et al. (2009) pointed
out eight dimensions to go beyond GDP for multidimensional well-being, and the dimensions in-
clude standards of living, health, education, present and future environmental conditions, among
other dimensions. In this paper, however, we focus on one sub-component only, that is, the relative
environmental degradation of a country. In particular, the worst-case scenario weighting scheme is
proposed to construct an environmental degradation index, using an approach that relies on consis-
tent tests for stochastic dominance e¢ ciency (SDE hereafter).1 Then, this index could be considered
as a sub-index and added to other existing indices, for example, such as Human Development Index
(HDI) and a natural resource index, to �nd, with the same methodology, the worst-case and the
best-case scenario composite indices, representing the extreme ends for the wealth of a country. Our
framework yields an empirically implementable measure that can be applied also to cross-country
comparisons.
There are already several indicators and assessment methodologies for evaluating in practice

the performance of industries, cities and countries, at global, national and regional level, related
to economic and environmentally sustainability. The United Nations Commission on Sustainable
Development (UNCSD) has derived a list of about �fty indicators, where some of them are based
on monetary aggregation methods and others on physical quantities (UNCSD 2001). Singh et al.
(2012) provides a recent overview of a great number of indicators that are already common practice
for policy-making.
Some of them are elaborated from national accounts. The demand for �green�national accounts

has recently arisen because of a growing recognition that the system of national accounts (SNA)
must include the use of the natural environment. Among the macroeconomic indicators, the en-
vironmentally adjusted net domestic product (eaNDP) is obtained by combining the conventional
NDP with monetary values of environmental degradation. Greened economy net domestic prod-
uct (geNDP) estimates national income in a hypothetical future in which the economy must meet
certain environmental standards and the impact is estimated by internalizing the costs of reduc-
ing environmental degradation. Sustainable national income (SNI) estimates the maximum level of
national income that would be obtained if the economy met all environmental standards using the
current technology. Additionally, from the system of environmental and economic accounts, single

1Throughout the paper the expression �stochastic dominance e¢ ciency� refers to the data-driven sta-
tistical e¢ ciency, rather than technical or environmental �e¢ ciency�, where the e¢ ciency is measured as
minimum feasible use of an environmentally detrimental input to produce a given output.
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indicators are obtained for di¤erent themes (e.g., acidi�cation of the atmosphere, eutrophication of
waters, and so on) by aggregating the emissions, using some common measurement unit and then
comparing them with a national target level.
Finally, some composite indices have been obtained, by simple aggregation of the important

issues. For example, the environmental sustainability index (ESI) is a measure of overall progress
towards environmental sustainability (Esty et al. 2005), comprising a set of 21 sub-indicators, each
of which combines two to six variables. The index of environmental friendliness (IEF) is based
on aggregation of direct and indirect data related to global and local environmental problems, of
greenhouse e¤ect, acidi�cation, eutrophication, biodiversity, and so on (see Puolamaa et al. 1996).
Furthermore, the FEEM sustainability index (FEEM SI) aggregates 19 indicators that are allo-
cated under three main pillars: environmental, social and economic to obtain relative and overall
sustainability levels for countries and macro-regions (see Carraro et al. 2012; Pinar et al. 2014).
Although the above mentioned indicators and descriptive statistics have been provided in envi-

ronmental accounts, there is no consensus over which indicators to use. Moreover, each indicator
serves a somewhat di¤erent policy purpose. A further shortcoming is that the separate analysis of
single indicators, or the composite measures listed above, ignore the dependence among the various
components. Indeed, most indices are not able to take into account the interlinkages and dynamic
interrelations of the various components. The majority of the indices used in the literature are either
aggregated through equal weights assignments (e.g., ESI) or weights selected by experts (e.g., IEF
and FEEM SI), or based on surveys of preferences of individuals, or from public opinion polls. Put
in another way, they are often based on arbitrary weighting of the relevant variables.
If the indices are poorly constructed, or the weighting of the relevant variables is arbitrary, then

the indices may potentially provide misleading results. Thus, evaluating the appropriate weight-
ing and understanding the degradation of environmental indicators over time and the relative risk
that these indicators point out, is increasingly recognized as urgent. In this paper, therefore, we
analyze the progress of environmental indicators over 20 years and construct a relative worst-case
environmental degradation index for di¤erent countries over the last two decades. We normalize
the environmental indicators with the maximum level of environmental degradation level in each
respective dimension, therefore the environmental risk in this paper measures the relative risk across
countries. Such an index would be a useful tool for policy makers, allowing for a quick assessment
of sustainability performance across di¤erent countries and at di¤erent times. It provides the worst-
case scenario, where environmental degradation is at its maximum, and highlights directions for
policy makers to evaluate future assessments.
Agliardi et al. (2014) analyze the evolution over time for all types of GHG emissions and

water pollution, and their over-time �ndings are complemented by pair-wise industry comparisons
to determine the major contributors to GHG emissions and water pollution from 1990 to 2005. They
�nd that CO2 emissions not only contributes the most to the GHG emissions over time, but also
increased within 15 years in a �rst-order SD sense. On the other hand, water pollution increased in
a second-order SD sense.
Here we construct an aggregate index for assessing the environmental degradation of a country

based on SDE analysis. Constructing an index based on SD analysis has advantages since the index
will be e¢ cient, in that it results from the least variable combination of components that o¤ers
the maximum level of relative environmental risk over time for each country or group of countries.
Relatively large data sets are available, so that the weighting scheme is data driven. Moreover,
the main attractiveness of the SDE application is that it is nonparametric; therefore, we do not
impose explicit speci�cations for the preferences of individuals or stakeholders towards environmental
degradation and there are no restrictions on the functional forms of probability distributions. In
an application to optimal portfolio construction in �nance, Scaillet and Topaloglou (2010) use SDE
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tests to compare a given portfolio with an optimal diversi�ed portfolio constructed from a set of
assets. Pinar et al. (2013) use a similar approach to construct the best-case scenario of the HDI.
Agliardi et al. (2012) use SDE analysis to construct an optimal country risk index with di¤erential
component weights for economic, political, and �nancial risk indices.
It is worth pointing out that the linear aggregation techniques presuppose some levels of interac-

tions among indicators (see, e.g., Decancq and Lugo 2013). A further parameterization of the linear
aggregation could allow for di¤erent levels of substitutability or complementarity among indicators
(see, e.g., Alkire and Foster 2011). Clearly, it is natural to expect that some pairs of indicators are
complements, and others substitutes with di¤erent strengths. However, in the empirical literature,
there is no clear evidence about the level of substitutability and complementarity across well-being
or ill-being indicators. This would require a separate research agenda to analyze the set of indicators
to determine the level of substitutability and complementarity. This future analysis would guide
practitioners to take into account these interactions across indicators while conducting multivariate
SD comparisons (see, e.g., Muller and Trannoy 2011). Given there is no clear guidance on the in-
teraction of indicators, we take a neutral attitude towards the aggregation issue and we question
the use of an arbitrary weight allocation in linear aggregation as we consider all possible weighting
schemes to derive the worst case scenario for environmental degradation.
We construct a relative worst-case environmental degradation index from greenhouse gas (GHG)

emissions, water pollution and net forest depletion, by employing consistent SDE tests. This index
o¤ers the maximum level of environmental degradation in a country for a given probability level
relative to the maximum attainable levels of each dimensions, being also the least volatile over time,
among its set of competitors. In this index the environmental dimension that receives a higher
weight suggests that for the majority of countries the degradation level that they reach is closer
to the maximum attainable level in that dimension, when compared to the other dimensions, and,
therefore, if one were to take a global action in any dimension, a priority should be given to the
dimension whose weight is the highest.
Then, countries are ranked according to their environmental degradation index and a comparison

with alternative rankings (e.g. the ranking of the Kyoto Protocol, Annex I or ESI rankings) can be
performed. When GHG emissions, water pollution and net forest depletion are considered for the
overall environmental degradation index, we �nd that GHG emissions contribute the most with a
weight around 68%, while the contributions of net forest depletion and water pollution are about
30% and 2%, respectively. This �nding suggests that there exist relatively more countries whose
emissions are closer to the highest attainable GHG emissions dimension, when compared with other
dimensions. Therefore, if one were to take a global action, more attention should be addressed to
GHG emissions, as there are more countries contributing close to the highest attainable emission
levels compared to the other dimensions. Furthermore, given the set of weights to each environmental
degradation dimension, we �nd that the riskiest country in 2000 was the United States and in 2005
the riskiest country was China. Moreover, over time comparisons release information that there has
been a deterioration in risk levels for 48 countries among 57 countries between 2000 and 2005 mainly
due to major increases in the emissions and net forest depletion levels.
The plan of the paper is as follows. Section 2 presents the SDE methodology to construct the

overall environmental index. Section 3 discusses the data and the empirical results and �nally Section
4 concludes. In the Appendix we provide details about our data sources.
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2 The SD E¢ ciency methodology

In this section we present the test statistic for the SDE of the environmental degradation index
constructed from GHG emissions, water pollution and net forest depletion. Let us consider a strictly
stationary process fY t; t 2 Zg with values in Rn. The observations consist in a realization of
fY t; t = 1; :::; Tg. n represents the di¤erent constituent components, that is, total GHG emissions,
water pollution and net forest depletion, where T is the total number of observations consisting
of panel data set of countries, sum of countries over a given period of time. We denote by F (y),
the continuous cdf of Y = (Y1; :::; Yn)

0 at point y = (y1; :::; yn)0. A possible set of combinations of
these components assigns them equal weights, as to represent equal importance of each of them (e.g.
like in HDI or ESI). We take the equally-weighted index (�) as a benchmark to test the argument
whether the equally-weighted index is SD e¢ cient, or a di¤erent set of weights would allocate
relatively more risk. Let us consider an alternative environmental degradation index � 2 L , where
L := f� 2 Rn+ : e0� = 1g with e for a vector made of ones. Let us denote by G(z;�;F ) the cdf of

the composite degradation index value �0Y at point z given by G(z;�;F ) :=
Z
Rn
If�0u � zgdF (u)

where I denotes the indicator function I(�0u � z) (Davidson and Duclos 2000).2
De�ne for z 2 R:

J1(z;�;F ) := G(z;�;F );

J2(z;�;F ) :=
Z z

�1
G(u;�;F )du =

Z z

�1
J1(u;�;F )du;

and so on.
Following Davidson and Duclos (2000) we obtain:

Jj(z;�;F ) =
Z
Rn

1

(j � 1)! (z � �
0u)j�1If�0u � zgdF (u):

The empirical counterpart is simply obtained by integrating with respect to the empirical distri-
bution F̂ of F , which yields:

Jj(z;�; F̂ ) =
1

T

TX
t=1

1

(j � 1)! (z � �
0Y t)

j�1If�0Y t � zg;

where I denotes the indicator function I(�0Y t � z) and bF (z) = 1
T

NX
i=1

I(Xi � z) is the empirical

distribution of F (Davidson and Duclos 2000) and can be rewritten more compactly for j � 2 as:

Jj(z;�; F̂ ) =
1

T

TX
t=1

1

(j � 1)! (z � �
0Y t)

j�1
+ :

The test statistics and the asymptotic distribution of F̂ are discussed in Scaillet and Topaloglou
(2010). In particular, we follow Scaillet and Topaloglou (2010) and consider the weighted Kolmogorov-
Smirnov type test statistic

Ŝj :=
p
T
1

T
sup
z;�

h
Jj(z; � ; F̂ )� Jj(z;�; F̂ )

i
;

2 � and � represent weighting vectors. However, throughout the paper, for simplicity, we use � and � for
the index that they represent.

4



and a test based on the decision rule:

� reject Hj
0 if Ŝj > cj ";

where cj is some (appropriate) critical value. In order to make the result operational, we need to
�nd an appropriate critical value cj. Since the distribution of the test statistic depends on the
underlying distribution, we rely on a block bootstrap method to simulate p-values (see Sect. 3 of
Scaillet and Topaloglou 2010 for block bootstrap methods). Since the test statistics for �rst- and
second-order SDE rely on all possible weighting schemes for all possible degradation levels, test
statistics for each case are obtained through a maximization problem implemented by mixed integer
and linear programming respectively (see Sect. 4 of Scaillet and Topaloglou 2010 for the details of
the derivation of the mathematical formulations of the �rst- and second-order of SDE).
The hypotheses for testing whether the equally-weighted environmental degradation index, � , is

relatively the worst-case scenario is as follows:

Hj
0 : Jj(z; � ; F̂ ) � Jj(z;�; F̂ )for all z 2 R and for all� 2 L;

Hj
1 :Jj(z; � ; F̂ ) > Jj(z;�; F̂ )for some z 2 R or for some� 2 L:

Under the null Hypothesis Hj
0 there is no composite degradation index � constructed from the

set of components, or environmental degradation (risk) factors, that dominates the index � at order
j: In this case, Jj(z; � ;F ) is always lower than Jj(z;�;F ) for all possible indices � for any z.
Under the alternative hypothesis Hj

1 , a composite degradation index � exists, such that for some z,
Jj(z; � ;F ) is larger than Jj(z;�;F ). Thus, when j = 1; the index � is stochastically ine¢ cient at
�rst-order if and only if some other index � dominates it at some z. Put in another way, the index
� is stochastically e¢ cient at �rst order if and only if there is no index � that dominates it at all
levels of environmental degradation (risk) levels. SD e¢ ciency tests can be speci�ed at �rst- and
second-order when j = 1 and j = 2, respectively.

3 Empirical Analysis

3.1 Data and Descriptive Statistics

The data set used in this paper consists of total GHG emissions, water pollution and net forest
depletion for several countries in various years, between 1990 and 2010.3 The main source for our
data is The World Bank, Policy and Economics Environment Department.4 All data are categorized
in and obtained from World Development Indicators. GHG emissions consist of CO2, methane,
nitrous oxide and other GHG emissions. For the overall environmental degradation index, emission
types are summed as all of them are measured in CO2 equivalent levels. Water pollution consists of
yearly emissions of organic water pollutants and is measured by biochemical oxygen demand, which is
the amount of oxygen that bacteria in water will consume in breaking down waste. Finally, net forest
depletion comes from genuine saving data set of the World Bank and is measured by the product
of unit resource rents and the excess of roundwood harvest over natural growth in current US$ (see
Kunte et al. 1998 for the calculation of net forest depletion). Notice that not all countries have

3CO2 emissions consist of annual data from 1960 to 2009, whereas methane, nitrous and other GHG
emissions consist of data in 1990, 1995, 2000 and 2005. We have annual data for water pollution from 1986
to 2007. Finally, net forest depletion data are available annually from 1970 to 2010.

4The authors are indebted to Glenn-Marie Lange and her sta¤ members at The World Bank for their
help in providing most data.
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available data for all variables (e.g., China, one of the main contributor to GHG emissions, has not
released data for water pollution in 2000, whereas India, the main contributor to net forest depletion,
has not released data for water pollution over the whole period), which implies that only countries
whose data are available for all variables will be ranked in the overall environmental degradation
index. A detailed availability of all the variables used and the normalization procedure for the
environmental degradation variables are presented in Tables A1 and A2 (Appendix A), respectively.

3.2 Stationarity of the environmental degradation indices

After converting each environmental degradation variable into an index, prior to the SD e¢ ciency
analysis, we test for the stationarity of the index series. In the current application, we employ
the environmental degradation indicators (i.e., total GHG emissions, water pollution and net forest
depletion) to analyze the overall risk for all countries rather than analyzing individual variables for
given countries alone. Therefore, for the purpose of the current application, we test for stationarity
of the environmental degradation indicators when all countries are considered together. We should
note that even though some variables for some countries may be non-stationary, when these variables
are put together at an aggregate (cointegrated) level, then the linear combination of these variables
is stationary.
We proceed to examine whether the degradation risk variables follow a stationarity process by

using standard Augmented Dickey-Fuller (ADF) unit root tests. To do so, we employ three di¤erent
ADF lag length selection criteria, the Schwartz information criterion (SBIC), the Akaike�s informa-
tion criterion (AIC), and the Hannan and Quinn information criterion (HQIC). The test statistics
for each test for each variable are reported in Table 1. Overall, we �nd that all environmental degra-
dation variables follow a stationary process and therefore we can proceed to apply the Scaillet and
Topaloglou (2010) methodology to test for SDE of the equally-weighted environmental degradation
risk index.
We should note that when all countries are put together to construct an environmental degra-

dation index, the data follow a stationary process. However, if one were to analyze environmental
degradation for a given country, a di¤erent SD methodology could be employed if the variables for
that country were to follow a unit root process. In other words, if one were to analyze country spe-
ci�c environmental degradation, rather than using the SDE approach, one could instead employ the
Linton et al. (2005) consistent SD testing approach, which allows for dependence over time. How-
ever, in the present study we examine the overall environmental degradation risk for all countries
under consideration rather than conducting an individual country analysis. Since the environmental
degradation variables follow a stationary process when all countries are taken together, we employ
the SDE methodology to test whether the use of the equally-weighted environmental degradation
index constitutes the worst case scenario or we can alternatively derive another weighting scheme
which will provide the worst case scenario for the group of countries under consideration. Below,
we present the worst-case composite index for environmental degradation and the country rankings
based on of that index.

3.3 SD e¢ cient environmental degradation index

In a recent paper, Agliardi et al. (2014) examined the evolution over time of GHG emissions and
water pollution. It is found that there was a general deterioration in CO2 emissions in the last
15 years and, at the same time, water pollution increased in this period for some but not for all
countries. Given the over-time deterioration in these dimensions, we conduct SDE analysis to create
an overall index of environmental degradation.
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The variables used for overall degradation index are the total GHG emissions (i.e. sum of CO2,
methane, nitrous oxide, other GHG emissions), total water pollution (i.e. total emissions of organic
water pollutants), total net forest depletion values. We consider net forest depletion as to account
for the depravation activity, water �ltration, erosion control etc. that forests provide. According
to the World Bank de�nition, greenhouse (CO2) emissions measured in kilotons (kt) are stemming
from the burning of fossil fuels and the manufacture of cement. They include contributions to the
carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas �aring. CO2 is a
stable gas which is not transformed chemically in the atmosphere. However, some CO2 is removed
from the atmosphere by a natural process that includes the e¤ect of vegetation, soils and oceans.
Moreover, human activities such as reforestation, deforestation or land management may increase
or decrease the amount of CO2 removed from the atmosphere.5 Therefore, the higher the values for
each component (i.e. GHG emissions, water pollution, and net forest depletion), the higher is the
environmental degradation. Since each indicator is measured in di¤erent units, prior to the SDE
tests, we normalize each indicator by dividing each country�s value in each index by the highest total
value in that index.
We conduct the test for the �rst-order SDE of overall environmental degradation index.6 Table 2

is obtained combining the three sub-indices to �nd a weighting scheme for each sub-index which will
o¤er the maximum level of environmental degradation (risk) over time for each country or group of
countries, when compared with all other possible weighting schemes of each index. Table 3 provides
the rankings of the various countries in terms of the worst-case environmental degradation index
for years 2000 and 2005.7 Our �ndings suggest that the GHG emissions contribute the most with
67.5%, whereas net forest depletion contributes with 30.3%, and water pollution contributes with
2.2% to the worst-case environmental degradation index. We can observe that the ranking remains
more or less stable over the years.
As the components are normalized with the maximum level of environmental degradation level

in each respective dimension, the environmental risk in this paper measures the relative risk across
countries. Therefore, the environmental dimension that receives a higher weight suggests that for
the majority of countries the degradation level that they reach is closer to the maximum attainable
level in that dimension, when compared to the other dimensions. In our application, GHG emissions
are the riskiest, when compared to the other dimensions. Thus, almost all countries have been
releasing GHG emissions that are relatively closer to the maximum attainable level in the GHG
emissions dimension. The water pollution component has a relatively small weight in the overall
index because, in comparative terms, it is a slower-moving variable when all countries are considered
altogether over the whole period. Actually, it has been shown that during a similar period while
CO2 emissions increased in a �rst-order SD sense, water pollution increased only in a second-order
SD sense (Agliardi et al. 2014). It implies that for some countries water pollution improved over
time and deteriorated for others (even though it increased globally). When we consider an overall
degradation index, big improvements/deteriorations in individual countries smooth down and water
pollution becomes a relatively stable variable over time (i.e., a slow-moving variable). Further

5For example, the global natural CO2 removal rate for the set of countries that we examine
has been estimated to be around 60 percent for the period 1990 to 2000, see IPCC, 2000. See
http://unfccc.int/ghg_emissions_data/predi�ned_qeuries/items/3814.php

6We �rst test for stochastic dominance e¢ ciency at the �rst-order: if there is dominance at �rst-order,
then there will be dominance at any other greater order. If not, then we continue for stochastic dominance
e¢ ciency for higher orders.

7We have overlapping data for 1990, 1995, 2000 and 2005 for all environmental quality indicators. We
only reported 2000 and 2005 rankings for two reasons. We have only 8 overlapping countries in 1990,
therefore we have not reported the ranking in that year. On the other hand, even though 1995 consists of
41 overlapping countries, we do not have data for water pollution data for major countries, United States,
Russian Federation and China.
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analysis shows that nowadays, for any water pollution level, food industry pollutes water more than
chemical, textile and other industries (such as clay and glass, metal, paper, and wood industries),
which were heavy pollutants, traditionally. �Free riding� or other externalities in water pollution
may be the cause of such changes over time, but also environmental regulations and new abatement
technologies have become more e¤ective to combat water pollution in some countries.8

On average, the countries with higher values in the worst-case environmental degradation index
are China, the United States, Ethiopia, South Africa, Russian Federation and Japan, but also
other countries, such as Thailand, Germany, Vietnam, United Kingdom, Canada and France, are
ranked as worst o¤enders, or polluters. Furthermore, we observe that among the 57 countries for
which we have full information for 2000 and 2005, we had 48 countries for which environmental
quality deteriorated, while it improved for the remaining 9 countries. Therefore, there was an
overall deterioration in the environmental quality. Table 4 summarizes the changes between 2000
and 2005 for the countries for which we have full information. For some countries we only have
partial information and hence they are not used in this comparison. For example, China (i.e., main
contributor to emissions) is missing in the ranking in 2000. Countries which experienced a major
deterioration between 2000 and 2005 are South Africa, Ethiopia, Sweden, Poland, Slovak Republic,
Malaysia, Indonesia, Russian Federation and Iran, where all of them experienced increases in their
GHG emissions. However, most deterioration for South Africa, Ethiopia, Sweden, Poland, Slovak
Republic and Malaysia is due mainly to increases in their net forest depletion levels.9 On the other
hand, Vietnam and Estonia improved their position, due to improvement in net forest depletion as
net forest depletion of Vietnam and Estonia decreased from 220 and 55 million US$ to 112 and 2
million US$ respectively from 2000 and 2005.
Furthermore, observe that our ranking di¤ers from that of the commitments of countries in

the Kyoto Protocol. It is well known that the Kyoto Protocol establishes assigned amounts of
emissions for various countries (see Annex I and Annex B10), with the intention of reducing their
average emissions during 2008-2012 to about 5 percent below 1990 levels. Under the Kyoto Protocol,
only the Annex I countries have committed themselves to national or joint reduction targets that
range from a joint reduction of 8% for the European Union (originally only the 15 states that were
EU members in 1997, when the Kyoto Protocol was adopted), of 7% for the United States, 6% for
Japan, Canada, Hungary and Poland, 5% for Croatia, and 0% for New Zealand, Russia and Ukraine;
moreover, a +1% was allowed to Norway, +8% for Australia and +10% for Iceland. The rankings
we obtain in Table 3 remained substantially stable over the two periods. Notice that the following
countries have the highest values of the overall worst-case environmental quality: China, the United
States, Ethiopia, South Africa, Russian Federation, the United States, and Japan. This list does not
overlap with the groups of countries adopted by the Kyoto Protocol - in particular, China, Ethiopia,
South Africa, and Russian Federation are the main polluters in our rankings.
We also conducted ranking comparisons of our worst-case environmental degradation index with

the ESI rankings (see Esty et al. 2005) in 2005. ESI integrates 76 data sets by tracking natural
resource endowments, past and present pollution levels, environmental management e¤orts, and the
capacity of a society to improve its environmental performance into 21 indicators of environmental
sustainability index combining them with equal weights for 146 countries. ESI gives scores between
0 and 100 and a higher index value represents a better environmental condition for a country. Since
our index represents the riskiest environmental quality (i.e., worst-case environmental degradation),

8Sigman (2002) �nds that there is less free riding in water quality within European Union, suggesting
that international institutions might work as mitigating factors.

9Net forest depletion for South Africa, Ethiopia, Sweden, Poland, Slovak Republic and Malaysia increased
from around 35, 713, 0, 0, 100, and 80 million US$ to 65, 886, 155, 120, 213,and 162 million US$ respectively.
10See http://unfccc.int/kyoto_protocol/items/2830.php

8



we converted the ESI measure by subtracting its score from 100 to represent ESI ranking from the
riskiest to the least risky country to compare the two rankings. Table 5 presents the rankings of the
overlapping 61 countries in both rankings. The rankings di¤er signi�cantly, especially when it comes
to the environmentally riskiest countries (i.e., countries that pollute the environment the most). Even
though ESI covers 21 indicators, yet they do not capture total contributions to the environmental
degradation but are normalized with per capita or percentage values. Moreover, ESI does not cover
net forest depletion and water pollution values. Table 6 presents Spearman correlations between ESI
rankings and our overall worst-case environmental degradation index and its sub-indices. We �nd
that only the GHG emissions is weakly correlated with the ESI rankings as the correlation between
ESI and GHG emission rankings is positive and signi�cant at the 10% signi�cance level. However,
there has been no signi�cant correlation between total water pollution and the ESI rankings, and
net forest depletion and ESI rankings. As there is no signi�cant correlation between our overall
environmental degradation index and ESI rankings, there exist some major relative rank reversals.
The riskiest �ve countries in our worst-case environmental degradation index (i.e., worst o¤enders)
are China, the United States, Ethiopia, South Africa, and Russian Federation, whereas ESI ranked
these countries as 4th, 37th, 2nd, 17th, and 44th, respectively. Even though China and Ethiopia
ranked in high positions in both rankings, the remaining countries experienced a lower ranking in
ESI.

4 Conclusions

Our main result in this paper is the derivation of a worst case scenario environmental degradation
index based on SD analysis with di¤erential component weights that will o¤er the maximum level
of environmental degradation (risk) for a country. When GHG emissions, water pollution and forest
cover are considered for the overall environmental degradation index, total GHG emissions contribute
the most with a weight of 68% and the contribution of net forest depletion and water pollution are
30% and 2%, respectively. The relative worst-case scenario obtained in this paper can provide an
important benchmark to assess the progress (or lack of it) that countries make in reducing their
environmental risk, by trying to implement policies that improve on the dimensions that are mostly
responsible for environmental degradation.
Cross-country di¤erences in the worst-case environmental performance, as described by the rank-

ings of our index, can be used to study the relations between environmental performance and (i)
the standard of living (e.g., measured by GDP, HDI); (ii) economic development stages (from an
environmental Kuznets curve standpoint), (iii) regulatory regimes (e.g., the presence of standards,
implementation and enforcement mechanisms and associated institutions); (iv) legal context (e.g.,
protection of property rights, the extent of the rule of law, institutional quality). We can test whether
alleviating poverty, introducing environmental regulations and strengthening countries�governance
structures could constitute e¤ective policy measures from the perspective of environmental progress.
Furthermore, our index could be employed as a covariate in regression analysis. This would be

another added advantage for using the proposed index in empirical work as opposed to other possible
indices based on arbitrary weights, since our SD based index will attain lower variability and, as
such, will be less prone to measurement errors, something that may plague other indices. Below we
provide a list of areas for the potential use of our index as a covariate (or as dependent variable) in
empirical analysis.
Firstly, our index can be employed as a covariate to study the connection between environmental

performance and living standards, through its impact on a country�s capacity to sustain economic
growth. There are two con�icting hypothesis. On the one hand, countries with high economic
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growth would be better able to combat environmental degradation because they have more �nancial
resources. On the other hand, these countries have higher levels of consumption, leading to increasing
environmental pollution. Even if both trends occur, it is possible to identify which one is dominating.
The ability to grow requires resources and puts strains on the environment, driving up costs. At
the same time, as some literature suggests (e.g., Esty and Porter 2005), economic competitiveness
and environmental performance may be compatible, if not mutually reinforcing. Thus, policies that
stimulate improvements in the environmental quality may actually foster competitiveness, leading
to an increased standard of living in the long run. Secondly, our index could be used as a proxy
for the worst-case environmental progress, and we could also test a weak version of the �Porter
hypothesis�(Porter 1991; Porter and van der Linde 1995) - which argues that environmental progress
can be achieved without sacri�cing competitiveness �or a strong version of it �which argues that
countries that achieved environmental progress will enhance their competitiveness. Thirdly, our index
can be used in future work to test the hypothesis whether or not political factors a¤ect di¤erent
environmental performance and its change over time. Di¤erent policy regimes (i.e., social democratic
government power, green parties, new politics mobilization) could have a signi�cant impact for a
successful environmental performance (see, e.g., Esping-Andersen 1990; Jahn 1998).
Finally, other than regression analysis, a possible future implication of our analysis is to monitor

the evolution of the weights of our index which may be informative for policy purposes. This is
a further by-product of our approach. Of course, more detailed environmental datasets (often not
currently available) would be required at the global, national and local level if a more systematic
approach to environmental improvement is to be implemented.
For possible future work one could also apply this methodology to obtain the worst-case (best-

case) composite index representing the most pessimistic (optimistic) measure of wealth for a country,
or group of countries, representing the extreme ends for the wealth of a country. One could �nd the
weighting scheme of each sub-index (i.e., of environmental quality, of natural resources, and HDI)
which corresponds to the overall worst-case (best-case) for all countries. As Hamilton and Clemens
(1999) state, �thinking about sustainable development and its measurement leads naturally to a
conception of the process of development as one of portfolio management�. This implies that one
has to consider not only assets and liabilities in the national balance sheet (i.e., natural resources,
produced assets, human capital and pollution stocks) but also their appropriate weights. Our ap-
proach provides this portfolio analysis and the weighting scheme consistent with the worst/best
(pessimistic/optimistic) scenarios.
Finally, we should note that it is natural to expect that some factors of well-being (or ill-being)

will be complements and others substitutes of each other. In order to take into account these
interrelationships, future research would be required to identify the interactions between di¤erent sets
of well-being (ill-being) indicators, either by adding extra set of variables into the linear aggregation
procedure, or by applying non-additive aggregation techniques. For example, in the multivariate
SD comparisons, these interrelationships could be taken into account by allowing second partial
cross-derivatives to be positive (negative) when there is a complementarity (substitutability) across
indicators.
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Table 1 Unit root tests 

 Index levels (SBIC) Index levels (AIC) Index levels (HQIC) 

Total GHG emissions -12.966* -12.966* -12.966* 

Water pollution -12.973* -12.973* -12.973* 

Net forest depletion -13.847* -13.847* -13.847* 

Notes: Critical values of ADF are 1% (–3.44) and 5% (–2.86), respectively, taken from MacKinnon 

(1991). ADF lag length decision based on Schwartz information criterion (SBIC), Akaike's 

information criterion (AIC), and the Hannan and Quinn information criterion (HQIC) (minimum lag 

= 0 and maximum lag = 4). *, **, and *** indicates significance at the 1%, 5% and 10% level of 

rejecting the unit root process. The null hypothesis is that the variable suggests a unit root process 

and the alternative is that the variable is generated by a stationary process. 

Table 2 Stochastic efficient weighting of sub-indices 

Number of 

observations 

Number of 

dominating 

weighting 

schemes 

Greenhouse 

emissions 

Water pollution Net forest 

depletion 

N n Average of dominating weighting schemes 

178 169 0.675 0.022 0.303 



 
Table 3 Environmental degradation index rankings in 2000 and 2005 

 

Country 

Environmental 

degradation index 

outcome in 2000 

N  

Country 

Environmental 

degradation index 

outcome in 2005 

United States 0.5806 1 China 0.6970 

Ethiopia 0.2509 2 United States 0.5899 

Russian Federation 0.1940 3 Ethiopia 0.3108 

South Africa 0.1610 4 South Africa 0.2662 

Japan 0.1206 5 Russian Federation 0.2058 

Thailand 0.1129 6 Japan 0.1221 

Germany 0.0894 7 Germany 0.0868 

Vietnam 0.0885 8 Poland 0.0775 

United Kingdom 0.0603 9 Malaysia 0.0774 

Canada 0.0601 10 Slovak Rep. 0.0771 

France 0.0514 11 Philippines 0.0687 

Indonesia 0.0479 12 Indonesia 0.0605 

Italy 0.0478 13 Sweden 0.0594 

Malaysia 0.0437 14 United Kingdom 0.0581 

Korea, Rep. 0.0437 15 Vietnam 0.0579 

Iran, Islamic Rep. 0.0424 16 Iran, Islamic Rep. 0.0530 

Ukraine 0.0390 17 Italy 0.0497 

Slovak Rep. 0.0385 18 France 0.0481 

Latvia 0.0364 19 Korea, Rep. 0.0461 

Poland 0.0360 20 Ukraine 0.0395 

Spain 0.0326 21 Latvia 0.0390 

Turkey 0.0274 22 Spain 0.0381 

Argentina 0.0252 23 Saudi Arabia 0.0371 

Croatia 0.0212 24 Croatia 0.0311 

Estonia 0.0203 25 Turkey 0.0305 

Netherlands 0.0188 26 Kazakhstan 0.0214 

Belgium 0.0175 27 Belgium 0.0208 

Kazakhstan 0.0158 28 Slovenia 0.0199 

Slovenia 0.0135 29 Czech Rep. 0.0197 

Czech Rep. 0.0132 30 Netherlands 0.0188 

Denmark 0.0127 31 Lithuania 0.0174 

Colombia 0.0120 32 Colombia 0.0123 

Romania 0.0115 33 Romania 0.0121 

Lithuania 0.0097 34 Denmark 0.0104 

Portugal 0.0074 35 Greece 0.0101 

Syrian Arab Rep. 0.0071 36 Chile 0.0081 

Austria 0.0069 37 Austria 0.0081 

Hungary 0.0067 38 Portugal 0.0076 

New Zealand 0.0064 39 Syrian Arab Rep. 0.0074 

Sweden 0.0063 40 Hungary 0.0068 

 
 
 
 



Table 3 continued 

 

Country 

Environmental 

degradation index 

outcome in 2000 

N  

Country 

Environmental 

degradation index 

outcome in 2005 

Finland 0.0063 41 New Zealand 0.0067 

Israel 0.0062 42 Azerbaijan 0.0065 

Azerbaijan 0.0060 43 Finland 0.0065 

Norway 0.0059 44 Norway 0.0062 

Ireland 0.0058 45 Ireland 0.0060 

Macedonia 0.0055 46 Bulgaria 0.0058 

Bulgaria 0.0055 47 Morocco 0.0054 

Singapore 0.0050 48 Tanzania 0.0052 

Morocco 0.0045 49 Macedonia 0.0051 

Bolivia 0.0036 50 Oman 0.0047 

Ecuador 0.0035 51 Ecuador 0.0046 

Trinidad & Tobago 0.0034 52 Jordan 0.0029 

Eritrea 0.0031 53 Yemen, Rep. 0.0027 

Oman 0.0030 54 Moldova 0.0026 

Jordan 0.0022 55 Estonia 0.0025 

Moldova 0.0020 56 Mongolia 0.0016 

Yemen, Rep. 0.0020 57 Luxembourg 0.0011 

Senegal 0.0013 58 Botswana 0.0011 

Botswana 0.0009 59 Panama 0.0009 

Luxembourg 0.0009 60 Kyrgyz Rep. 0.0009 

Kyrgyz Rep. 0.0009 61 Cyprus 0.0008 

Panama 0.0009 62 Tajikistan 0.0007 

Tajikistan 0.0007 63 Albania 0.0007 

Cyprus 0.0007 64 Eritrea 0.0005 

Albania 0.0006 65   

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



Table 4 Change in environmental quality outcome between 2000 and 2005 

Country Deterioration  Country Improvement 

South Africa 105.217 Vietnam 30.668 

Ethiopia 59.891 Estonia 17.784 

Sweden 53.134 France 3.237 

Poland 41.483 Eritrea 2.668 

Slovak Republic  38.548 Germany 2.605 

Malaysia 33.688 United Kingdom 2.296 

Indonesia 12.517 Denmark 2.260 

Russian Federation 11.778 Macedonia  0.397 

Iran, Islamic Rep. 10.670 Netherlands 0.031 

Croatia 9.906   

United States 9.330   

Lithuania 7.727   

Czech Rep. 6.521   

Slovenia 6.463   

Kazakhstan 5.578   

Spain 5.567   

Belgium 3.258   

Turkey 3.090   

Latvia 2.601   

Korea 2.448   

Italy 1.877   

Oman 1.684   

Japan 1.500   

Austria 1.110   

Ecuador 1.048   

Morocco 0.889   

Jordan 0.778   

Yemen, Rep. 0.690   

Romania 0.561   

Azerbaijan 0.551   

Moldova 0.518   

Ukraine 0.445   

Colombia 0.350   

Bulgaria 0.314   

New Zealand 0.301   

Norway 0.285   

Syrian Arab Rep. 0.276   

Luxembourg 0.252   

Finland 0.210   

Portugal 0.202   

Ireland 0.183   

Botswana 0.131    

Albania 0.113    

Hungary 0.101    

Panama 0.078    

Cyprus 0.076    

Kyrgyz Rep.  0.057    

Tajikistan 0.036    

Note: Difference between environmental degradation index outcomes between 2005 

and 2000 are multiplied by a thousand to express deteriorations and improvements 

apparent. 



 
Table 5 Ranking of countries with environmental degradation index and ESI score 

 

Country 

Environmental 

degradation 

index outcome 

in 2005 

N  

Country 

 

ESI score 

China 0.6970 1 Yemen, Rep. 62.7 

United States 0.5899 2 Ethiopia 62.2 

Ethiopia 0.3108 3 Saudi Arabia 62.2 

South Africa 0.2662 4 China 61.4 

Russian Federation 0.2058 5 Tajikistan 61.4 

Japan 0.1221 6 Iran, Islamic Rep. 60.2 

Germany 0.0868 7 Philippines 57.7 

Poland 0.0775 8 Vietnam 57.7 

Malaysia 0.0774 9 Korea, Rep. 57.0 

Slovak Rep. 0.0771 10 Syrian Arab Rep. 56.2 

Philippines 0.0687 11 Belgium 55.6 

Indonesia 0.0605 12 Ukraine 55.3 

Sweden 0.0594 13 Morocco 55.2 

United Kingdom 0.0581 14 Poland 55.0 

Vietnam 0.0579 15 Azerbaijan 54.6 

Iran, Islamic Rep. 0.0530 16 Romania 53.8 

Italy 0.0497 17 South Africa 53.8 

France 0.0481 18 Czech Republic 53.4 

Korea, Rep. 0.0461 19 Turkey 53.4 

Ukraine 0.0395 20 Macedonia 52.8 

Latvia 0.0390 21 Jordan 52.2 

Spain 0.0381 22 Oman 52.1 

Saudi Arabia 0.0371 23 Kyrgyz Republic 51.6 

Croatia 0.0311 24 Kazakhstan 51.4 

Turkey 0.0305 25 Indonesia 51.2 

Kazakhstan 0.0214 26 Spain 51.2 

Belgium 0.0208 27 Bulgaria 51.0 

Slovenia 0.0199 28 Mongolia 51.0 

Czech Rep. 0.0197 29 Greece 49.9 

Netherlands 0.0188 30 Italy 49.9 

Lithuania 0.0174 31 United Kingdom 49.8 

Colombia 0.0123 32 Tanzania 49.7 

Romania 0.0121 33 Moldova 48.8 

Denmark 0.0104 34 Hungary 48.0 

Greece 0.0101 35 Ecuador 47.6 

Chile 0.0081 36 Slovak Republic 47.2 

Austria 0.0081 37 United States 47.0 

Portugal 0.0076 38 Chile  46.4 

Syrian Arab Rep. 0.0074 39 Netherlands 46.3 

Hungary 0.0068 40 Malaysia 46.0 

 

 

 



 

Table 5 continued 

 

Country 

Environmental 

degradation 

index outcome 

in 2005 

N  

Country 

 

ESI score 

New Zealand 0.0067 41 Portugal 45.8 

Azerbaijan 0.0065 42 France 44.8 

Finland 0.0065 43 Botswana 44.1 

Norway 0.0062 44 Russian Fed.  43.9 

Ireland 0.0060 45 Germany 43.0 

Bulgaria 0.0058 46 Japan 42.7 

Morocco 0.0054 47 Slovenia 42.5 

Tanzania 0.0052 48 Panama 42.3 

Macedonia 0.0051 49 Denmark 41.8 

Oman 0.0047 50 Estonia 41.8 

Ecuador 0.0046 51 Albania 41.2 

Jordan 0.0029 52 Colombia 41.1 

Yemen, Rep. 0.0027 53 Lithuania 41.1 

Moldova 0.0026 54 Ireland 40.8 

Estonia 0.0025 55 Croatia 40.5 

Mongolia 0.0016 56 Latvia 39.6 

Botswana 0.0011 57 New Zealand 39.0 

Panama 0.0009 58 Austria 37.3 

Kyrgyz Rep. 0.0009 59 Sweden 28.3 

Tajikistan 0.0007 60 Norway 26.6 

Albania 0.0007 61 Finland 24.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 6 Spearman rank correlation between ESI and environmental degradation risk indices 

 ESI Score GHG 

emission 

index 

Water 

pollution 

index 

Net forest 

depletion 

index 

Environmental 

degradation 

index 

ESI score 1     

GHG emission index 0.2446*** 1    

Water pollution index 0.1406 0.9053* 1   

Net forest depletion index 0.0374 -0.1847 -0.1226 1  

Environmental degradation 

index  

0.1378 0.8048* 0.7763* 0.3107** 1 

Note: 61 countries that have overlapping data for all indices are used to obtain the spearman rank correlations. *, **, 

and *** denotes the significance of the spearman rank correlation at 1%, 5% and 10% level respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A: Data and normalization procedure 

Table A1 Data availability for environmental degradation variables 

Variable Data availability  

    emissions Unbalanced annual data between 1960 and 2009  

(198 countries for 2009) 

Methane  

(    equivalent) 

Balanced data for 135 countries for 1990, 1995, 2000, and 2005  

Nitrous oxide emissions 

(    equivalent) 

Balanced data for 135 countries for 1990, 1995, 2000, and 2005  

Other greenhouse emissions (    

equivalent) 

Balanced data for 135 countries for 1990, 1995, 2000, and 2005  

Total GHG emissions  

(i.e., sum of    , methane, nitrous oxide 

and other greenhouse emissions) 

Overlapping data for all type of greenhouse emissions consist 

years 1990 (110 countries), 1995 (134 countries), 2000 (135 

countries) and 2005 (135 countries) in total of 514 observations. 

Water pollution  

(measured by biochemical oxygen demand 

(BOD)) 

Unbalanced data set for 101 countries from 1986 to 2007 

(yearly) consisting of 967 observations 

Net forest depletion 

(measured by the product of unit resource 

rents and the excess of roundwood harvest 

over natural growth in current US$) 

Balanced annual data set for 171 countries from 1970 to 2010 

consisting of 7011 observations  

 

 

Table A2 Variables used for overall environmental degradation index and normalization procedure 

Variables used in overall environmental 

degradation index 

Data availability  

Total GHG emissions, Water pollution, net 

forest depletion  

Overlapping data for the overall environmental quality index 

consists of unbalanced data for years 1990 (8 countries), 

1995 (41 countries), 2000 (65 countries) and 2005 (64 

countries) in total of 178 observations.  

Normalization procedure 

Total GHG emissions Highest total greenhouse emission is used to normalize the 

total greenhouse emissions  

(i.e., China in 2005). 

Water pollution The highest total water pollution is used to normalize the 

water pollution values  

(i.e., China in 2005). 

Net forest depletion The highest net forest depletion value is used to normalize 

the net forest depletion values  

(i.e., Ethiopia in 2005).  

 


