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Abstract In the Big Data era, the speed of analytical processing is influ-
enced by the storage and retrieval capabilities to handle large amounts of
data. While the distributed crunching applications themselves can yield useful
information, the analysts face difficult challenges: they need to predict how
much data to process and where, such that to get an optimum data crunch-
ing cost, while also respect deadlines and Service Level Agreements within a
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limited budget. In today’s data centers, data processing on demand and data
transfers requests coming from distributed applications are usually expressed
as aperiodic tasks. In this paper we challenge the problem of tasks scheduling
with deadline constraints of aperiodic tasks within inter-Cloud environments.
In massively multithreaded computing systems that deal with data-intensive
applications, Hadoop and BaTs tasks arrive periodically, which challenges tra-
ditional scheduling approaches previously proposed for supercomputing. Here
we consider the deadline as the main constrain, and propose a method to es-
timate the number of resources needed to schedule a set of aperiodic tasks,
considering both execution and data transfers costs. Starting from classical
scheduling techniques, and considering asynchronous tasks handling, we ana-
lyze the possibility of decoupling task arriving from task creation, scheduling
and execution, sets of actions that can be put into a peer-to-peer relation over
a network or over a client-server architecture in the Cloud. Based on a mathe-
matical model, and using different simulation scenarios, we prove the following
statements: (1) multiple source of independent aperiodic tasks can be consid-
ered similar to a single one; (2) with respect to the global deadline, the tasks
migration between different regional centers is the appropriate solution when
the number of estimated resources exceed a data center capacity; and (3) in a
heterogeneous data center, we need a higher number of resources for the same
request in order to respect the deadline constrains. We believe such results
will benefit researchers and practitioners alike, who are interested in optimiz-
ing the resource management in data centers according to novel challenges
coming from next-generation Big Data applications.
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1 Introduction

Cloud Computing is a new paradigm where resources, hardware or software,
are offered to users remotely, in the form of services. Behind this vision, a Cloud
middleware transparently provide support for reliability, scalability, security,
and more. Because the middleware needs to support the distributed execution
of complex applications, it also needs to provide guarantees for their execution.
For deadline constraints, resource management and task scheduling become
critical components in such systems. The problem is even more complicated
for other types of real-time systems, either dealing with periodic (time-driven)
tasks and/or aperiodic (event-driven) tasks. An example of such a real-time
system can be a factory controller that periodically executes critical control
loops, while being also responsible for treating aperiodic user interaction [?] or
batch production scheduling in the process industries [?]. Such real-time sys-
tems, dealing simultaneous with multiple constraints, are called hybrid real-
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time systems. They can, in fact, support a wide range of applications dealing
with deadlines: meteorological prediction, genomic analysis, real-time complex
physics simulations, monitoring watershed parameters through software ser-
vices [?], and biological and environmental assistance. The execution in due
time also affects Internet searches, finance and business informatics, and many
more.

Another example relates to vehicular ad-hoc networks (VANETs) - such
networks are often used in conjunction with composite very-large-scale neigh-
borhood search algorithms, to solve the critical vehicle routing problem (see
Agarwal et al. in [?]). Massively multiplayer online games, consisting of huge
worlds populated by thousands of clients, far beyond the ability of a single
server to maintain [?], are another example of deadline-constraint systems. In
this case, to provide players with the illusion of a single large world, dedicated
systems often divide their game world across servers and synchronize all nearby
activity between them. In a network that support such type of applications
an important challenge is selective contents broadcasting depending on users’
preferences with node relay-based web cast. To meet deadlines, waiting time
is reduced by receiving contents from several nodes. In [?], authors propose
a scheduling method considering reconnection on selective contents delivery
with node relay-based web cast that relay data among nodes.

Generally, scheduling in distributed systems deals with the problem of
assigning tasks, sometimes of different types, to a set of resources, sometimes
with different characteristics [?]. The tasks can be resource-intensive, where
a resource is usually CPU, Memory, and I/O. It is known that the general
scheduling problem is NP-complete [?] [?].

In Cloud, background scheduling is the simplest manner to handle the
scheduling of a mixed set of periodic and aperiodic tasks, and executing the
aperiodic tasks when no periodic task instance is ready to run. Aperiodic tasks
can be scheduled and executed on free time slots remaining after periodic tasks
are executed. The disadvantage of this approach is experienced in case of high
periodic loads, when the resulting aperiodic response time can be quite long.
Nevertheless, background scheduling has a great advantage in its simplicity
having two queues: one for the periodic task set and the other for the aperiodic
tasks, with the periodic queue having a higher priority than the aperiodic one.
An algorithm for scheduling of aperiodic task systems with arbitrary deadlines
on identical multiprocessor platforms is presented in [?]. The algorithm is based
on the concept of semi-partitioned scheduling, in which most tasks are fixed to
specific processors, while a few tasks migrate across processors. The solution
proposed in [?] for scheduling of aperiodic tasks on multiprocessors uses the
approximation of the exact demand bound function on uni-processor as a
criterion and introduce a partitioned scheduling algorithm for a least-number
processors and fixed-number processors respectively.

Moschakis (2012) studies the performance of a distributed Cloud Com-
puting model, based on the Amazon Elastic Compute Cloud (EC2) architec-
ture that implements a Gang Scheduling scheme (an efficient job schedul-
ing algorithm for time sharing). In this approach virtual machines (VMs)



4 Florin Pop et al.

act as the computational units of the system. The authors prove that Gang
Scheduling can be effectively applied in a Cloud Computing environments,
both performance-wise and cost-wise [?]. Looking for performance, the opti-
mum performance from the distributed computing system is achieved by using
effective scheduling and load balancing strategy [?] [?]. The author propose a
Mixed Task Load Balancing for cluster of workstation systems. In this strategy
pre-tasks are assigned to each worker by the master to eliminate the worker’s
idle time.

The paper is structured as follow: in Section 2 the classical approaches of
aperiodic task scheduling are presented and analyzed. Section 3 introduces the
problem of aperiodic task scheduling with deadline constrains considering ho-
mogenous and heterogeneous datacenters for inter-Clouds environments. Sec-
tion 4 presents simulation experiments and analyzes the migration behavior in
order to meet deadlines. The paper ends with analysis, conclusions and future
work. This paper is based on [?].

2 Aperiodic Scheduling. Classical Approaches

There are several approaches to the scheduling problem that were considered
over time. These approaches consider different scenarios that take into account
the types of applications, the execution platform, the execution platform type,
the types of algorithms used and the constraints that users may require. [?]
presents a solution of scheduling bag of tasks. In this case users receive guid-
ance, and are able to choose the way the application is executed: with more
money and faster or with less money but slower. Other important element
in this method of scheduling is the phase of profiling. The basic scheduling
is realized with a type of bounded knapsack algorithm. [?] presents the idea
of scheduling based on scaling up and down the number of the machines in
the cloud system. The users can also choose their own policies. This solution
provides meeting the deadline with reducing the cost. A scheduling solution
based on genetic algorithms is given in [?]. Here the scheduling is made on
grid systems. They are not the same as the cloud systems, but the principle of
assigning tasks to resources is the same. This solution of scheduling works with
application that can be modeled as DAGs. The idea for this solution is mini-
mizing the duration of the application execution while the budget is respected.
This approach also considers the heterogeneity of the system. The paper [?]
presents a scheduling model which takes in consideration both budget and
deadline constraints.

There are several classical approaches for the scheduling problem, consid-
ering a central server [?]: polling server, deferrable server, priority exchange
server, sporadic server, slack stealing. The Polling Server (PS) implies creat-
ing a periodic task – a server, which will service aperiodic tasks. The server
task is created in order to emerge aperiodic task servicing from the back-
ground scheduling and therefore, to improve the average response time [?].
The Deferrable Server (DS) algorithm was introduced by Lehoczky, Sha and
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Stosnider in [?]. The technique is derived from the PS, and manifests improved
response times for aperiodic tasks. The DS algorithm creates a periodic task
for servicing aperiodic requests and preserves server capacity if no requests
are pending. The Priority Exchange Server (PES) considers that the server
task usually has a high priority and differs from the other server-based algo-
rithms in the way that it preserves its capacity, by converting it into execution
time in a lower-priority periodic task [?]. The Sporadic Server (SS) algorithm
was introduced by Sprunt [?] in order to enhance the average response time
of aperiodic tasks without degrading the utilization bound of the aperiodic
task set. A particular scheduling technique for aperiodic requests is the Slack
Stealing (SSt) algorithm, introduced by Lehoczky and Ramos-Thuel in [?].
This technique offers great improvement in response time over the previously
discussed service methods (PES, DS, SS). The SSt algorithm does not create
a periodic task to service the aperiodic request, instead it creates a passive
task, named Slack Stealer, that attempts to make time for servicing aperiodic
tasks by stealing all the processing time it can from the periodic tasks without
causing their deadlines to be missed. All algorithms used in presented models
behave the same manner when there are enough aperiodic tasks to execute.

3 Aperiodic Task Scheduling with Deadline Constrains

Cloud Computing is one of the fastest evolving paradigm in the domain of
Computer Science. Whether one wants to provide a simple file transfer service
that consumes an insignificant amount of resources and time, or a parallel and
distributed algorithm that defines a weather prediction model that requires
high computing power or even a very strict and secure banking service, its im-
plementation by means of a service has a great number of advantages. Tasks
execution can address one Cloud or multiple Clouds, depending on users’ re-
quirements. So, hybrid Clouds will be considered and inter-Clods environments
become the fundamental platform for tasks execution. For concurrent access
we consider a queuing system for tasks submission. For such type of systems,
the number of task arrivals in a given interval of time is a random variable with
a Poisson distribution [?] [?]. In this section we describe the estimation method
for the necessary resources to schedule a set of aperiodic tasks in parallel with
periodic tasks.

Let’s consider a time interval with length t and a set of n tasks {Ti}1≤i≤n,
each task having known the arrival time ai and the deadline di in the consid-
ered time interval: di−ai ≤ t,∀Ti. If we consider τ the time between two succes-
sive arrivals and T ≥ 0 a time threshold. We have [?]: Prob(τ ≤ T ) = 1−e−λT
so, if T is fixed apriori, the probability has a constant value (similar approach
with unitary processes [?] [?]). The Poisson distribution for the number of
tasks arrivals from a source k in an arbitrary time interval with length equal
with t, for nk = 0, 1, . . . is:

Prob(Nk(t) = nk) = e−λkt
(λkt)

nk

nk!
.
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where λkt is the shape parameter which indicates the average number of events
(tasks arrivals) in the given t time interval. For each tasks source (different
users that submit for execution a set of aperiodic tasks) we have a specific
nk number of tasks for an interval t, and a specific λk parameter for Poisson
distribution. If n =

∑
k nk is the total number of given tasks and N(t) =∑

kNk(t) is the total number of tasks arrived in the t interval, we have:

Prob(N(t) = n) = Prob(N1(t) = n1, N2(t) = n2, . . .).

We have the following result [?] Let’s consider m sources of aperiodic tasks
with specific parameters (λk, nk)1≤k≤m for Poisson distribution. For a schedul-
ing system the m inputs appear appear as a single one with (λ, n) specific pa-
rameters for Poisson distribution, where λ =

∑m
k λk and n =

∑m
k nk. This

result allow to consider a queuing system for scheduling with a local coordina-
tor for a regional center. In each regional center we have multiple task sources
with different submission characteristics.

Deadline Scheduling is NP-Complete in a strong sense, proofed in [?] by
a pseudo-polynomial reduction from strongly NP-Complete 3-Partition Prob-
lem: for a set of 3m positive numbers A = (a1, a2, . . . , a3m) with

∑
ai = mB

and B/4 < ai < B/2 for each i, is there a partition of A into A1, . . . , Am
such that

∑
aj∈Ai

aj = B, for each i. We can consider here a set of m

map-reduce tasks (equal number of mappers and reducers), each set Ai en-
coding the processing time (p) for map and reduce task and add a “transi-
tion” task in order to satisfy the restriction of

∑
aj∈Ai

aj = B translated in
pmap + preduce + ptransition = B, and B can be considered the total execution
time of a set (map, reduce).

Now, for each source we can consider the following model for deadline
scheduling. Each task is described as Ti = (ai, di, datai), where ai is arrival
time, di is deadline and datai is the input data volume. We consider a soft-real
time system and we introduce for a request Q = {Ti|Ti = (ai, di, datai), i =
1, 2, . . .} the global arrival time A = mini {ai} and global deadline D =
maxi {di}. Considering f the fraction of input data that is given as output,
we have outputi = f ∗ datai. Now, let’s introduce the cexec the execution cost
and ccom the communication cost (here, the cost is associated with processing
time for a data unit). A similar model, for Hadoop jobs is presented in [?].
We consider for the beginning a homogeneous environments with the same
computation cost for all resources and the same communication cost for all
links. Then, the total cost for Q is:

TotalCost =
1

Nres

∑
i

(datai ∗ cexec + outputi ∗ cexec) +
∑
i

outputi ∗ ccom

where nres is the necessary number of resources in a regional center to sup-
port execution of Q set. We have the following result [?], based on presented
assumptions: For a request Q and a homogeneous regional center with nres
resources, considering a schedule with deadline constrains, then:

Nres ≥
(1 + f)cexec

∑
i datai

D −A− fccom
∑
i datai

.
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This result allow to set the number of resources in a regional center as:

Nres =

[
(1 + f)cexec

∑
i datai

D −A− fccom
∑
i datai

]
+ 1

and, if we need more resources we will consider migration between regional
centers. This assumption is based on the maximization of slacks approach, as
follow. We define the slack for task Ti considering the remaining computation
time ci(t) at the moment t, as: slacki(t) = di − (t + ci(t)). The slacks are
used in the scheduling process especially for online scheduling, considering
that whenever an aperiodic request is issued, the server (for example, in the
SSt scenario) steals all the available slack from periodic tasks and uses it to
service the aperiodic request as soon as possible. For a systems with deadline
constrains, with a defined Service Level Agreement, we have at any moment
of time t: slacki(t) ≥ 0,∀Ti and ci(di) ≤ 0.

A numerical example considers a request Q with 1000 tasks, each task hav-
ing 1KB as input and 1KB as output, which means ∀i, datai = 1KB and f = 1.
If D−A = 100s, cr = 1s/KB and we have no communication, then nres = 10.
So, the regional center must have minimum 10 CPU (virtual resources).

In general, in a heterogeneous h-regional center we need a higher number
of resources for the same request Q in order to respect the deadline constrains.
The homogeneous o-regional centers are also always built with high processing
capacity machines and high speed network. We have the following result:

Nh
res ≥ No

res

where the Nh
res and No

res represent the lower bound for number of necessary
resources to be used for a specific set of tasks to be created in a heterogeneous,
respectively in a homogeneous environment.

4 Evaluation Scenarios and Results Interpretation

The practical evaluation is presented in this section, and is represented by
simulation experiments that show the behavior of the migration phase ap-
plied when the total number of estimated nodes exceeded the regional center
capacity.

4.1 MONARC Simulator

MONARC simulator is built based on a process oriented approach for discrete
event simulation, which is well suited to describe concurrent running programs
as well as all the stochastic arrival patterns, specific for this type of simula-
tion [?]. In order to provide a realistic simulation, all the components of the
system and their interactions were abstracted. The chosen model is equivalent
to the simulated system in all the important aspects. The simulation model is
based on regional interconnected centers.
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4.2 Distributed Task Scheduling based on Migration in MONARC Simulator

In MONARC, each regional center can also incorporate a task scheduler com-
ponent. The scheduler is used to simulate the decisions making process re-
garding the allocation of resources for the execution of tasks based on various
internal algorithms. The basic task scheduler implements a decision making
algorithm. As output, scheduler can only make one of two decisions: either it
assigns the task for execution on designated processing resources or, if there are
no available resources, it places the task in a special waiting queue structure
for migration or later resubmission. When there are more than one processing
units that could handle the execution of a particular task, the task scheduler
will choose the one having the minimal load. This value is computed based on
the memory consumption and the number of tasks being already concurrently
processed on that particular unit.

MONARC also includes a distributed task scheduler class, responsible with
implementing a distributed scheduling decision algorithm. This means that in
this case the scheduling decision can result in submitting the task for execution
in other regional centers than the one they were originally submitted to by
the user. The implemented distributed algorithm considers that each local
scheduler unit decides where it is better to submit the task for execution.

The algorithm of the distributed task scheduler works as follows. If the load
percentage of each CPU unit from the local regional center exceeds a certain
value (given by a constant having the default value of 70%), the scheduler
sends the task to another regional center. Then the regional center having the
minimum average load is chosen to execute the task. If the regional center
having the minimum load is a remote one, the task is sent there. Else, it
will be executed in the local regional center. When a task is sent to another
regional center, the task scheduler from that regional center is responsible with
the effective execution of the task (it won‘t try to send it to another regional
center, because this way the task could move from one center to another for
ever). This model can easily extent to include various new conditions, new
resource considerations or performance metrics, in order to test the behavior
of new scheduling models and algorithms.

4.3 Simulation Setup

The simulation experiments evaluate the migration of the aperiodic task schedul-
ing between regional centers. We used 4 regional heterogeneous centers (UPB_01,
UPB_02, DERBY_01 and DERBY_02). In each center, we submit a number of tasks
with random time intervals between them, in order to simulate the aperiodic
behaviour. The time intervals follow a normal distribution, and have different
averages in different periods of the day. We defined three periods (morning,
midday and evening), and the exact hours when they begin can be set from
the configuration file. Each regional center has its own activity as a model for
tasks execution, and each activity has several characteristics. The parameters



Title Suppressed Due to Excessive Length 9

are set from a configuration file (Table 1 shows the actual values used for sev-
eral of these parameters): gmtOffset: the time difference between the regional
center and GMT (n hours); numDays: the number of days the simulation will
last; morningTime, lunchTime, eveningTime: the hours that define the
3 periods of the day; timeInt1,2,3: the average time interval between tasks
in the 3 periods; numtasks1,2,3: the number of tasks submitted in the 3
periods.

Table 1 Simulation Experiment Characteristics for Regional Centers

Regional Center numDays morningT lunchT eveningT t1 t2 t3

UPB_01 5 7 7 13 1200 240 3600
UPB_02 5 7 7 13 600 120 1800

DERBY_01 5 7 11 17 1200 240 3600
DERBY_02 5 7 11 17 600 120 1800

All simulation results highlight the evolution for one regional center (UPB 01).
For the other three regional centers the evolution is very similar. Figure 1 shows
the evolution of submitted and finished jobs. One can observe that there is a
periodicity in tasks submission and a slow increasing at the end of the period.
The migration process starts here.

Fig. 1 Simulation Results. Job statistics.

Figure 2 shows the evolution of running and waiting tasks. As seen, there
are time interval when the regional renters work at full capacity and there
are several waiting tasks. The tasks will stay in the waiting queue only if the
deadline constrains will be respected. Here, during the interval that regional
centers work at full capacity, the number of waiting task is higher than full
capacity, so scheduler will activate the migration function.

Figure 3 highlights the migration function. In the time period when re-
gional centers work at full capacity, if tasks remaining in the waiting queues
continue to stay there, the deadline constrains are not satisfied. Thus, all re-
gional centers start the tasks migration and several tasks become submitted
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Fig. 2 Simulation Results. Running and Waiting tasks.

Fig. 3 Simulation Results. Job migration rate.

in other regional centers. All the submitted tasks in the initial phase or in the
migration phase are aperiodic tasks.

Fig. 4 Simulation Results. Percentage of used CPU and Memory.

The last measurements (see Figure 4) get the CPU usage and memory usage
during the experiments. Once again, the figures confirm that regional centers
are used at almost full capacity, and the need for migration. The memory
usage respects the limitation, but follow the profile of CPU usage graphic.
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5 Conclusions

This paper presents the classical approach for aperiodic task scheduling con-
sidering a scheduling system with different queues for periodic and aperiodic
tasks. We prooved that multiple source of independent aperiodic tasks can
be considered like a single one. As a support for deadline scheduling, the op-
timization of slacks was introduced and a migration function was introduce
for regional centers with limited capacity. The paper presented a method to
compute a lower bound for number of necessary resources to be used for a
specific set of tasks. When this number exceeded the number of resource in a
datacenter we will migrate several tasks to other datacenters.

The deadline constraints were presented and we obtained a result, which
prove that in general, in a heterogeneous regional center we need a higher
number of resources for the same request in order to respect the deadline
constrains. The homogeneous regional centers are also always built with high
processing capacity machines and high speed network. We establish in this
paper a lower bound for dimension of a regional center (number of resources)
in order to respect the deadline constrains. This bound depends of computation
ans communication costs and also, depends on applications type.

The proved statements can be used as follow: Statement (1): multiple
source of independent aperiodic tasks can be considered similar to a single one;
Applicability : is it possible to consider a queuing system with multi-queues for
task submission but a single queue for scheduling component. Statement (2):
the tasks migration between different regional centers is the appropriate solu-
tion when the number of estimated resources exceed a data center capacity;
Applicability : the resource management component implements this technique
to distribute the load between different data centers in a inter-Clouds environ-
ment. Statement (3) in a heterogeneous data center, we need a higher number
of resources for the same request in order to respect the deadline constrains;
Applicability : if we have a pre-computed value for number of nodes necessary
for a specific scheduling request (for a homogeneous cluster), we must increase
these values for a heterogeneous data center where is more difficult to estimate
the costs used in proposed model.
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