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Abstract 16 

Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease 17 

remains a key goal of parasitology. Here, random forests are employed to model spatial 18 

patterns of the presence of the plateau pika (Ochotona spp.) small mammal intermediate host 19 

for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant 20 

burden of human zoonoses in western China. Landsat ETM+ satellite imagery and digital 21 

elevation model data were utilized to generate quantified measures of environmental 22 

characteristics across a study area in Sichuan Province, China. Land cover maps were 23 

generated identifying the distribution of specific land cover types, with landscape metrics 24 

employed to describe the spatial organisation of land cover patches. Random forests were used 25 

to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the 26 

environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of 27 

habitat aggregation was identified as the most important variable in influencing Ochotona spp. 28 

presence, with area of degraded grassland the most important land cover class variable. 71% of 29 

the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as 30 

determined by ‘out-of-bag’ error assessment. Identification of the environmental characteristics 31 

influencing Ochotona spp. presence enables us to better understand distribution patterns of 32 

hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the 33 
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identification of human populations at increased risk of infection, enabling preventative 34 

strategies to be adopted. 35 

 36 

Keywords: Echinococcus multilocularis, Ochotona, remote sensing, random forests, landscape 37 

metrics, classification. 38 

 39 

1. Introduction 40 

Human Alveolar Echinococcosis (HAE), caused by the parasitic tapeworm Echinococcus 41 

multilocularis (Em), is an emerging pathogen for which increased prevalence and range 42 

expansion is documented in many regions of the northern hemisphere (Eckert, 1996; Eckert et 43 

al., 2001). It is a highly pathogenic zoonosis with over 94% mortality in untreated patients ten 44 

years after diagnosis (Wang et al., 2010), and is increasingly recognised as a major population 45 

health problem (Zhang et al., 2014). The known Em range includes Europe, North America, 46 

Japan, the former USSR, Central Asia and China where new foci are being discovered (Wang 47 

et al., 2001; Giraudoux et al., 2013a), with prevalence rates of greater than 10% observed in 48 

Gansu and Sichuan provinces, China (Craig et al., 1992; Li et al., 2010). The spatial 49 

distribution of Em is highly variable, with significant regional and local differences in parasite 50 

prevalence resulting in patchy distributions generally not reflected in Em and HAE distribution 51 

maps (Eckert et al., 2001; Giraudoux et al., 2006; 2013a). 52 

The Em transmission cycle is based on the predator-prey relationships between canid 53 

definitive hosts such as fox, coyote and wolf and small mammal intermediate hosts (Rausch, 54 

1995; Eckert et al., 2001). Within a definitive host adult tapeworms produce eggs at regular 55 

intervals which are shed in faeces, contaminating the environment (Raoul et al., 2001). The 56 

parasite lifecycle then undergoes a free-egg stage, with intermediate hosts infected through oral 57 

ingestion of eggs when feeding (Eckert, 1996). The transmission cycle is completed when 58 

definitive hosts are infected by predating infected intermediate hosts. Em exploits a large 59 

number of intermediate host species (>40) (Eckert et al., 2001; Giraudoux et al., 2013b), 60 

however the epidemiological importance of these hosts varies (Rausch, 1995).  61 

Domestic dogs can also be infected and, due to their close contact with human 62 

populations, are a significant infection risk to humans (Rausch, 1995; Moss et al., 2013; Zhang 63 

et al., 2014) via accidental ingestion of Em eggs. Prevalence rates of Em infection in domestic 64 

dogs of up to 33% are recorded in Tibetan communities of western Sichuan Province, China 65 

(Budke et al., 2005), with Craig et al. (2000) and Wang et al. (2001) identifying owned dogs as 66 



a major transmission source to humans in Gansu Province, and the eastern Tibetan plateau, 67 

China, respectively (Wang et al., 2010). 68 

Dog re-infection studies in Sichuan Province, China, suggest that domestic dog 69 

populations are quickly re-infected by Em, and may contribute to an active peri-domestic 70 

transmission cycle (Giraudoux et al., 2013a; Moss et al., 2013). Wang et al. (2010) also found 71 

that Em worm burden in dogs exhibited a statistically significant relationship to maximum 72 

burrow densities of a key Em intermediate host, the plateau pika (Ochotona spp.) in the 73 

surrounding landscape in Shiqu County, Ganze Tibetan Autonomous Prefecture, China. This 74 

study failed to identify significant relationships between dog worm burden and burrow density 75 

of another potential Em small mammal intermediate host present in this region, Microtus spp., 76 

thus suggesting that the rapid Em re-infection rates in domestic dogs, shown by Moss et al. 77 

(2013), is probably linked to surrounding high densities of Ochotona spp.  78 

 79 

Small mammal species often exhibit specific preferences for optimal habitats, with 80 

species distributions influenced by the locations of these key habitats (Raoul et al., 2008). 81 

Small mammal populations are shown to respond to optimal habitat availability, particularly 82 

the ratio of optimal habitat to total land area (Giraudoux et al., 2003; Pleydell et al., 2008). 83 

Consequently, landscape change is known to affect the population dynamics of wild mammals 84 

(Lidicker, 1995), with increases in the optimal habitat proportions correlated with population 85 

outbreaks of Microtus arvalis and Arvicola terrestris in France (Giraudoux et al., 1997), and 86 

M. limnophilus and Cricetulus longicaudatus in south Gansu, China (Giraudoux et al., 1998; 87 

Craig et al., 2000). This process is hypothesised to be significant for Em transmission 88 

(Giraudoux et al., 1997), so that pathogen transmission may vary through time and space due 89 

to landscape modification. Elsewhere in China, small mammal spatial distributions are shown 90 

to be modified by landscape disturbances such as deforestation in Gansu (Giraudoux et al., 91 

1998), afforestation in Ningxia (Raoul et al., 2008), and overgrazing and fencing practices on 92 

the Tibetan plateau (Wang et al., 2004; Raoul et al., 2006). 93 

Pastureland degradation due to overgrazing has also been linked to increased small 94 

mammal densities, for example Ochotona spp., Microtus spp., Cricetulus kamensis and 95 

Myospalax baileyi (Raoul et al., 2006) on the eastern Tibetan plateau, China, where HAE is 96 

endemic (Wang et al., 2004; Li et al., 2010). In Shiqu county, China, grass height was 97 

negatively related to Ochotona curzoniae burrow abundance suggesting that overgrazing in this 98 

area increased abundance of this species (Wang et al., 2010). With high Ochotona spp. 99 

densities significantly associated with infection of domestic dogs (Wang et al., 2010), foxes 100 



and humans (Craig et al., 2000), pastureland degradation resulting from overgrazing could 101 

prove a significant driver of increased human Em incidence in this region. 102 

Previous studies of Em and landscape using remote sensing techniques in southern 103 

Gansu Province, China, identified strong links between landscape composition and HAE 104 

prevalence (Craig et al., 2000; Giraudoux et al., 2003; Danson et al., 2004). This suggested 105 

that grassland and tree/shrub habitats capable of sustaining cyclically high populations of 106 

susceptible intermediate hosts were key spatial determinants of Em transmission (Danson et 107 

al., 2003), and indicated that landscape composition could provide a useful predictor of Em 108 

and HAE (Pleydell et al., 2008; Giraudoux et al., 2013b).  109 

On the Tibetan plateau the black-lipped pika or plateau pika (Ochotona curzoniae) is 110 

thought to be one of the principal intermediate hosts in the Em transmission cycle (Giraudoux 111 

et al., 2006; Zhang et al., 2014). Pika are social mammals that tend to be spatially clumped 112 

(Arthur et al., 2008), with average individual home range sizes for Ochotona curzoniae of 113 

1,375 ± 206m2 (Smith & Gao, 1991) and population densities ranging from 100 to 400 pikas 114 

ha-1 on the Tibetan plateau (Jiapeng et al., 2013). Given the contrast between the biomass of 115 

Ochotona spp. (high) to Microtus spp. (low) in Shiqu county (Wang et al., 2010), the role of 116 

Ochotona spp. in transmission to dogs may be highly significant (Giraudoux et al., 2013a). 117 

 118 

The research presented here builds on this previous work and investigates a critical 119 

phase of the Em transmission cycle, where the parasite is carried by small mammal 120 

intermediate hosts. Satellite remote sensing and in-situ ecological datasets are used to 121 

investigate the spatial relationship between Ochotona spp. presence and specific landscape 122 

characteristics to identify and better understand these links using random forests. Key 123 

landscape variables hypothesised to influence Ochotona spp. presence, and their relative 124 

importance, are determined and used to map Ochotona spp. presence over a broader 125 

geographical area. The hypotheses addressed are: (1) Ochotona spp. presence is statistically 126 

related to key environmental variables which can be used to predict species presence over 127 

larger areas; and (2) In the geographical area of interest, Ochotona spp. presence is specifically 128 

linked to areas of degraded grassland. 129 

 130 

To identify the key landscape features influencing Ochotona spp. presence, random 131 

forest (RF) analysis methods are highly appropriate. RF are an ensemble learning technique 132 

developed by Breiman (2001) based on a combination of a large set of classification and 133 

regression trees. They are well-suited to handling large datasets with correlated predictor 134 



variables (Svetnik et al., 2003), handle a variety of data types (Duro et al., 2012), are non-135 

parametric (Strobl et al., 2008), make no assumption of independence concerning the data 136 

being analysed (Perdiguero-Alonso et al., 2008), and are robust to outliers, noise and over-137 

fitting (Breiman, 2001). They have been used as analytical tools for a variety of applications 138 

(Svetnik et al., 2003) including remote sensing analysis (Duro et al., 2012; Abdel-Rahman et 139 

al., 2013) and parasitological studies (Perdiguero-Alonso et al., 2008). 140 

Random forest algorithms employ recursive partitioning to generate multiple decision 141 

trees and average individual tree predictions across the entire forest (Duro et al., 2012; Abdel-142 

Rahman et al., 2013). Each iteration uses two-thirds of the data to train the RF while the 143 

remaining third, the ‘out of bag’ (OOB) samples, are retained for testing the prediction error of 144 

the RF (Duro et al., 2012). The OOB error estimate also generates variable importance 145 

measures by comparing increases in OOB error when that variable is randomly permuted while 146 

all others are left unchanged, enabling ranking of the importance of individual variables 147 

(Abdel-Rahman et al., 2013). The OOB error estimate removes the need for cross-validation 148 

via a set-aside test dataset (Perdiguero-Alonso et al., 2008). 149 

 150 

2. Materials and methods 151 

The research focused on a study area near the town of Tuanji, Shiqu county, Ganze Tibetan 152 

Autonomous Prefecture, Sichuan Province, China (Fig 1). This is located on the eastern edge 153 

of the Tibetan plateau (Lat 33.04° Lon 97.97°) at altitudes between 4000-4300 metres, and 154 

dominated by semi-natural grassland. Although above the tree line, variation in herb and shrub 155 

vegetation produces a variety of land cover types. Heavy grazing by yak in this region has 156 

resulted in extensive areas of degraded grassland. Within Shiqu county, at least three townships 157 

have been found to be local foci for HAE, showing that a transmission cycle is, or has been 158 

active here (Wang et al., 2001). 159 

 160 

Figure 1. Study site map with numbered survey transects and SRTM DEM (USGS, 2006) site 161 

elevation and UTM WGS84 zone 47N grid displayed. [SINGLE COLUMN FIGURE] 162 



 163 

 164 

2.1 Study design 165 

Fifteen transects of varying length (220-4750m) totaling approximately 35 km and comprising 166 

3481 transect points were surveyed in July 2001 (Table 1), with transect routes pre-selected to 167 

sample the maximum number of land cover types. At ten meter intervals along the transects 168 

small mammal activity indicators were recorded. Visual sightings of small mammals and 169 

species-specific indicators including foraging corridors, ground holes, and small mammal 170 

faeces, all identifiable to species or genus level (Raoul et al., 2006; Wang et al., 2010), were 171 

used as evidence of small mammal presence using methods established by Giraudoux et al. 172 

(1998). Transects were mapped using a GPS with an accuracy of approximately 15 m. 173 

At this study site the small mammal community predominantly comprised two 174 

Ochotona species both known to be Em intermediate hosts, Ochotona curzoniae (black-lipped 175 

pika), and Ochotona cansus (Gansu pika), the latter recorded sporadically compared to the 176 

former. Due to similarities between the two species resulting in identification difficulties, they 177 

were grouped together to form a generic Ochotona spp. group. Microtus irene, M. oeconomus, 178 

M. leucurus and Cricetulus kamensis small mammals were also observed but, given the very 179 



extensive Ochotona spp. colonies in the study area in comparison to the sparse records of these 180 

other species, and the established links between Ochotona spp. and Em infection in dogs 181 

(Wang et al., 2010), our investigation focused exclusively on Ochotona spp. 182 

Altitude, slope and aspect values for each transect point were extracted from 90m 183 

resolution Shuttle Radar Topographic Mission (SRTM) digital elevation models. A Landsat 184 

ETM+ satellite image (3 July 2001) was acquired (path 134 row 37), geometrically corrected, 185 

with snow and cloud masks created to exclude these areas of the image from further analysis. 186 

ERDAS IMAGINE was used to perform a maximum likelihood supervised classification on 187 

the image using nine land cover classes: village, road, long grass, water, short grass, upper 188 

Potentilla shrubland, bare ground, degraded grassland, and wet grassland. Classification 189 

accuracy assessment was performed using 365 reference points collected from high-resolution 190 

imagery of the survey area using established techniques (e.g. Duro et al., 2012). Reference 191 

points exhibiting temporal change in land cover type between Landsat ETM+ image and 192 

reference high resolution imagery acquisition dates were disregarded to minimise potential 193 

error.  194 

When investigating the relationships between landscape and Ochotona spp. issues of 195 

scale and the spatial arrangement of different land cover class patches within the landscape 196 

should be considered (Pleydell et al., 2008; Pleydell & Chrétien, 2010). A common approach is 197 

to quantify landscape characteristics around a point of interest using a circular buffer centred at 198 

the observation (Pleydell & Chrétien, 2010). However, as the optimal buffer size cannot be 199 

known apriori, multiple nested buffers with radius increments between 100m and 500m in 200 

100m increments were generated for each transect point, enabling landscape influence over 201 

multiple ranges to be investigated. Within each nested buffer, the area of each land cover class 202 

was recorded. To minimise collinearity between these nested land cover area measurements 203 

(variables calculated using smaller buffers partly measures the same area as the larger buffers), 204 

but to retain the nested spatial structure, a new set of variables Z100m, Z200m, Z300m, Z400m 205 

and Z500m were created following the methodology of Rhodes et al. (2009) such that: 206 

 207 

Z100m = X100m. 208 

Z200m = X200m - X100m. 209 

Z300m = X300m - X200m. 210 

Z400m = X400m - X300m. 211 

Z500m = X500m - X400m. 212 



where X100m,…,X500m are the land cover class coverage data for the 100m,…,500m buffer 213 

sizes respectively, and the Z200,…,Z500m provide the difference between the original 214 

variables and the variable nested within it (Rhodes et al., 2009). 215 

Landscape structure and composition are important determinants of species 216 

distributions and population viability (Rhodes et al., 2009), with the amount of suitable habitat 217 

present and the level of landscape fragmentation both important factors for biological 218 

population abundance and distribution (Fahrig, 2003). Here, the aggregate properties of the 219 

spatial organisation of land cover patches within a 500m radius buffer surrounding each 220 

transect point are examined using landscape metric methods within FRAGSTATS (McGarigal 221 

et al., 2002). Eighteen landscape level metrics were generated (see Table 1). Pairwise 222 

correlation was performed between metrics values, with all correlations exhibiting an r2 value 223 

of <0.5 indicating that the landscape metrics variables were not highly correlated. 224 

 225 

Table 1. Landscape metrics included in the analysis (McGarigal et al., 2002). 226 

Metric Type Metric Acronym 

Area and edge metrics Total Area TA 

 

Largest Patch Index LPI 

 

Patch Area Distribution AREA_AM 

Shape metrics Perimeter-Area Ratio Distribution PARA_AM 

 

Fractal Index Distribution FRAC_AM 

 

Contiguity Index Distribution CONTIG_AM 

Aggregation metrics Aggregation Index AI 

 

Patch Cohesion Index COHESION 

 

Landscape Division Index DIVISION 

 

Splitting Index SPLIT 

 

Euclidean Nearest Neighbor Distance Distribution ENN_AM 

 

Connectance CONNECT 

Diversity metrics Patch Richness PR 

 

Shannon’s Diversity Index SHDI 

 

Simpson’s Diversity Index SIDI 

 

Shannon’s Evenness Index SHEI 

 

Simpson’s Evenness Index SIEI 

 227 

Random forest (RF) analysis was performed to identify potential causal linkages 228 

between Ochotona spp. presence and the environmental variables of nested land cover class 229 

areas, the landscape metrics, and topographical variables of elevation, slope and aspect (ntrees 230 

= 10000, number of variables tried at each split = 21). The OOB data samples generated 231 

importance measures for each variable, and tested the prediction error of the generated RF. 232 



Random Forest analysis was performed in the R statistical environment using the 233 

randomForest package (Liaw & Wiener, 2002). The RF was then used to produce a predicted 234 

Ochotona spp. distribution map. A point grid was generated for a 45km x 45km area 235 

surrounding the survey transect locations with 30m point spacing. Data values for each 236 

explanatory variable included in the RF were calculated for each vector grid point. The RF was 237 

applied in a predictive classifier capacity with the vector grid datasets as input variables and 238 

predicted Ochotona spp. presence or absence as the output. Predicted values were converted 239 

from vector to raster format using ArcMap 10.1.  240 

 241 

3. Results 242 

The overall land cover classification accuracy using 365 reference locations was 83.84% 243 

(Table 2). Of the 3481 sample points sampled along 15 transects, Ochotona spp. were present 244 

at 1246 points (35.8%). For individual transects the rate of Ochotona spp. presence ranged 245 

from 0% (transects 1, 11 and 15) to 88% (transect 2) indicating a patchy distribution across the 246 

study area (Table 3). 247 



Table 2. Supervised classification confusion matrix and accuracy assessment. Overall Kappa statistic = 0.816 248 

 Reference 

Classified Village Road Long 

grass 

Water Short 

grass 

Upper 

potentilla 

shrubland 

Bare 

ground 

Degraded 

grassland 

Wet 

grassland 

Sum of 

row 

User's accuracy 

(%) 

Village 22 0 0 0 0 0 0 0 0 22 100.00 

Road 0 41 0 0 3 0 0 0 0 44 93.18 

Long grass 0 0 18 0 0 0 1 0 0 19 94.74 

Water 0 1 2 44 1 0 0 1 4 53 83.02 

Short grass 0 0 0 0 31 2 0 0 0 33 93.94 

Upper potentilla 

shrubland 

0 1 2 0 5 20 0 2 0 30 66.67 

Bare ground 0 1 0 0 0 0 44 2 0 47 93.62 

Degraded 

grassland 

1 2 2 3 7 1 4 45 0 65 69.23 

Wet grassland 

 

0 4 4 3 0 0 0 0 41 52 78.85 

Sum of column 23 50 28 50 47 23 49 50 45 365  

Producers 

accuracy (%) 

95.65 82.00 64.29 88.00 65.96 86.96 89.80 90.00 91.11  Overall 

accuracy = 

83.84 



 

Table 3. Survey transect Ochotona spp. presence and elevation ranges. 249 

Transect Number of 

survey points 

along transect 

Number of 

points with 

Ochotona spp. 

present 

Number of 

points with 

Ochotona spp. 

absent 

Ochotona 

spp. presence 

(%) 

Elevation 

range of 

transect (m) 

1 276 0 276 0.0 4280-4480 

2 133 117 16 88.0 4290-4334 

3 320 89 231 27.8 4294-4350 

4 94 1 93 1.1 4299-4360 

5 346 28 318 8.1 4287-4350 

6 475 363 112 76.4 4285-4501 

7 274 129 145 47.1 4387-4532 

8 137 61 76 44.5 4309-4484 

9 182 10 172 5.5 4299-4366 

10 424 242 182 57.1 4160-4348 

11 22 0 22 0.0 4160-4160 

12 172 1 171 0.6 4160-4259 

13 339 204 135 60.2 4177-4262 

14 109 1 108 0.9 4182-4300 

15 

 

178 0 178 0.0 4190-4492 

Total 3481 1246 2235 35.8 4160-4532 

 250 

 251 

RF analysis explained 70.78% of the variance in Ochotona spp. presence or absence. 252 

Fig 2 shows the ten environmental variables determined as most important by the RF in 253 

relation to Ochotona spp. presence. Aggregation Index (AI) was identified as the single most 254 

important variable, however it was the only landscape metric in the top ten ranked variables. 255 

Three of the top five variables were degraded grassland (DG), with DG at the 100m buffer size 256 

second, at the 300m buffer size fourth, and at the 200m buffer size fifth. Upper Potentilla 257 

shrubland (UPS) was also important but at the larger buffer sizes of 400m (third ranked 258 

importance), 500m (seventh) and 300m (ninth). Water at 500m was sixth highest ranked, with 259 

altitude eighth, and short grass (SG) at the 500m buffer tenth. 260 

 261 

Figure 2. Variable importance scores for the top ten variables as identified by the RF, with 262 

corresponding % increase in mean square error when that variable is randomly permuted. 263 

Percent variance explained = 70.78%, number of trees = 10000, mean square of residuals = 264 

0.07, number of variables tried at each split = 21. AI = Aggregation Index; DG = degraded 265 

grassland; UPS = upper Potentilla shrubland; SG = short grass. [SINGLE COLUMN FIGURE] 266 



 

 267 

A confusion matrix of the predicted values was generated using the OOB data samples to 268 

assess the RF predictive accuracy (Table 4). Results indicate that the RF performed with a high 269 

level of accuracy, with a 90.98% accuracy rate. Of the incorrectly predicted samples, the false 270 

positives (150) and false negatives (164) were similar in magnitude.  271 

 272 

Table 4. RF confusion matrix of predicted versus observed Ochotona spp. presence (1) and 273 

absence (0). Total correct = 3167, total incorrect = 314, percentage of survey points predicted 274 

correctly = 90.98% 275 

 276 

Observed 

value 

Predicted 

value 

Total 

 0 1  

0 2085 150 2235 

1 

 

164 1082 1246 

Total 2249 1232 3481 

 277 

 278 

The map produced (Fig 3) shows the predicted areas of Ochotona spp. presence with 279 

patchiness in these areas observed at the local scale. Areas of predicted presence occur across 280 



 

the area, but are more extensive to the south, west, and north-west of the original survey 281 

transects, with sparser areas of predicted presence to the east and north-east.  282 

 283 

Figure 3. Predicted Ochotona spp. presence (red) or absence (blue) with original survey 284 

transects overlaid and UTM WGS84 zone 47N grid displayed for context. [SINGLE 285 

COLUMN FIGURE] 286 

 287 

 288 

 289 

 290 

4. Discussion 291 

This research examined a critical phase of the Echinococcus multilocularis (Em) transmission 292 

cycle, and adopted an analytical approach using random forests (RF) to model and predict 293 

Ochotona spp. presence in relation to landscape characteristics within a highly endemic area of 294 

the Tibetan plateau for Em. We found that the environmental variables analysed explained 295 

70.78% of the variance in Ochotona spp. presence. It is argued thus that (1) Ochotona spp. 296 



 

presence is statistically related to key environmental variables which can be used to predict 297 

species presence over large areas; and (2) in the geographical area of interest Ochotona spp. 298 

presence is specifically linked to areas of degraded grassland.  299 

The application of RF for predictive modelling of Ochotona spp. presence, based on 300 

landscape characteristics has provided a clearer understanding of the influence of key 301 

landscape variables in this region. The environmental variables analysed explained 70.78% of 302 

the variance in Ochotona spp. presence, with a 90.98% accuracy rate indicating that the RF 303 

methods employed enabled accurate modelling of Ochotona spp. presence. Given these 304 

encouraging results, we then generated predictive maps of Ochotona spp. presence across a 305 

larger spatial extent within the same bio-geographical area to identify potential hot-spots of 306 

presence meriting further investigation as reservoir zones of the zoonotic parasite 307 

Echinococcus multilocularis. 308 

 This analysis enabled comparison of the relative importance of the environmental 309 

predictors, with the aggregation index (AI) landscape metric ranked with the highest 310 

importance. AI is computed where each land cover class is weighted by its area in the 311 

landscape, scaled to account for the maximum possible number of like adjacencies given any 312 

landscape composition (McGarigal et al., 2002). The interpretation is that buffered areas 313 

containing larger aggregations, or clusters of land cover patches of the same type, are of 314 

importance in influencing Ochotona spp. presence. However, eight of the ten highest ranked 315 

variables are particular land cover class variables suggesting that the presence of specific land 316 

cover classes was, with the exception of AI, of greater importance in influencing Ochotona 317 

spp. presence than land cover patch spatial arrangement. 318 

RF assessment indicated that degraded grassland (DG) at the 100m buffer size was the 319 

most important land cover class variable. At the 200m and 300m buffer sizes DG was again the 320 

highest ranked land cover variable. Although UPS (400m) and water (500m) were the highest 321 

ranked land cover variables at those respective buffer sizes, the ranking of DG as second, 322 

fourth and fifth most important variables overall, and highest at the three buffer sizes closest to 323 

the survey transect points, indicates that DG could be considered the most important land cover 324 

variable of influence. Smith & Gao, (1991) determined that the average home range for 325 

Ochotona curzoniae is 1,375 ± 206m2, placing the principle area of activity of an individual 326 

Ochotona spp. within the 100m buffer area, supporting the RF result that DG at the 100m 327 

buffer size is the most important land cover variable influencing Ochotona spp. presence. This 328 

reinforces previous studies that have sought to understand the drivers of Ochotona spp. 329 

presence in the study region such as Raoul et al. (2006), and visual field observations, 330 



 

indicating that higher Ochotona spp. densities were more commonly present in areas with low 331 

vegetation cover. It should be noted, however, that in some areas of degraded grassland where 332 

transects were surveyed Ochotona spp. were not present. This may be due to patchy local-scale 333 

extinctions during Ochotona spp. population cycles in this area.  334 

Of particular concern in the study area is the impact of heavy grazing by yak resulting 335 

in large areas of degraded grassland. Past studies have shown that land cover changes and 336 

grazing practices can increase the likelihood of small mammal population outbreaks that are 337 

suggested to play a significant role in Em transmission (Wang et al., 2004). If this heavy 338 

grazing results in larger Ochotona spp. populations and more frequent population outbreaks 339 

due to increased optimal habitat availability, this could potentially contribute to increasing 340 

levels of Em transmission, resulting in greater risk to human populations. 341 

 342 

4.1 Conclusions 343 

We have used random forests (RF) to successfully model the environmental variables 344 

influencing spatial patterns in the presence of the E. multilocularis intermediate host Ochotona 345 

spp. in western China. The predictive use of random forests to indicate likely areas of 346 

Ochotona spp. presence could form a valuable contribution to systematic modelling describing 347 

the broader E. multilocularis transmission pathways between Ochotona spp. small mammal 348 

intermediate hosts, both sylvatic (fox) and domestic (dog) definitive hosts, and susceptible 349 

human populations. Given the relationships established previously by Wang et al. (2010) 350 

correlating density of Ochotona spp. burrows with domestic dog infection rates, this 351 

methodology could enable identification of domestic dog populations at risk of continual re-352 

infection through predation of Ochotona spp. and thus help identify areas of active E. 353 

multilocularis transmission. In conjunction with the possibility of applying these techniques 354 

over larger geographical regions utilizing the extensive coverage of satellite imagery, such 355 

information could facilitate the design of pre-emptive disease control measures including 356 

targeted treatment of dogs with antihelminthic drugs to disrupt the Em transmission cycle in 357 

that region, thus reducing Em infection risk in local human populations. 358 

 359 
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