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Abstract 

 

   The ability to form anticipatory representations of ongoing actions is crucial for effective 

interactions in dynamic environments. In sports, elite athletes exhibit greater ability than 

novices in predicting other players’ actions, mainly based on reading their body kinematics. 

This superior perceptual ability has been associated with a modulation of visual and motor 

areas by visual and motor expertise. Here, we investigated the causative role of visual and 

motor action representations in experts’ ability to predict the outcome of soccer actions. We 

asked expert soccer players (outfield players and goalkeepers) and novices to predict the 

direction of the ball after perceiving the initial phases of penalty kicks that contained or not 

incongruent body kinematics. During the task we applied repetitive transcranial magnetic 

stimulation (rTMS) over the superior temporal sulcus (STS) and the dorsal premotor cortex 

(PMd). Results showed that STS-rTMS disrupted performance in both experts and novices, 

especially in those with greater visual expertise (i.e., goalkeepers). Conversely, PMd-rTMS 

impaired performance only in expert players (i.e., outfield players and goalkeepers), who 

exhibit strong motor expertise into facing domain-specific actions in soccer games. These 

results provide causative evidence of the complimentary functional role of visual and motor 

action representations in experts’ action prediction. 

 

 

 

 

Keywords: Action prediction, transcranial magnetic stimulation, superior temporal sulcus, 

premotor cortex, motor expertise 
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Introduction 

 

   Mounting research evidence has shown that action perception is strictly linked to motor 

representations (Prinz, 1997; Hommel et al. 2001). Indeed, effective interactions in dynamic 

environments require the prediction of the outcome of perceived actions and the formation of 

anticipatory representations of motion sequences. This ability has been either attributed to 

general visual processes, also responsible for the perception and recognition of environments 

and their elements (such as objects; e.g., Zago & Lacquaniti, 2005), or to a unique system 

specialized in the perception of the movements of conspecifics (Verfaillie & Daems, 2002; 

Ramnani & Miall, 2004; Wilson & Knoblich, 2005). Accordingly, several neuroimaging and 

neurophysiological studies have documented that the “action observation network” (AON) 

includes not only visual, occipito-temporal areas, but also motor, fronto-parietal areas 

(Rizzolatti & Craighero, 2004; Fadiga et al. 2005; Grafton, 2009; Van Overwalle & Baetens, 

2009). In this view, subjective experience has been considered to serve a crucial role in the 

recognition and simulation of ongoing actions (Hecht et al. 2001; Casile & Giese, 2006; 

Aglioti et al. 2008; Urgesi et al. 2012). Yet, the involvement of visual or motor brain 

representations in experts’ action perception has to be clarified. 

   Neuroimaging evidence has indicated that motor experience can significantly modulate the 

extent of the activation of the AON. For example, viewing dance movements activated the 

AON more in professional dancers than in novices (Calvo-Merino et al. 2005; 2006; Cross et 

al. 2006, 2009a, 2009b). When controlling, however, for the relative contribution of motor 

and visual expertise with the observed dance moves, only the fronto-parietal, but not the 

temporal visual areas, were specifically modulated in motor experts (Calvo-Merino et al. 

2006; Cross et al. 2009a, b). Moreover, the responses of neurons in the superior temporal 

sulcus (STS), a critical node of the AON, are influenced by previous action perception 
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(Jellema & Perrett, 2003), suggesting that these neurons may use visual experience to form a 

representation of ongoing actions (Perrett et al. 2009). This representation is purely 

perceptual, as STS neurons do not respond during action execution (Rizzolatti & Craighero 

2004). Conversely, neurons responding to both action observation and execution in the 

premotor cortex (mirror neurons; di Pellegrino et al. 1992; Gallese et al. 1996) may allow 

using previous motor experience with similar actions for predicting the future of ongoing 

actions, and thus building internal anticipatory models of even briefly perceived actions 

(Wilson & Knoblich, 2005; Gazzola & Keysers, 2009; Avenanti & Urgesi, 2011; Friston et 

al. 2011).  

   A significant example of the need for anticipatory representations of ongoing actions is in 

the case of sports. Athletes in time-demanding sports have to plan their actions based on the 

future of perceived movements executed by their opponents in the minimum amount of time; 

thus, an accurate prediction of the outcome of observed actions is deemed as necessary for 

successful performance. Indeed, previous research with elite athletes has shown that they own 

a unique ability to predict the future of opponents’ actions. For example, in various sports it 

has been found that both expert athletes and observers are able to provide earlier and more 

accurate predictions of the outcome of sport actions, compared to novices; however, while 

expert observers, such as coaches, base their predictions on the initial ball trajectory, elite 

athletes rely more on the perceived body kinematics of their opponents (Abernethy et al. 

2008; Aglioti et al. 2008; Tomeo et al. 2012; Urgesi et al. 2012). Furthermore, these athletes’ 

superior perceptual abilities are associated with differential activations in the motor cortex 

(Aglioti et al. 2008; Tomeo et al. 2012) and in body-related visual areas (Abreu et al. 2012) 

during observation of domain-specific actions. While these findings provide indications about 

the involvement of both visual and motor representations in the experts’ superior abilities for 
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predicting the fate of observed actions, no study has so far provided causative evidence about 

their relative functional roles.  

   To dissociate the role of visual and motor action representations in experts’ action 

perception, in the present study we investigated whether the suppression of visual and motor 

areas in experts had different detrimental effects with respect to novices. We applied a 

temporal occlusion paradigm (adapted from Tomeo et al. 2012), in which the presentation of 

soccer penalty kicks was interrupted at the foot-ball contact, thus only providing information 

on the kicker’s body kinematics. The kicks could be directed to the left or to the right side of 

the goalpost, but in half of the trials the videos were manipulated so that an incongruent foot-

ball contact followed the initial body running phase. At the offset of each video, we asked 

outfield players, goalkeepers and novices to predict the actual outcome of the kick (i.e., ball 

placed to the left or to the right of the goalpost). In keeping with the results of Tomeo et al. 

(2012), presenting the whole body movement up to the foot-ball contact ensured that all 

groups, independently of their expertise, had enough information to make correct predictions 

of the kick outcomes. Thus, all groups were expected to have comparable performance at 

baseline in this paradigm, while expertise-related improvements of prediction performance 

are stronger when only the initial body kinematics cues are available (Tomeo et al., 2012; 

Aglioti et al., 2008; Urgesi et al., 2012). Nevertheless, we expected that according to relative 

motor or visual expertise the three groups may use different perceptual cues and types of 

processing, more linked to motor simulation or to visual processing of body kinematics. Such 

different processing patterns should require different involvement of motor and visual areas 

that are activated during observation of body actions. Thus, to test the relative causative role 

of motor and visual action representation in experts and novices, during observation of the 

video-clips, we applied active or sham repetitive transcranial magnetic stimulation (rTMS) 

over two critical nodes of the AON; namely the left dorsal premotor cortex (PMd) and left 
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superior temporal sulcus (STS). Left hemisphere areas were targeted because we presented 

right foot penalty kicks, which are represented in the left motor cortex, and because the left 

hemisphere AON seem to be dominant in action observation independently from the side of 

the observed movement (Caspers et al., 2010). We hypothesized that STS-rTMS would 

impair task-performance in all groups, with greater detrimental effects for those with more 

visual expertise (i.e., goalkeepers). Conversely, PMd-rTMS should impair performance of 

soccer players but not novices, with greater effects for those players who exhibit greater 

motor expertise (i.e., outfield players).  

 

 

Materials and methods 

 

Participants. 

   The experiment sample consisted of sixteen expert soccer outfield players aged 18-37 years 

(mean=23.56 years, SD=5.24), sixteen expert goalkeepers aged 18-39 years (mean=23.13 

years, SD=5.44) and sixteen novices aged 19-28 years (mean=21.77 years, SD=1.96). No 

differences in age were detected between the participants’ groups (one-way ANOVA, 

[F(2,45)=0.72, p=0.49, ηp2=0.03]. All the participants were men and right-handed according 

to a standard handedness inventory (Briggs & Nebes, 1975). Four outfield players, one 

goalkeeper and three novices reported left-foot dominance, while the remaining 40 

participants reported right-foot dominance. Outfield players trained for a mean of 6.88 hours 

per week (SD=1.36) and had played soccer for a mean of 16.44 years (SD=6.27). 

Goalkeepers received training for a mean of 7.75 hours per week (SD=2.14) and had played 

soccer for a mean of 15.13 years (SD=4.97). The two expert groups did not differ for either 
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hours per week (t(16)=-1.34, p=0.191) or years of practice (t(16)=0.636, p=0.53). All outfield 

players and goalkeepers played in amateur Italian Soccer League teams, while all novices 

reported no experience of having received training or playing soccer in teams. All 

participants reported normal or corrected-to-normal visual acuity in both eyes and were naïve 

to the purpose of the study. Informed consent was obtained from all participants and they 

were compensated with 25€ for taking part. The experimental procedures were approved by 

the ethics committee of the Scientific Institute “E. Medea” and complied with the ethical 

standards of the Declaration of Helsinki (1964). Prior to taking part in the experiment, all 

participants had to complete a medical questionnaire, screening for neurological and other 

medical problems, as well as other contraindications to TMS (as described in Wassermann, 

1998; and Rossi et al. 2009). 

 

Stimuli and apparatus. 

   Stimuli were adapted by those used in Tomeo et al. (2012) research study. These were all 

video clips derived from digitally recorded videos of a male expert soccer outfield player 

(playing in an Italian Amateur Soccer League team) performing a series of penalty kicks 

under the instructions to place the ball at about 2.5–3.5 m to the left or to the right side of the 

goal center. The videos were recorded from the frontal plane, with the camera placed at a 

height of 150 cm and at a distance of 11 meters from the goal line, corresponding to the 

actual position of the goalkeeper. Eight videos were used: four displaying left-directed initial 

running and left kicks and four displaying right-directed initial running and right kicks (with 

reference to the observer’s perspective). Each video lasted 800 ms and it was split in 20 

frames by using Adobe Premiere software (Adobe Systems Incorporated, San Jose, CA), with 

the last frame being the foot-ball contact point. Each video was presented in both congruent 

and incongruent conditions. In congruent condition, each video-clip was presented with its 
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own original total number of frames, thus displaying the initial running phase and a 

congruent foot-ball contact scene in the last frame. In incongruent condition, the initial 

running phase was combined with the last frame displaying an incongruent foot-ball contact 

scene (i.e., a kick in the opposite direction with respect to that indicated by the initial running 

phase). By this manipulation we managed to obtain 8 congruent (4 right- and 4 left-directed) 

and 8 incongruent action video-clips (4 with left-directed initial running and right-directed 

foot-ball contact; 4 with right-directed initial running and left-directed foot-ball contact; see 

Figure 1 for example of stimulus manipulation). 

   During the experiment, participants seated in a dimly light room in front of a 19-inches 

CRT monitor (resolution of 1027 x 768 pixels, refresh frequency at 75 Hz), in which videos 

were presented on a black background and subtended a 14.4º x 11.5º region of optical view. 

The presentation of the stimuli and the TMS triggering were controlled by E-Prime version 

2.0 software (Psychology Software Tools Inc., Pittsburgh, PA). The same software also 

controlled for the randomization of the stimuli within experimental blocks and the recording 

of participants’ responses. 

 

<Insert figure 1 somewhere here> 

 

Transcranial magnetic stimulation (TMS). 

   Online rTMS was performed by means of a 70-mm figure-of-eight stimulation coil 

(Magstim Double 70mm Air Film Coil), connected to a Magstim SuperRapid
2
 Stimulator 

(The Magstim Company, Carmarthenshire, Wales), producing a magnetic field up to 0.8 

Tesla at the coil surface. The location of the primary motor cortex “hot spot” for activating 

muscles of the right hand was determined prior to the main experiment. This was achieved by 
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trial and error exploration relative to its typical location, with single-pulse TMS applied at a 

low rate (<0.2 Hz). Surface Ag/AgCl cup electrodes (1 cm diameter) were placed in a belly-

tendon montage and connected to a Magstim MEP Pod module (sampling rate, 6000Hz; 

band-pass filters, 20 Hz-2 kHz). First, we identified the scalp location that consistently gave 

rise to motor evoked potentials (MEPs) with the highest amplitude in the first dorsal 

interosseous (FDI) hand muscle. Then, we determined the lowest stimulation intensity that, 

during rest, evoked MEPs with amplitude higher than 50 µV on at least 50% of occasions 

(the “resting motor threshold”).  

   The online rTMS protocol applied in this study involved 5 pulses at 10Hz at 120% of the 

participant’s resting motor threshold. This on-line, high-frequency protocol has been 

identified to disrupt the functions related to the target area (Walsh & Pascual-Leone, 2003). 

The stimulation sites (Fig. 2) on each participant’s scalp were identified by means of a 

SofTaxic Navigator system (EMS, Bologna Italy). Skull landmarks (nasion, inion, and 2 

preauricular points) and about 60 points providing a uniform representation of the scalp were 

digitized by means of a Polaris Vicra Optical Tracking System (NDI, Canada). Coordinates 

in Talairach space (Talairach & Tournoux, 1988) were automatically estimated by the 

SofTaxic system based on an MRI-constructed stereotaxic template. The dorsal premotor area 

(PMd) was targeted in the left precentral gyrus (x=-50, y=-1, z=44; Cross et al. 2011) 

corresponding to Brodmann’s area 6, whereas the superior temporal sulcus (STS) area was 

targeted in its posterior aspect (x=-62.9, y=-52.5, z=9.4; Caspers et al. 2010) corresponding to 

Brodmann’s area 21. The coil position during the experiment was monitored by means of the 

SofTaxic Navigator system, which also estimated the projections of the stimulation sites on 

the brain surface. The coil was held tangentially to the scalp, with the handle pointing at 45° 

backwards/laterally for PMd stimulation and 45° backwards/upwards for STS stimulation. 

Sham stimulation was delivered by tilting the TMS coil 90º over the PMd area; this 
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procedure allows to fake stimulation with the same noise and scalp contact as during real 

stimulation but no current reaches the brain (Rossi et al., 2009). Sham stimulation was 

applied over the scalp location of only PMd and not of STS to reduce the number of 

experimental conditions, since we did not expect any effect at all of sham stimulation on 

performance wherever it was applied. 

 

<Insert figure 2 somewhere here> 

 

Procedure and design. 

   Each experimental session lasted approximately 90 minutes and consisted of 3 blocks, with 

one block for each stimulation site. In each block, 96 trials were presented (6 repetitions x 16 

video clips) in a fully randomized order. The order of blocks was counterbalanced between 

subjects. A small break was allowed between blocks. A trial started with the presentation of a 

centrally located fixation cross for 1 second, which was followed by the experimental videos 

presented for 800 ms at the center of the computer monitor. The rTMS pulses were delivered 

600 ms after the onset of each video-clip (see also Figure 1). Thus, the rTMS train lasted 

from 200 ms before the video offset to 200 ms afterward. At the end of each video 

presentation, a prompt frame appeared asking the participants to press with their right index 

or middle finger the left or right button of the computer mouse to indicate whether the kick 

displayed in the video-clip was directed to the left or right side, respectively. Participants 

were instructed to be as fast as possible in their responses, while maintaining accuracy. 

Presenting the prompt frame before allowing participants to respond avoided response 

anticipations and ensured that all participants in all conditions viewed the whole video-clip 

before responding. This, however, prevented us from considering latencies as measure of 
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processing efficiency in perceiving the stimuli. Thus, our main dependent variable was 

response accuracy (see also Tomeo et al. 2012). At the end of each experimental session all 

subjects were debriefed; none reported any problems and/or major discomfort due to TMS. 

 

<Insert figure 3 somewhere here> 

 

Kinematic analysis of the visual stimuli. 

   In order to identify the kinematic differences between the left-and right-directed initial 

running phases and kicks, we calculated the angles formed by the model’s upper and lower 

limb joints at two frames: 200 ms before and at the foot-ball contact point. The definition of 

the joint angle profile was performed using dedicated software for motion analysis (Dartfish 

Connect v. 4.0, Dartfish Ltd., Fribourg, Switzerland). For each frame, we defined the 

amplitude of the joint angles for the right hip, left hip and right side of the waist (Fig. 4). For 

each joint, the mean angle values of the four left and the four right kicks were compared in 

each of the two frames by series of non-parametric independent tests (Mann-Whitney U 

Test).  

 

<Insert figure 4 somewhere here> 

 

Behavioral data analysis. 

   The percentage of correct responses (accuracy) was calculated for each participant in each 

experimental condition. For the incongruent video-clips, the correctness of responses was 

defined on the basis of the direction indicated by the last available cue (foot-ball contact 
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point). Furthermore, as a supplementary analysis, to directly compare the magnitude of the 

interferential effects in the three groups, a percent index of rTMS effect as compared to the 

Sham was computed for each stimulation site with the following formula: (Accuracy active 

rTMS–Accuracy Sham)/(Accuracy active rTMS+Accuracy Sham). The use of such a 

difference-by-sum ratio procedure (which is analogous to a quotient computation) allowed us 

to scale the estimation of the rTMS effects to the individual baseline performance. Finally, as 

in two-alternative-forced-choice tasks, like the one in the present study, it is possible that 

accuracy percentage conflates bias with decision, we also calculated and analyzed d’ prime 

and response bias scores (natural logarithm of ß; lnß), in order to validate and further expand 

our findings. For statistical analyses we used repeated-measures and mixed-model Analysis 

of Variance (ANOVA) models implemented in Statistica 8 software (StatSoft, Inc, Tulsa, 

OK), after checking that normality and sphericity assumptions were not violated. All post-hoc 

pairwise comparisons were performed using the Duncan test. A significant threshold of 

p<0.05 was set for all analyses. Effect sizes were estimated using the partial eta square 

measure (ηp
2
). 

 

 

Results 

 

Action kinematics. 

   The most critical kinematics difference (Fig. 5) in the transition from the running to the 

foot-ball contact phase of both left and right action videos was identified between the angles 

formed by the right side of the model’s waist. More specifically, for congruent videos (left 

running to left foot-ball contact, right running to right foot-ball-contact) a significant increase 
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of the joint angle was observed for both sides (left: U=1, Z=-2.02, p<0.05; right: U=0, Z=-

2.31, p<0.05). This increase was also significant for the incongruent transition from right 

running to left foot-ball contact (U=0, Z=-2.31, p<0.05), whereas it was not observed for the 

incongruent trials showing left running and right foot-ball contact (U=4, Z=-1.15, p=0.25). 

Thus, with respect to waist angle changes, the incongruent trials depicting right running and 

left foot-ball contact appeared similar to congruent trials, whereas this was not the case for 

the incongruent trials depicting left running and right foot-ball contact. Furthermore, for the 

right hip angles, we found a significant decrease for both congruent (left: U=0, Z=2.31, 

p<0.05; right: U=0, Z=2.31, p<0.05) and incongruent videos (left: U=0, Z=2.31, p<0.05; 

right: U=1, Z=2.02, p<0.05). Finally, for the left hip no significant differences were identified 

for both congruent and incongruent videos.  

 

<Insert figure 5 somewhere here> 

  

Baseline behavioral performance.  

   Based on the aforementioned kinematic analysis results and in order to check whether the 

sides of initial running and kick (left, right) affected participants’ responses, we first run a 

mixed-model ANOVA on the accuracy data (untransformed) for the Sham condition, with 

group (outfield players, goalkeepers and novices) as a between-subjects factor, and type of 

action (congruent, incongruent) and side of initial running (right, left) as within-subjects 

effect. The ANOVA results revealed only a significant 2-way interaction [F(1,45)=26.33, 

p<0.001, ηp2=0.37] showing that left-side initial running/right kicks were responded better 

than right-side initial running/left kicks in the incongruent condition (p<0.001). The main 

effect of group and the 2- and 3-way interactions involving the group factor were not 
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significant [all F(2,45)<1.36, p>0.26, ηp2<0.57], showing comparable group performance at 

baseline. We thus tested how TMS over STS and PMd affected the performance of the three 

groups while all of them could perform the task at baseline. 

 

rTMS effects. 

  Accuracy. Considering the significant differences between left and right sides of initial 

running and kicks, we run separate ANOVAs for the accuracy values (untransformed) of each 

initial running side condition, with group (outfield players, goalkeepers, novices) as a 

between-subjects factor, and type of action (congruent, incongruent) and stimulation (STS, 

PMd, Sham) as within-subjects effects. For the right-side initial running condition we found 

only a significant main effect of action type [F(1,45)=750.41, p<0.001, ηp2=0.94], with 

better performance for congruent than incongruent trials. No other main effects or 

interactions were significant [all F<1]. For the left-side initial running condition, the ANOVA 

revealed significant main effects of stimulation [F(2,90)=17.66, p<0.001, ηp2=0.28] and 

action type [F(1,45)=480.46, p<0.001, ηp2=0.91]. Also, the 2-way interactions between 

group and action type [F(2,45)=4.57, p<0.05, ηp2=0.17] and between group and stimulation 

[F(2,90)=18.2, p<0.001, ηp2=0.29] were significant, and were further qualified by a 

significant 3-way interaction between group, type of action and stimulation [F(4,90)=2.48, 

p<0.05, ηp2=0.1]. 

   To explore the significant 3-way interaction for left-side initial running, we run separate 

ANOVAs for each of the three groups, with action type and stimulation as within-subjects 

effects. For the group of novices, the ANOVA revealed a significant main effect of action 

type [F(1,15)=133.74, p<0.001, ηp2=0.9] and a significant 2-way interaction [F(2,30)=3.63, 

p<0.05, ηp2=0.19]. Post-hoc tests revealed that novices’ performance for incongruent trials 
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was significantly impaired in the STS with respect to both PMd (p=0.005) and Sham 

(p=0.029) rTMS conditions, between which in turn it did not differ (p=0.384). For the group 

of outfield players, the ANOVA revealed significant main effects of action type 

[F(1,15)=143.71, p<0.001, ηp2=0.91] and stimulation [F(2,30)=7.04, p<0.005, ηp2=0.32]. 

Also, the 2-way interaction between action type and stimulation was significant 

[F(2,30)=10.7, p<0.001, ηp2=0.42] showing that outfield players’ performance was 

significantly impaired in the STS than PMd (p=0.003) and Sham (p<0.001) stimulation 

conditions; importantly, however, also PMd-rTMS had a detrimental effect with respect to 

Sham (p<0.001). In a similar vein, the ANOVA for goalkeepers showed significant main 

effects of action type [F(1,15)=211.78, p<0.001, ηp2=0.93] and stimulation [F(2,30)=9.68, 

p<0.001, ηp2=0.39], as well as significant 2-way interaction [F(2,30)=8.58, p<0.005, 

ηp2=0.36]. Post-hoc tests revealed that STS-rTMS impaired performance with respect to 

PMd-rTMS (p = 0.005) and Sham (p<0.001); then again, PMd-rTMS impaired performance 

as compared to Sham (p = 0.006).  

 

<Insert figure 6 somewhere here> 

 

   Magnitude of the rTMS effect. Although the performance of all groups in predicting 

incongruent left-side initial running/right kicks was interfered by STS-rTMS, the magnitude 

of the effect [transformed data: Fig. 7] for novices was significantly lower with respect to 

goalkeepers (t(30)=2.63, p=0.013), but not to outfield players (t(30)=1.79, p=0.083). On the 

other hand, the magnitude of the effects of PMd-rTMS was significantly lower in novices 

than both goalkeepers (t(30)=2.16, p=0.039) and outfield players (t(30)=2.14, p=0.04). No 

difference was obtained between outfield players and goalkeepers (both p>0.18). 
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<Insert figure 7 somewhere here> 

 

   Signal detection theory analysis. As mentioned before, in 2-alternative forced choice tasks, 

like the one we applied at the present study, accuracy data may be affected by systematic 

response strategies. Since the present study design was aimed at testing how the ability of 

three different groups of observers to predict the outcome of congruent and incongruent 

soccer actions was affected by rTMS applied over STS and PMd, performance could be 

affected not only by sensitivity to detect an incongruence between the initial running phase 

and the foot-ball contact, but also by systematic bias to respond in accordance with the 

direction indicated by the initial running phase. In order to control for these effects and 

validate our accuracy data findings, we used the signal detection theory to calculate d’ and 

lnß. We did this by plotting our accuracy data, either for left- or right-side initial running 

videos, according to presence vs absence of incongruence between the initial running phase 

and the foot-ball contact; the proportions of left-right responses for each condition were 

coded according to whether they corresponded to the side of the initial running phase (i.e., no 

incongruence was detected) or to the opposite side (i.e., incongruence was detected). The d’ 

and lnß scores were then calculated, considering the proportion of “incongruence-detected” 

responses in the incongruent condition as “hits” and the proportion of  “incongruence-

detected” response in the congruent condition as “false alarms”; separate calculations were 

performed for the videos displaying left and initial running directions. Then, we run a 

repeated-measures ANOVA on these data with group (outfield players, goalkeepers, novices) 

as a between-subjects factor, and stimulation (STS, PMd, Sham) and side of initial running 

(left, right) as within-subjects effects.  

   For the d’ scores, the ANOVA revealed main effects of stimulation [F(2,90)=11.44, 

p<0.001, ηp2=0.2] and initial running side [F(1,45)=5.92, p<0.05, ηp2=0.12], a 2-way 
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interaction between stimulation and side of initial running [F(2,90)=12.65, p<0.001, 

ηp2=0.22], further validated by a 3-way interaction between group of subjects, stimulation 

and initial running condition [F(4,90)=2.75, p<0.05, ηp2=0.11]. To explore the significant 3-

way interaction, we run separate ANOVAs for each of the three groups, with stimulation and 

initial running side as within-subjects effects. For the group of novices, the ANOVA revealed 

a significant main effect of initial running side [F(1,15)=8.26, p<0.05, ηp2=0.35] and a 

significant 2-way interaction [F(2,30)=4.44, p<0.05, ηp2=0.23]. Post-hoc tests revealed that 

novices’ performance for left-side initial running was significantly impaired in the STS with 

respect to both PMd (p=0.003) and Sham (p=0.02) rTMS conditions, between which in turn it 

did not differ (p=0.356). For the group of outfield players, the ANOVA revealed a significant 

2-way interaction between stimulation and initial running side [F(2,30)=7.98, p<0.01, 

ηp2=0.35] showing that outfield players’ performance for the trials depicting left-side 

running was significantly impaired in the STS than PMd (p=0.019) and Sham (p<0.001) 

stimulation conditions; importantly, however, also PMd-rTMS had a detrimental effect with 

respect to Sham (p=0.015). Finally, the ANOVA for goalkeepers showed a significant main 

effect of stimulation [F(2,30)=6.45, p<0.01, ηp2=0.3], as well as a significant 2-way 

interaction [F(2,30)=6.04, p<0.01, ηp2=0.29]. Post-hoc tests revealed that for the left-side 

initial running condition, STS-rTMS impaired performance with respect to Sham (p<0.001) 

and marginally compared to PMd-rTMS (p=0.06); then again, PMd-rTMS impaired 

performance as compared to Sham (p = 0.005). No significant differences were observed 

between stimulation conditions for the trials showing right-side initial running in all three 

groups. 

 

<Insert figure 8 somewhere here> 
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   Finally, for lnß scores the ANOVA revealed non-significant main effects or interactions [all 

F < 2.38, p > 0.13, ηp2
 
< 0.065], with overall bias greater than 1, pointing to a moderate 

tendency to report more often incongruent running and foot-ball contact cues in all conditions 

and groups. Thus, the effects of rTMS on performance were not mediated by change in 

response bias. 

 

 

Discussion 

 

   In the present study we investigated how the action prediction performance of expert soccer 

players (outfield players and goalkeepers) and novices was affected by rTMS interference 

with visual (STS) and motor (PMd) areas. The results showed that, for congruent actions, all 

three groups achieved ceiling effects in performance and, thus, no difference was observed 

between experts and non-experts. However, the presentation of an incongruent foot-ball 

contact significantly impaired the performance of all participants, especially when the videos 

showed left-directed running and right foot-ball contact (kick). Kinematics analysis, indeed, 

showed that the body kinematics in the transition from right running to left foot-ball contact 

was compatible with a congruent action. This left participants with minimal information for 

discriminating the actual kick direction and they tended to base their responses on the initial 

running phase (performance<50%). Conversely, the transition from left running to right foot-

ball contact altered the actual kinematics of the kick, and this allowed participants to detect 

incongruent body-kinematics cues and predict with relatively better accuracy the actual 

outcome of the kick. Although the loose clothes of our model player, which were similar to 

soccer team kits used in matches, may have prevented an accurate measurement (and 
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perception) of subtle kinematic cues, the alterations detected by our analyses were large 

enough to be perceived during video presentation. Importantly, it was in the incongruent 

condition that rTMS interference with STS and PMd impaired performance as compared to 

Sham stimulation. In particular, while STS-rTMS impaired action discrimination 

performance in all three groups, PMd-rTMS had an effect only in those groups with direct 

motor (and visual) expertise with the displayed, domain-specific actions (i.e., outfield players 

and goalkeepers).   

   Previous research studies have shown that motor experts present superior perceptual 

abilities in reading the body kinematics of observed actions (Aglioti et al. 2008; Farrow & 

Abernethy, 2003; Urgesi et al. 2012). This allows them to predict earlier and more accurately 

the outcome of others’ actions. In line with these studies, Tomeo et al. (2012) found that 

expert outfield players and goalkeepers outperformed novices with regards to predicting the 

outcome of observed congruent penalty kicks after observation of the initial only running 

phase. On the other hand, when also the foot-ball contact was presented, the results were in 

line with the present study, indicating a comparable high-level performance in all expert and 

novice participants. Hence, while sport experts have superior action-prediction abilities with 

respect to novices, this perceptual advantage is specific for reading initial body kinematics. 

On the other hand, the availability of crucial visual information extracted by scenes, such as 

the foot-ball contact and the initial ball trajectory, can also give an advantage and increase the 

performance of novices in predicting the fate of on-going actions. In this view, visual and 

motor experience may play different, complementary roles in action prediction (Urgesi et al. 

2012). Indeed, visual experience may foster visual action representations that are used to 

describe and to understand the visual dynamics of the movements and of the related contexts. 

In contrast, motor experience may allow for motor, simulative, body-kinematics-based 

representations that are used to predict and to anticipate the future actions of other individuals 
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(Wilson & Knoblich, 2005; Abernethy & Zawi, 2007; Schütz-Bosbach & Prinz, 2007; 

Smeeton & Huys, 2010; Urgesi et al. 2010). 

   The main aim of the present study was to test the effects of interfering with the visual and 

motor nodes of the AON in experts and novices. Previous studies (Calvo-Merino et al. 2005, 

2006; Cross et al. 2006, 2009a, 2009b) have shown that the activity of these two nodes are 

differently affected by visual and motor expertise and that this modulation is associated with 

experts’ greater ability in understanding others’ actions (Aglioti et al. 2008; Calvo-Merino et 

al. 2010). Beyond this correlational finding, which cannot rule out that the association 

between experts’ higher motor activation and superior perceptual abilities is just 

epiphenomenal (Avenanti & Urgesi, 2011; Avenanti et al. 2013), the present study provides 

causative evidence that the functional role of PMd in action perception is dependent on direct 

motor experience with the observed actions. Indeed, while for both experts and novices a 

significant impairment of performance was observed following interference with STS, 

interference with PMd activity impaired only outfield players’ and goalkeepers’ performance. 

   It has been suggested that the activity of PMd during action observation reflects the inner 

simulation of the ongoing actions, enabling the observer to create anticipatory representations 

of perceived known actions (Grezes & Decety, 2001; Avenanti et al. 2007; Urgesi et al. 2007; 

Urgesi et al. 2010; Stadler et al. 2011). In line with this notion, we can estimate that 

suppression of the PMd area in our expert players impaired their performance in the task 

compared to Sham stimulation, as they were deprived from the ability to depend on their 

motor experience in order to create internal anticipations for the outcome of the perceived 

actions. In the present study, this was evident only for the case of incongruent actions and not 

for the congruent ones, thus being specific for perceptual tasks in which the observers had to 

dynamically update the internal action representations on the basis of new and contrasting 

perceptual evidence. After all, it is in the case of incongruent, ambiguous or incomplete 
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actions that continuous motor information serves a crucial role into accurately perceiving the 

relevant cues and completing the missing information using internal (motor) models of the 

spatial and temporal deployment of the actions. However, as mentioned before, all subjects 

achieved ceiling effects in predicting congruent penalty kicks and thus, any differences 

between the stimulation conditions may not be obvious. 

   Recent neurophysiological and neuroimaging research has indicated that the AON may be 

organized as an active feed-forward system. In particular, STS nodes are thought to pass 

computations and information from the visual areas to the network (Nishitani et al. 2004); 

accordingly, stimulation of left (Van Kemenade et al., 2012) and right (Grossman et al., 

2005) STS interferes with action processing and patients with lesion of STS present disorders 

in biological motion perception (Saygin, 2007). Thus, STS seems critical for action 

perception. Importantly, however, suppression of the STS nodes results in a compensatory 

increase of action simulation (Wilson & Knoblich, 2005; Avenanti et al. 2012; Avevanti et al. 

2013), suggesting that more motor simulation is required when perceptual action processing 

is more blurred. In the present results we observed that predicting incongruent actions was 

significantly decreased following STS inhibition as compared to both Sham and PMd 

stimulations. Thus, after suppression of STS all participants, and especially goalkeepers, 

tended to respond more on the basis of the initial kinematics of the running phase and did not 

detect the incongruent foot-ball contact. According to the aforementioned theory, that could 

be due to the fact that by suppressing STS a greater weight was given to anticipatory action 

models based on the inner motor simulation of the initial body kinematics. However, that 

proved detrimental for the present task as simulation of the initial kinematics deprived the 

subjects from the ability to recognize the following incongruent cues and, thus, adjust their 

responses. Importantly, such detrimental effect was greater for goalkeepers than novices 

probably reflecting their greater visual experience with frontal views of penalty kicks as 
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compared to both novices and outfield players. On the other hand, no difference was obtained 

between the effects of PMd TMS for goalkeepers and outfield players on their ability to 

predict front-facing actions, in keeping with studies showing that observation of actions 

viewed from both third-person (front) and first-person (back) perspective engenders 

activation of fronto-parietal areas (e.g., Alaerts et al., 2009; Vingerhoets et al., 2012; Wiggett 

et al., 2012). Accordingly, previous behavioral studies (Canal Bruland et al. 2010; Sebanz & 

Shiffrar, 2009) have shown better detection of fake actions viewed from the front than side 

way in both players and goalkeepers as compared to individuals with no specific experience 

with the actions, although the front viewing perspective is more customary for goalkeepers 

than for players. 

   The present results may shed light on the neural bases of the ability to detect deceptive 

behaviors in others. Indeed, although we did not ask our model to intentionally deceive the 

observers, our manipulation of the congruence between the running phase and the foot-ball 

contact introduced body-kinematics incongruence, which characterizes deceptive actions 

(Kunde et al., 2011). Indeed, effective deception implies: i) providing exaggerated body-

related cues that induce others to make incorrect action predictions,  and ii) minimizing or 

delaying postural cues that may inform others of possible sudden changes (Brault et al. 2010). 

Thus, the situation is highly reminiscent of successfully fake moves, in which expert kickers 

can alter the kick direction up to 174 ms before the foot-ball contact (van der Kamp, 2006). 

Detecting deceptive action, thus, requires identifying the incongruence between honest and 

bluffing body-kinematics cues and flexibly updating ongoing action representation on the 

basis of upcoming information, abilities which seem to require the motor nodes of the AON 

(Tidoni et al. 2013).  

   Previous research has reported mixed results with regards to the role of experience into 

detecting deceptive actions. For example, studies with elite athletes have shown that motor 
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experts are better into detecting deception compared to less experts or novices (i.e. Jackson et 

al. 2006; Canal-Bruland et al. 2010), whereas in other cases it has been reported that the 

athletes’ superior ability to read the opponents’ body kinematics can disadvantage them into 

detecting when they are trying to deceive them (Ripoll et al. 1995; Dessing & Craig, 2010). 

In the Tomeo et al. (2012) study, it was found that outfield players, with respect to 

goalkeepers and novices, were more susceptible to be fooled by the incongruence between 

the initial body kinematics and the initial ball trajectory. When coupled with the earlier 

prediction abilities of outfield players and goalkeepers, with respect to novices, this finding 

suggests that outfield players automatically create anticipatory representations of perceived 

actions based on the observation of initial body kinematics and, thus, they are more prone to 

be fooled. Of course, the same applies to expert goalkeepers, with the difference that they can 

inhibit these internal anticipatory representations and thus, update them when incongruent 

perceptual cues are present. Accordingly, using single-pulse TMS to measure cortico-spinal 

excitability, Tomeo et al (2012) showed that motor facilitation during observation of 

incongruent vs. congruent actions was lower for goalkeepers, higher for novices, and 

comparable for outfield players, indicating that predicting the actual outcomes of fooling 

actions requires updating simulative motor representations based on visual representation. 

Although in the present study we did not find any difference between the three groups’ 

baseline performance in detecting the incongruence between the running phase and the foot-

ball contact, such performance was differently affected by rTMS interference with the PMd 

area, which was more detrimental for outfield players and goalkeepers than for novices. 

Conversely, although interference with STS impaired the performance of all groups, 

goalkeepers were mostly affected, suggesting their greater relying on visual, and not only, 

motor action representations (Tomeo et al. 2012).  
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   Overall, in the present study we tried to investigate the causative role of visual and motor 

action representations on the experts’ ability to predict the actual outcome of ongoing actions 

on the basis of incomplete and incongruent perceptual information. Though these trials were 

manipulated in a way that made kick presentation to look less naturalistic, the results clearly 

indicated that both experts and non-experts under specific circumstances can predict the 

actual outcome of familiar or unfamiliar actions and that the inclusion of incongruent body 

kinematics dramatically affects their performance. Most importantly, though, experts and 

non-experts seem to use different neural mechanisms in this task, as it was illustrated by the 

different effects of suppressing the visual and motor nodes of the AON in this study. While 

both experts and novices can access to visual action representations in STS, only experts are 

equipped and use internal motor representations to predicts others’ behavior. Further studies 

in the field could include a repertoire of every-day actions, in which people exhibit different 

levels of expertise, as well as actions depicting intentional deception and/or some level of 

incoherence. This way, the present findings could be further validated in order to confirm and 

disentangle the relative contribution of visual and motor experience in the formation of action 

representations in visual and motor areas. 
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Figure 1. Sequence of video-clips presentation in a typical trial. The arrows denote the change of the last 
video frame for the control of congruent and incongruent trials. The flash symbol and highlighted frame 

indicate the start of delivering the TMS pulses.  
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Figure 2. Stimulation sites applied in the current study.  
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Figure 3. Sequence of a typical trial in the study.  
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Figure 4. Example of body kinematic measurements. Grey lines denote the joint angles, for which we took 
measurements.  
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Figure 5. Joint angles data. Error bars denote standard errors.  
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Figure 6. Accuracy data (untransformed) in the task. Error bars denote standard errors.  
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Figure 7. rTMS effects (transformed accuracy data) between experimental groups. Error bars denote 
standard errors.  
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Figure 8. D’ prime scores in the task. Error bars denote standard errors.  
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