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Abstract 

Two-component regulatory systems play a key role in the cell metabolism adaptation to 25 

changing nutritional and environmental conditions. The fidelity between the two cognate 

proteins of a two-component system is important since it determines whether a specific 

response regulator integrates the signals transmitted by different sensor kinases. 

Phosphate regulation in Streptomyces coelicolor is mostly mediated by the PhoR-PhoP 

two-component system. Previous studies elucidated the mechanisms that control 30 

phosphate regulation as well as the genes directly regulated by the response regulator 

PhoP (pho regulon) in this organism. However, the role of the histidine kinase PhoR in 

Streptomyces coelicolor had not been unveiled so far. In this work, we report the 

characterization of a non-polar ∆phoR deletion mutant in S. coelicolor that keeps its 

native promoter. Induction of the phoRP operon was dependent upon phosphorylation of 35 

PhoP but the ∆phoR mutant expressed phoP at a basal level. RT-PCR and reporter 

luciferase assays demonstrated that PhoR plays a key role in the activation of the pho 

regulon in this organism. Our results point towards a strict cognate partner specificity in 

terms of the phosphorylation of PhoP by PhoR thus corroborating the tight interaction 

between the two-components of this system. 40 
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Introduction 

Streptomyces coelicolor is a Gram-positive soil bacterium and as such, it must be able to 

adapt to the frequent sudden changes of the environment. One of the most widely used 

mechanisms exploited by bacteria in order to overcome rapid environmental changes is 

the use of two-component systems (TCSs). Bacterial two-component systems typically 45 

consist of a membrane histidine kinase (HK) which acts as a sensor protein and is able to 

auto-phosphorylate a conserved histidine residue in response to an environmental or 

nutritional signal and consequently transfer this phosphate group onto an aspartic acid 

residue on the response regulator (RR). As a result, a conformational change is produced 

in the response regulator which usually activates a C-terminal DNA binding domain thus 50 

regulating the expression of the target genes (Hakenbeck and Stock 1996). The S. 

coelicolor genome encodes 84 HKs and 80 RRs including 67 sensor-regulator pairs 

(Hutchings et al. 2004), which highlights the importance of signal sensing in this 

organism.  

In a number of Streptomyces species phosphate regulation is mediated by the TCS PhoR-55 

PhoP (Sola-Landa et al. 2003; 2005; Ghorbel et al. 2006; Mendes et al. 2007). The global 

phosphate response regulator PhoP and its target genes have been characterized in S. 

coelicolor over the last decade (reviewed in Martin et al. 2011). Genes under direct 

control of PhoP constitute the denominated pho regulon. Several PhoP operators have 

been characterized by protein-DNA binding assays (EMSA and DNase I footprinting) in 60 

numerous promoters (Apel et al. 2007; Rodriguez-García et al. 2007; 2009; Sola-Landa et 

al. 2005; 2008; Santos-Beneit et al. 2008; 2009 a,b; 2011). PhoP can act either as a 

positive regulator, by binding at the -35 region (or nearby), or as a repressor, when bound 
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to the -10 region (i.e. as a road-block for the RNA polymerase) (Santos-Beneit et al. 

2008). Interestingly, PhoP acts not only as a specific regulator involved in controlling 65 

phosphate levels within the cell by regulating processes such as extracellular phosphate 

scavenging and transport, but it also seems to have a more global implication, regulating 

other primary and secondary metabolic genes involved in nitrogen and carbon 

metabolism (Rodríguez-García et al. 2009); hence the importance of understanding the 

upstream regulation of this complex response regulator. 70 

 

Due to the organization of the phoR-phoP operon in S.coelicolor, where both genes share 

a common promoter from which they are likely to co-transcribe, since this is the case in 

the close relative S. lividans (Ghorbel et al. 2006), it had been difficult so far to study the 

role of the sensor kinase PhoR via a deletion mutant. In other organisms, where 75 

disruption of the sensor kinase was less complicated due to the genetic arrangement, in an 

operon in which the HK is located downstream of the RR, it has been shown that other 

proteins and/or small molecules are able to compensate for loss of PhoR. For example, in 

E. coli, the sensor kinase CreC (PhoM), which is involved in carbon metabolism, is able 

to phosphorylate PhoB (homologous RR to the S. coelicolor PhoP) in the absence of 80 

PhoR (Amemura et al. 1990). At the same time, it has also been observed that acetyl 

phosphate, an intermediate of carbon metabolism, was able to activate PhoB, thus 

indicating certain cross-talk between the phosphate and carbon metabolic pathways 

(McCleary and Stock 1994). Furthermore, other studies have revealed that at least other 

six different kinases present the ability to phosphorylate PhoB in vivo in E. coli (Fisher et 85 

al. 1995; Zhou et al. 2005). However, the B. subtilis PhoP-PhoR system, which belongs 
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to a more intricate multi-component network involved in phosphate signal transduction 

(Sun et al. 1996), seems to be very specific and although PhoR is able to phosphorylate a 

non-cognate partner YycF, the reciprocal cross-talk does not occur and PhoP seems 

unable to be phosphorylated by a kinase other than PhoR in this organism. 90 

 

The recent availability of molecular tools to facilitate the construction of non-polar 

deletion mutants in Streptomyces (Gust et al. 2003; Fedoryshyn et al. 2008; Fernández-

Martínez et al. 2011) has allowed us to construct and characterize for the first time a S. 

coelicolor ∆phoR mutant strain in which phoP is transcribed from the native phoRP 95 

promoter, a key step in order to assess the fidelity of the PhoR-PhoP system in this 

organism. In this work, we demonstrate that the expression of genes of the pho regulon is 

not induced in the absence of PhoR thus pointing towards the specificity of the 

phosphorylation of PhoP by its cognate partner PhoR in S. coelicolor. On the other hand, 

this work also presents a study of both phenotypic characterization and antibiotic 100 

production of the ∆phoR strain under different conditions compared to both the ∆phoP 

and the wild-type M145 strains.  

 

Results 

Construction of a non-polar S. coelicolor ∆phoR mutant 105 

In order to characterize ∆phoR and assess the fidelity of the PhoR-PhoP two-component 

system, a non-polar deletion of phoR, to allow normal transcription of phoP was 

constructed (See diagram if Fig. 1.C.). The phoR gene is located on cosmid 7H10 

(Fernández-Martínez et al. 2011). pIJ774 (Khodakaramian et al. 2006) was used as the 
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template in a PCR since it contains the loxP sites flanking the apramycin resistance 110 

cassette, thus allowing its posterior removal using the Cre-loxP system. To amplify 

pIJ774,primersCAR01(TGGGGCCGGACGGTTCGCCGTGCCTAACCTGGAGACAT

GATTCCGGGGATCCGTCGACC) and phoRrev (AGTCCGGCGCGGTCGGACCGCC

GCTGCGCGCGGTCGCGGTGTAGGCTGGAGCTGCTTC) were used to generate the 

recombination substrate for replacement of phoR in cosmid 7H10.  115 

 

The above PCR product was transformed into E. coli BW25113/pIJ790 (expressing the λ-

Red recombination functions) already containing cosmid 7H10 as described in Gust et al. 

2003. Apramycin resistant transformants were selected, and the recombinant cosmid was 

identified by PCR and restriction endonuclease analysis (data not shown) and conjugated 120 

into S. coelicolor M145 via E. coli ET12567 (pUZ8002). Selected exconjugants were 

screened for Kn
S
/Apra

R
 and the double-crossover confirmed by PCR. 

 

To remove the resistance marker, pUWLCRE, containing a synthetic cre recombinase 

(Fedoryshyn et al. 2008), was transformed into E. coli ET12567 (pUZ8002) and 125 

conjugated into the above S. coelicolor strain containing the apramycin cassette flanked 

by the loxP sites instead of the phoR sequence. Around 15% of the colonies obtained 

were apramycin sensitive and after two rounds of plating on non-selective (without 

thiostrepton) medium, pUWLCRE was also lost. PCR amplification of a resulting ∆phoR 

clone and posterior sequencing indicated a successful removal of the pIJ774 cassette 130 

marked only by a “scar” sequence thus obtaining a non-polar phoR deletion which allows 

transcription of phoP from its native phoRP promoter. 
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Phenotypic characterization of S. coelicolor ∆phoR showed no morphological 

differences respect to the wild-type strain M145 

It has been previously reported (Sola-Landa et al. 2003) that a S. lividans ∆phoP strain is 135 

unable to grow at very low inorganic phosphate concentrations on solid medium. To 

assess the effect of low inorganic phosphate concentrations in our mutants respect to the 

parental strain, S. coelicolor M145, ∆phoP and ∆phoR were grown on MM-agarose 

containing asparagine as the sole carbon source and adding 0, 10 µM, 20 µM, 50 µM and 

100 µM final concentration of inorganic phosphate (KH2PO4). Fig. 1 shows how both 140 

M145 and ∆phoR are able to grow with minimal phosphate concentrations (20 µM), 

whilst ∆phoP is only able to grow when at least 100 µM inorganic phosphate is present in 

the medium. These results indicate that whereas PhoP is strictly required for phosphate 

utilization at very low Pi concentrations, the sensor kinase PhoR is not so strictly required 

(see below). 145 

The three strains were also grown on several media to assess their morphological 

development under different conditions. Although the phenotype of S. coelicolor ∆phoP 

has been studied in defined liquid medium with different inorganic phosphate 

concentrations (Pi), its phenotype on complex media on solid agar plates had not been 

characterized so far. The results showed that on MS, TBO and TSA all strains were able 150 

to develop normally completing the life cycle at a similar growth rate (data not shown). 

On the other hand, when grown on R5 agar plates, ∆phoP started to produce actinorhodin 

much earlier than the wild-type and ∆phoR strains. Fig. 2 shows how, after 72 hours of 

growth ∆phoP starts to produce actinorhodin whilst the other strains do not. After 7 days 

(data not shown) the levels of actinorhodin production among the three strains looked 155 
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very similar, indicating that ∆phoP is not overproducing this antibiotic but simply 

initiating its production earlier under the conditions tested. We also decided to try 

different concentrations of added Pi to the R5 medium and observed that as expected, 

there is an inverse proportional relationship between Pi concentration in the medium 

versus actinorhodin production observed in all strains (Fig. 2). 160 

Furthermore, when the three strains are grown on liquid MG containing 3.2 mM 

inorganic phosphate final concentration (phosphate limiting conditions), ∆phoR is able to 

reach nearly wild-type growth levels up to 70 hours as shown by the dry weight per ml 

values (Fig. 3) whilst ∆phoP is severely impaired in growth in this medium, as previously 

reported (Santos-Beneit et al. 2008). Hence, ∆phoR seems to be able to utilize minimal 165 

concentrations of phosphate in order to develop only slightly delayed respect to the wild-

type strain whereas the ∆phoP mutant cannot.  

These results clearly indicate that deletion of PhoR has no effect over morphological 

differentiation in Streptomyces coelicolor, at least under the conditions tested. There are 

three hypotheses able to explain this phenotype: the first one is that the response regulator 170 

PhoP might be phosphorylated by a different kinase in the absence of PhoR; secondly, 

PhoP could be able to strongly bind to the DNA as an unphosphorylated form; or finally, 

the constitutive levels of unphosphorylated PhoP present in the ∆phoR cells at any time 

may be sufficient to overcome, even in a weak manner, the effect of low phosphate 

levels. Further molecular analyses were carried out to try to discriminate amongst these 175 

three hypotheses. 
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Actinorhodin production in a ∆phoR strain is similar to that of ∆phoP 

Actinorhodin production in a ∆phoP background has been previously characterized 180 

(Santos-Beneit et al. 2009a) in MG defined liquid medium. It has been observed that 

under low Pi concentrations, the ∆phoP strain produces significantly lower levels of 

actinorhodin respect to the wild-type M145 strain. To assess the effect of the deletion of 

PhoR over actinorhodin production, M145, ∆phoP and ∆phoR were grown in liquid MG 

with 3.2 mM Pi. Fig. 4 shows how actinorhodin production in all three strains starts after 185 

44 to 46 hours, when Pi in the medium is depleted. As previously described, ∆phoP 

produces significantly lower levels of actinorhodin than the wild-type strain. 

Interestingly, ∆phoR is also unable to reach the production levels of the wild-type strain, 

showing levels of actinorhodin production very similar to those of the ∆phoP strain. 

Therefore, in contrast to the phenotypic characterization analysis, where the phenotype of 190 

∆phoR appears to be similar to the M145 wild-type strain, ∆phoR seems to behave like 

the ∆phoP strain in terms of actinorhodin production. 

 

Expression of the pho regulon genes is greatly reduced in a ∆phoR background  

Since ∆phoR seems to behave similarly to the wild-type in terms of phenotype and 195 

growth under phosphate limiting conditions but appears to be similar to ∆phoP in terms 

of actinorhodin production, it was of upmost interest to assess the expression of the pho 

regulon genes in a ∆phoR background. In order to further investigate this, RT-PCR of 

several members of the pho regulon such as glpQ1, pstS, and phoU as well as phoR and 

phoP were carried out and compared to the housekeeping gene hrdB used as a control. 200 

Fig. 5 shows that interestingly, expression of the well known pho regulon genes glpQ1, 
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pstS and phoU is greatly reduced in a ∆phoR and undetectable in a ∆phoP background 

showing that the pho regulon is clearly under-expressed in the absence of PhoR respect to 

the wild-type strain. As expected, expression of phoR is absent in ∆phoR and expression 

of phoP is absent in the ∆phoP strain. Interestingly, phoP expression is greatly reduced in 205 

a ∆phoR background, indicating that in the absence of PhoR, unphosphorylated PhoP is 

unable to activate full induction from its own promoter, as occurs with the other pho 

regulon genes tested. This result again highlights the role of PhoR-mediated 

phosphorylation in the response to phosphate limitation.  

 210 

Another observation was the fact that low levels of phoR expression are still detectable in 

∆phoP, i. e. in the absence of the PhoP activator. This is the only transcript, from a pho 

regulon member, that we were able to detect in this strain and indicates certain level of 

basal expression of the phoR-P operon even in the absence of PhoP. This is to be 

expected, since PhoR and PhoP should always be present in wild type cells at low basal 215 

levels in order to be ready to rapidly activate the signaling cascade leading to adaptation 

to limiting phosphate conditions when required. Moreover, transcriptomic data (E. 

Wellington and STREAM, Sysmo EU project, personal communication) clearly 

reproduced all the results obtained by RT-PCR, including the weak induction of phoR 

expression in ∆phoP when phosphate levels are scarce.  220 

To further corroborate this result one of the PhoP-dependent genes, glpQ1, was used as a 

model for report (luciferase) studies. The promoter region of glpQ1 fused to the luxAB 

reporter genes, which had been previously integrated into the attP φC31 site of M145 and 

∆phoP (Santos-Beneit et al. 2009b) was also integrated in a ∆phoR background. Fig. 6 
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shows how expression of glpQ1 in M145 is much higher than in ∆phoR, therefore 225 

validating the RT-PCR results. On the other hand, barely detectable levels of glpQ1 

expression were observed in the ∆phoP mutant.  

Thus, in a M145 background, as expected, the pho regulon genes are highly induced after 

the depletion of phosphate in the medium. In a ∆phoP background, there is no activation 

whatsoever of the pho regulon and in a ∆phoR background, the pho regulon is activated 230 

about 5-fold more than in ∆phoP but the activation is significantly reduced compared to 

that in the wild-type. Since the expression of genes of the pho regulon is severely 

compromised in a ∆phoR background it seems unlikely that PhoP might be 

phosphorylated by a different histidine kinase in vivo, at least with high affinity. If the 

unphosphorylated form of PhoP could be able to bind in a strong manner to the PHO 235 

boxes, operator sequences which PhoP recognizes, then expression levels of the pho 

regulon genes should be normal in the ∆phoR mutant. Our results exclude that 

possibility; hence, the more plausible hypothesis is that the basal constitutive levels of 

unphosphorylated PhoP are responsible for the phenotype of ∆phoR. 

 240 

Discussion 

PhoP, the RR of the TCS PhoR-PhoP, appears to be a key global regulator in S. 

coelicolor, not only on account of its major role in phosphate regulation but also due to 

its indirect involvement in nitrogen and carbon metabolism via cross-talk with their main 

regulators (Rodríguez-García et al. 2009; Santos-Beneit et al. 2009a). Previous research 245 

had been mostly centred in the study of the downstream processes of this complex 

signalling pathway, i.e. how the absence of PhoP affects the regulation of metabolism and 
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which are its targets (Sola-Landa et al. 2005, 2008; Apel et al. 2007; Rodriguez-García et 

al. 2007; 2009; Santos-Beneit et al. 2008; 2009 a,b). However, a strain in which phoP is 

being constitutively expressed in the absence of PhoR-mediated activation was not 250 

available in this organism. This ∆phoR strain has now been obtained for the first time and 

this has allowed us to gain an insight on the upstream regulation of this signalling 

cascade.  

The fidelity of TCSs involved in the phosphate starvation response has been 

characterized in other organisms resulting in distinct outcomes. For example in E. coli, 255 

PhoB can be phosphorylated by several other SKs and/or molecules in the absence of 

PhoR (Amemura et al. 1990; Fisher et al. 1995; McCleary and Stock 1994; Zhou et al. 

2005). The promiscuity shown by PhoB in E. coli is probably due to the need to generate 

interconnected networks that potentially lead to cross-talk and cross regulation, 

particularly between carbon and phosphate regulatory cascades. This promiscuity can be 260 

beneficial or even necessary when simultaneously integrating the response to multiple 

signals. On the other hand B. subtilis PhoP seems to require specific phosphorylation by 

PhoR, indicating a tighter control over this RR (Sun et al. 1996). 

In this work, we have established that in S. coelicolor, contrary to E. coli but similar to B. 

subtilis, PhoR appears to be the only specific SK for PhoP, giving a good example of 265 

TCS fidelity amongst signal transduction pathways. Some signals require a unique 

response, thus promoting exclusivity within particular signalling cascades. The recent 

attainment of crystallized structures for a number of SK-RR complexes has given us an 

insight into how this specificity is achieved, mainly through conserved contact residues 

within the primary sequence of both proteins (reviewed in Szurmant and Hoch 2010). 270 
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This information will be used to generate algorithms which hopefully will help to predict 

the TCS networks of entire organisms, thus allowing us to gain a global view of their 

interactions. How the response to the same nutrient can be specific or not depending on 

the organism is probably related to their respective regulatory mechanisms and adaptive 

advantages.  275 

Our results reveal that PhoR is necessary for the complete induction of the pho regulon. 

However, certain level of expression of the pho regulon was detected in a S. coelicolor 

∆phoR background. This could be due to weak binding of the unphoshporylated PhoP to 

its target sequences or feeble non-specific phosphorylation of PhoP by other SKs. It is 

known that unphosphorylated PhoP is still able to interact with the PHO boxes in vitro 280 

(Sola-Landa et al. 2005) and it seems likely that unphosphorylated PhoP is therefore 

responsible for the residual levels of activation of the pho regulon. 

Another interesting observation was the fact that certain level of expression of the phoR 

transcript was detectable in a S .coelicolor ∆phoP background. In B. subtilis, the well 

characterized phoPR promoter region contains five different starts which respond to 285 

different environmental stimuli, some of them constitutive but enhanced by PhoP~P 

(phosphorylated PhoP) binding (Paul et al. 2004). Constitutive low expression of the S. 

coelicolor phoRP promoter region in a similar manner is very plausible since a basal 

level of PhoR-PhoP ready to be activated when phosphate is scarce must be available 

within the cell.  290 

Finally, even though only basal levels of expression of the pho regulon members were 

observed in a ∆phoR background, the mutant strain showed only minor phenotypic 

defects in laboratory culture media, either in terms of growth or development. Therefore, 
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the low expression level of the genes of the pho regulon together with the expression of 

genes involved in phosphate regulation which are independent of PhoP seems sufficient 295 

to cope with phosphate starvation with respect to morphological differentiation. 

However, significant differences were observed in terms of actinorhodin production in 

MG defined medium. Some of the pho regulon members might be responsible for down-

regulation of actinorhodin production in the ∆phoR strain as in the case of ∆phoP. 

In summary, this article provides an insight into the puzzling subject of partner fidelity 300 

between cognate proteins, a question that has raised considerable interest. The PhoR-

PhoP system of S. coelicolor, as we have demonstrated in this work, shows a high degree 

of fidelity and no crosstalk in terms of receiving signals from other pathways, such as 

carbon metabolim, in contrast to some similar systems in other bacteria. Further work in 

other Streptomyces species will help unveil whether this fidelity of the phosphate 305 

starvation response TCS is a common trend within the genus. 

 

Experimental Procedures 

Bacterial strains and growth conditions 

S. coelicolor A3(2) derivatives and E. coli strains used in this work are listed in Table 1. 310 

E. coli strains were cultured using standard procedures (Sambrook et al. 1989). Strains, 

plasmids and cosmids used in this work are listed in Table 1. S. coelicolor strains were 

grown on MS agar plates (mannitol soy flour), TBO agar plates, TSA agar plates, R5 agar 

plates, MM-agarose plates (modified from Kieser et al. 2000) with different phosphate 

concentrations and no additional carbon source and MG-3.2 liquid medium for phosphate 315 
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limiting conditions (Santos-Beneit et al. 2008). Construction of the non-polar deletion of 

phoR (∆phoR strain) is detailed in the results section. 

 

Reverse transcriptase PCR (RT-PCR) 

RNA from S. coelicolor M145, ∆phoP and ∆phoR was extracted at 42 and 45 hours of 320 

growth on MG-3.2 medium using RNAProtect Bacterial Reagent (Qiagen) to stabilize 

RNA. Samples were disrupted with 2 cycles of 30 s at speed 6.5 in a Ribolyser 

instrument using the lysing matrix B (BIO 101) and RNA was extracted using an RNeasy 

mini kit (Qiagen) as described in Tunca et al. 2007. RNA concentration and quality was 

checked using NanoDrop ND-1000 (Thermo Fisher Scientific). 325 

Gene expression analysis by RT-PCR was carried out using the SuperScript One-Step 

RT-PCR system with Platinum Taq (Invitrogen) as described in Santos-Beneit et al. 

2008. Platinum Taq was used as a control to check the lack of DNA contamination from 

the samples. The primers used in this study are listed in Table 2. 

 330 

Luciferase assay 

The luxAB activity driven from the glpQ1 promoter was determined in a SIRIUS 

Luminometer V3.2 (Berthold Technologies). The samples for the luciferase assay were 

kept on ice and measured as follows: 500 µL of each sample were mixed with 250 µL of 

n-decanal 0.1 % by injection. The measurement integration time is of 20 seconds after a 5 335 

second delay-time step. Measuring units are expressed as RLU (relative light units)/s. 
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Tables 460 

 

Table 1. Strains, plasmids and cosmids used in this study. 

Strain, cosmid or 

plasmid 

Description Source or reference 

Strains   

S. coelicolor A3 (2)   

M145 Prototrophic SCP1
-
 SCP2

-
 Pgl

+
 Kieser et al., (2000) 

INB201 ∆phoP::apra Santos-Beneit et al, 

(2009a) 

M145∆phoR M145 phoR::loxP scar This work 

E. coli   

JM109 F’ traD36 proA
+
B

+
 lacI

q 
∆(lacZ)M15/∆(lac-

proAB) glnV44 e14- gyrA96 recA1 relA1endA1 thi 

hsdR17 

Promega Corp. 

Yanisch-Perron et al., 

(1985) 

DH5α fhuA2 ∆(argF-lacZ)U169 phoA glnV44 Φ80 

∆(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17  

Hanahan, D., (1983) 

ET12567 (pUZ8002) Dam13::Tn9 dcm6 hsdM hsdR recF143 16 

zjj201::Tn10 galK2 galT22 ara14 lacY1xyl5 

leuB6 thi1 tonA31 rpsL136 hisG4 tsx78 mtli 

glnV44, containing the non-transmissible oriT 

mobilizing plasmid, pUZ8002 

Flett et al., (1997) 

BW25113/pIJ790 K12 derivative: ∆araBAD, ∆rhaBAD containing 

pIJ790 (λ-RED (gam, bet, exo), cat, araC, 

rep101
ts
) 

Datsenko and 

Wanner (2000) and 

Gust et al. (2003) 

Cosmids   

7H10 S. coelicolor pWEB
TM

 based cosmid containing 

phoR 

Fernández-Martínez 

et al. (2011) 

Plasmids   

pLUX-glpQ1 BamHI-NdeI pFS-glpQ1 fragment cloned into 

pLUXAR-neo 

Santos-Beneit et al. 

(2009b) 

pUWLCRE Replicative vector for actinomycetes containing 

replicon pIJ101,oriT and cre(a) gene under ermE 

promoter, ampicillin and thiostrepton resistant 

Fedoryshyn et al. 

(2008) 

pIJ774 pBluescript II SK
-
derivative containing aac(3)IV 

flanked with loxP sites 

Khodakaramian et al. 

(2006) 
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Table 2. RT-PCR primers used in this study 470 

Primers Sequence (5’-3’) 

hrdB-Dir-RT ACGCCCCGGCCCAGCAGGTC 

hrdB-Rev-RT CAGGTGGCGTACGTGGAGAACTTGT 

glpQ1RT_F TGGTTCACCGAGGACTTCAC 

glpQ1RT_R GAAGTAGGTGGGGTGCTTGA 

phoP3 GACCCATATGCTCGTCCTCGA 

phoRcrecheckR GAGAAGGGCTTGGTGACGTA 

phoR_RT_F GACACCGTCCTCTCCGTACT 

phoR_RT_R CTCGACCTGCCGTATCTCTC 

phoU_RT_F ACCACGAGGAACTTGATTCG 

phoU_RT_R GAGGTTGTCGACCTTCTGGT 

pstS_RT_F CTTCGACAGCAAGATCACCA 

pstS_RT_R CCCTCGTACTTCCAGTCGTC 
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FIGURES 

 505 
Fig. 1. Phenotypic characterization of S. coelicolor M145, ∆phoP and ∆phoR after 7 

days on MM+agarose. A. Final inorganic phosphate concentration of 20µM. B. Final 

inorganic phosphate concentration of 100 µM. ∆phoP is unable to grow at low phosphate 

concentrations whilst both M145 and ∆phoR are able to sporulate in the same medium. C. 

Diagram showing the construction of the ∆phoR strain; for details refer to the main text. 510 

Fig. 1 
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Fig. 2. Phenotypic characterization of S. coelicolor M145, ∆phoP and ∆phoR after 72 540 

h on R5 with different added Pi concentrations. A. Front plate images of M145, 

∆phoP and ∆phoR grown for 72 hours on R5 containing the following added Pi 

concentrations: I. 0 mM added Pi; II. 0.36 mM added Pi; III. 1.8 mM added Pi. B. Back 

plate images of the corresponding added Pi concentrations. 
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Fig. 3. Growth by dry weight determination of M145, ∆phoR and ∆phoP in MG-3.2 

medium. Legend: strain M145 (white squares), ∆phoR (grey triangles) and ∆phoP (black 

circles). Vertical error bars correspond to the standard error of the mean of four biological 

replicates. The results show how M145 and ∆phoR are able to reach normal growth 565 

whilst ∆phoP is severely impaired. 
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Fig. 4. Actinorhodin production of M145, ∆phoR and ∆phoP in MG-3.2 medium. 595 

Strains M145 (white squares), ∆phoR (grey triangles) and ∆phoP (black circles). Vertical 

error bars correspond to the standard error of the mean of four biological replicates. The 

results show how ∆phoP and ∆phoR are unable to reach normal actinorhodin yield levels 

with respect to the M145 wild-type strain under the conditions tested. 
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Fig. 4. 
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Fig. 5. RT-PCR for hrdB (as a constitutive control), phoR, phoP, phoU, glpQ1 and 

pstS. Controls without reverse transcriptase were carried out for all genes to validate the 

absence of DNA from the samples (data not shown). Expression of all genes under 620 

phosphate limiting conditions appears to be well-expressed in M145 at both time points. 

On the other hand, in a ∆phoR background only basal expression of the genes is detected 

whilst in a ∆phoP background detection is not visible thus indicating that PhoR is 

required to activate the pho regulon. 
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Fig. 5 
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Fig. 6. Promoter activity of S. coelicolor exconjugants containing pLUX-glpQ1 in 

M145, ∆phoR and ∆phoP in MG-3.2 medium. Legend: strain M145 (white bars), 

∆phoR (grey bars) and ∆phoP (black bars). RLU (relative light units). Vertical error bars 

correspond to the standard error of the mean of four biological replicates (two replicates 

of two different exconjugants per strain). Promoter activity of glpQ1 appears to be higher 655 

in ∆phoR than ∆phoP (top graph, amplification of the Y axis for ∆phoR and ∆phoP) 

although is far superior in a M145 background (bottom graph). 
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