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Abstract

Objective: Drug named entity recognition (NER) is a critical step

for complex biomedical NLP tasks such as the extraction of pharma-

cogenomic, pharmacodynamic and pharmacokinetic parameters. Large

quantities of high quality training data are almost always a prerequi-

site for employing supervised machine-learning techniques to achieve
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high classification performance. However, the human labour needed

to produce and maintain such resources is a significant limitation. In

this study, we improve the performance of drug NER without relying

exclusively on manual annotations.

Methods: We perform drug NER using either a small gold-standard

corpus (120 abstracts) or no corpus at all. In our approach, we develop

a voting system to combine a number of heterogeneous models, based

on dictionary knowledge, gold-standard corpora and silver annotations,

to enhance performance. To improve recall, we employed genetic pro-

gramming to evolve 11 regular-expression patterns that capture com-

mon drug suffixes and used them as an extra means for recognition.

Materials: Our approach uses a dictionary of drug names, i.e. Drug-

Bank, a small manually annotated corpus, i.e. the pharmacokinetic

corpus, and a part of the UKPMC database, as raw biomedical text.

Gold-standard and silver annotated data are used to train maximum

entropy and multinomial logistic regression classifiers.

Results: Aggregating drug NER methods, based on gold-standard

annotations, dictionary knowledge and patterns, improved the perfor-

mance on models trained on gold-standard annotations, only, achieving

a maximum F-Score of 95%. In addition, combining models trained

on silver annotations, dictionary knowledge and patterns are shown

to achieve comparable performance to models trained exclusively on

gold-standard data. The main reason appears to be the morphological

similarities shared among drug names.

Conclusion: We conclude that gold-standard data are not a hard

requirement for drug NER. Combining heterogeneous models build on

dictionary knowledge can achieve similar or comparable classification

performance with that of the best performing model trained on gold-

standard annotations.

Keywords: named entity annotation sparsity, gold-standard vs. silver-

standard annotations, named entity recogniser aggregation,

genetic-programming-evolved string-similarity patterns, drug named entity

recognition
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1. Introduction

Named entity recognition (NER) is the task of identifying members of var-

ious semantic classes, such as persons, mountains and vehicles in raw text.

In biomedicine, NER is concerned with classes such as proteins, genes, dis-

eases, drugs, organs, DNA sequences, RNA sequences and possibly others [1].

Drugs (as pharmaceutical products) are special types of chemical substances

highly relevant for biomedical research. A simplistic and naive approach to

NER is to directly match textual expressions found in a relevant lexical

repository against raw text. Even though this technique can sometimes

work well, often it suffers from certain limitations. Firstly, its accuracy

heavily depends on the completeness of the dictionary. However, as termi-

nology is constantly evolving, especially in bio-related disciplines, producing

a complete lexical repository is not feasible. Secondly, direct string match-

ing overlooks term ambiguity and variability [2]. On one hand, ambiguous

dictionary entries refer to multiple semantic types (term ambiguity), and

therefore contextual information needs to be considered for disambiguation.

On the other hand, several slightly different tokens may refer to the same se-

mantic type (term variability). Typically, to address these issues, statistical

learning models are deployed for NER.

In such approaches, NER is formalised as a classification task in which an

input expression is either classified as an entity or not. Supervised learning

methods are reported to achieve superior performance than unsupervised

ones, but previously annotated data are essential for training supervised

models [2]. Data annotated by human curators are of high quality and

guarantee best results in exchange for the cost of manual effort. For these

reasons, they are also known as gold-standard data. Due to the cost of man-

ual annotations, corpora for NER are often of limited size and for particular

domains.

Drugs are referred to by their chemical name, generic name or brand

name. Since the chemical name is typically complex and a brand name may

not exclusively identify a drug once the relevant patents expire, a unique

non-proprietary name for the active ingredient is devised for standardised
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scientific reporting and labelling. This generic name is negotiated when

the drug is approved for use, as the nomenclature is tightly regulated by

the World Health Organization (WHO) and local agencies such as the U.S.

Food and Drug Administration (FDA) and the European Medicines Agency.

Several criteria are assessed, such as ensuring the drug action fits the nam-

ing scheme, ease of pronunciation and translation, and differentiation from

other drug names to avoid transcription and reproduction errors during

prescription [3]. Since the naming scheme, assessment criteria and cross-

border synchrony have developed organically over the years, there is neither

a definitive dictionary nor syntax of drug names.

In this study, we investigate methods for achieving high performance in

drug name recognition in cases where either very limited or no gold-standard

training data is available. Our proposed method employs a voting system

able to combine predictions from a number of diverse recognisers. More-

over, genetic programming is used to evolve string-similarity patterns based

on common suffixes of single-token drug names occurring in the DrugBank

database [4]. Subsequently, these patterns are used to compile regular ex-

pressions in order to generalise dictionary entries in an effort to increase

coverage and tagging accuracy.

We compare the performance of our method with several state-of-the-art

NER approaches in recognising manually annotated drug names in the PK

corpus [5]. Where no gold-standard data is available, the proposed method

is shown to achieve competitive performance. In particular, the performance

achieved without gold-standard data is comparable with the performance of

the model aware of gold-standard annotations.

The rest of this paper is organised as follows: section 2. summarises

previous work on drug NER and methods for dealing with data sparsity

in general NER. Section 3. describes the dictionaries and data used in our

experiments, as well as the experimental methodology followed. Sections

4. and 5. present and discuss the experiments and their results. Finally,

section 6. concludes the paper.
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2. Related work

NER is a large, well-studied field of natural language processing (NLP)

[6]. Most publications address it as a supervised task, i.e. the procedure of

training a model on annotated data and then applying it to new text. In the

past, several evaluation challenges have taken place on recognising entities

of the general domain [7–10] as well as scientific domains [2, 11, 12]. In

contrast, research related with Drug NER is limited [13–15]. Very recently,

an evaluation challenge that focussed exclusively on drug name recognition

and drug-drug interactions has taken place [16].

As a result of the collaborative annotation of a large biomedical corpus

project [17], a large-scale biomedical silver standard corpus has been pro-

duced. It contains annotations resulting from the harmonisation of named

entities (NEs) automatically recognised by five different tools, namely, Wha-

tizit [18], Peregrine [19], GeNO [20], MetaMap [21] and I2E [22]. Apart from

names of chemicals and drugs, proteins, genes, diseases and species names

were also tagged by these tools in the 174,999 MEDLINE abstracts com-

prising the corpus. Approximately half a million NE annotations for each

semantic category are contained in the resulting harmonised corpus which

is publicly available. It has been used for the 2 annotation challenges [23].

Dictionaries and ontologies have been used extensively as the basis to

generate patterns and rules for NER. Tsuruoka et al. [24] used logistic re-

gression to learn a string similarity measure from a dictionary, useful for

soft-string matching. Kolarik et al. [25] used lexico-syntactic patterns to ex-

tract terms. Patterns are similar to the ones introduced in [26] and contain

drug names and directly related drug annotation terms found in DrugBank.

Then, these patterns were applied to MEDLINE abstracts, to add annota-

tions of pharmacological effects of drugs. Similar methods have also been ap-

plied for recognising drug-disease interactions [27] and interactions between

compounds and drug-metabolising enzymes [28]. Hettne et al. [29] devel-

oped a rule-based method intended for term filtering and disambiguation.

They identify names of drugs and small molecules by incorporating several

dictionaries such as the UMLS (nlm.nih.gov/research/umls, accessed: 15
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April 2015), MeSH (nlm.nih.gov/mesh, accessed: 15 April 2015), ChEBI

(www.ebi.ac.uk/chebi, accessed: 15 April 2015), DrugBank (drugbank.

ca, accessed: 15 April 2015), KEGG (www.genome.jp/kegg, accessed: 15

April 2015), HMDB (hmdb.ca, accessed: 15 April 2015) and ChemIDplus

(chem.sis.nlm.nih.gov/chemidplus, accessed: 15 April 2015). An earlier

system, EDGAR [30], extracts genes, drugs and relationships between them

using existing ontologies and standard NLP tools such as part-of-speech

taggers and syntactic parsers.

A popular means of dealing with data sparsity in NER is to generate data

semi-automatically or fully automatically. Although, the resulting data is of

lower quality than gold-standard annotations, supervised learners can ben-

efit largely from large volumes of data, since they are based on annotation

statistics. Towards the same ultimate goal, our approach aims to overcome

the restrictions of data sparsity or unavailability in the biomedical domain.

Usami et al. [31] describe an approach for automatically acquiring large

amounts of training data from a lexical database and raw text that relies on

reference information and coordination analysis. Similarly, noisy training

data was obtained by using a few manually annotated abstracts from Fly-

Base (flybase.org, accessed: 15 April 2015) [32, 33]. The approach uses a

bootstrapping method and context-based classifiers to increase the number

of NE mentions in the original noisy training data. Even though they report

high performance, their method requires some minimum curated seed data.

Similarly, Thomas et al. [34] demonstrated the potential of distant learn-

ing in constructing a fully automated relation extraction process. They

produced two distantly labelled corpora for protein-protein & drug-drug in-

teraction extraction, with knowledge found in databases such as IntAct [35]

for genes and DrugBank [4] for drugs.

Active learning is a framework that can be used for reducing the amount

of human effort required to create a training corpus [36, 37]. The most

informative samples are chosen from a big pool of human annotations by a

maximum likelihood model in an iterative and interactive manner. It has

been shown that active learning can often drastically reduce the amount of

training data necessary to achieve the same level of performance compared
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to pure random sampling [38]. A similar approach, accelerated annotation

[39], allows to produce NE annotations for a given corpus at reduced cost.

In contrast to active learning, it aims to annotate all occurrences of the

target NEs, thus minimising the sampling bias. Despite the similarities

between the two frameworks, their goals are different. While active learning

aims to optimise the performance of the corresponding tagger, accelerated

annotation aims to construct an unbiased NE annotated corpus.

3. Methods and data

In this section we present our aggregate classifier for recognising drug names

and the necessary resources.

3.1. Methodology

To classify labels of tokens, we used two classifiers, a maximum entropy

(MaxEnt) model, also known as multinomial logistic regression [40], and a

perceptron classifier [41]. MaxEnt classifiers assume that the best model pa-

rameters are the ones for which each feature’s predicted expectation matches

its empirical expectation and classify instances so that the conditional like-

lihood is maximised. In other words, MaxEnt maximises entropy while con-

forming to the probability distribution drawn by the training set. Perceptron

is a linear classifier that tunes the weights in a network during the training

phase, so as to produce the desired output. The perceptron method is guar-

anteed to locate the combination of weights that solve the problem, if such

a combination exists. We used standard implementations of MaxEnt and

Perceptron, parts of the Apache openNLP project (opennlp.apache.org,

accessed: 15 April 2015).

For both classifiers, we used the same feature set, described below. For

each token, we consider as features:

- tokens: the current and ±2 tokens

- character n-grams: ±2 tokens
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- sentence: a binary feature indicating whether the token appears at

start or end of a sentence

- binary token type features of the current and ±2 tokens, shown in

table 1

- previous map: a binary feature indicating whether the current token

was previously seen as a NE

- prefix and suffix of the current token

- dictionary: a binary feature indicating whether the current token ex-

ists in the dictionary

We attempt to aggregate predictions from dictionaries and NER systems,

under the fundamental hypothesis that the combined output might improve

over the results of single classifiers deployed as standalone. Our aggregate

classifier is compatible with any dictionaries and recognition systems, and

could be applied in other domains and sequence recognition tasks.

We developed a simple voting-system assuming that the predictions of

dictionaries are more reliable than predictions of machine learners. As a

result, the algorithm accepts dictionary predictions as valid if they exist.

This assumption is not true, if a dictionary contains non-drug entities but,

since dictionaries are produced manually, we consider them ideal. Ambigu-

ous NEs might also affect the validity of this assumption. We observed very

little such ambiguities in our dictionary, DrugBank, thus, we accept the

hypothesis to hold in the domain of drug NEs.

Algorithm 1 summarises the voting system. In short, it starts with an

empty list L and iterates over all sentences and tokens of the input text. For

each token, it queries available dictionaries or regular expression patterns

and accepts positive answers as valid. Otherwise, it considers sequentially

each model’s opinion regarding whether the current token is a drug entity

or not. Whenever a model positively recognises a drug-name, we store the

name along with the confidence of the prediction in a map. After consider-

ing the predictions of all models, we store the positive prediction with the

highest confidence, if such a prediction exists, and proceed to the next to-

ken. Predictions of dictionaries or regular expression patterns are assigned
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100% confidence.

After processing all tokens of a sentence, any intersecting or overlapping

spans are removed according to the following rules. For predictions that

cross into each-other, we discard all but the first one. For nested predictions,

only the maximal one is kept. Upon algorithm completion, L should contain

a sequence of maps, each representing the predictions on a single sentence.

At a second experimental stage, we de-constructed the dictionary into 2

distinct models: (a) a model trained on text solely annotated by the dictio-

nary, and (b) an evolved set of string-patterns that attempts to accurately

cover common suffixes of single-token drug names.

For evaluation, we used the standard information retrieval metrics: pre-

cision, recall and F-Score (F1) [42].

3.2. Data

The proposed method requires two types of resources: (a) one or more

comprehensive lexical repositories, such as dictionaries or lexicons. (b) large

amounts of raw text in the domain of interest, which is drugs for the current

study. Supplementally, a small gold-standard corpus may enhance NER

performance if available.

Our method could potentially be applied to recognise any type of biomed-

ical NEs, such as genes and proteins. We choose to focus on identifying drug

names, as this domain has been studied to a much smaller extent. In this

section, we present the resources that we made available to the algorithm

proposed in section 3.1. for experimentation.

3.2.1. DrugBank

As our dictionary, we chose to use DrugBank [4] because it is relatively

up-to-date and provides a mapping between drug-names and common syn-

onyms. DrugBank currently contains more than 6, 700 entries including

1, 447 FDA-approved small molecule drugs, 131 FDA-approved biotech (pro-

tein/peptide) drugs, 85 nutraceuticals and 5, 080 experimental drugs. We

pre-processed the dictionary by normalising all official drug terms and linked
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them to their synonyms in a key-value data-structure. Each key (drug name)

is unique and maps to a single value (a list of synonyms).

3.2.2. The pharmacokinetic corpus

The pharmacokinetic corpus (PK) [5] is manually annotated and consists

of 240 MEDLINE abstracts annotated and labelled on the basis of MESH

terms relevant to pharmacokinetics such as drug names, enzyme names and

pharmacokinetic parameters, e.g. clearance. Half of the corpus is intended

for training (invivo/invitro-train) and half for testing (invivo/invitro-test).

It is freely available at: rweb.compbio.iupui.edu/corpus (Accessed: 15

April 2015). As a pre-processing step, all annotations concerning entities

other than drugs were removed, since this study is concerned with detecting

drug names only.

3.2.3. Raw text

Nowadays, acquiring large amounts of raw text is not a difficult task, even

for very specialised domains. Public electronic repositories of open-access

articles exist for most scientific domains and usually can be queried via

RESTful web services. In biomedicine, for example, UK PubMed Central

(UKPMC, europepmc.org, accessed: 15 April 2015) is an article database

which extends the functionality of the original PubMed Central (ncbi.nlm.

nih.gov/pmc, accessed: 15 April 2015) repository. For the purposes of

this study, we used a small subset of the entire UKPMC database which

includes more than two million papers. The sample we used was created

by Mihăilă and Navarro [43], totalling 360 pharmacology and cell-biology

related articles. As a pre-processing step, the corpus was sentence-split and

tokenised. Part-of-speech tagging was omitted from the process since we did

not plan to use the part-of-speech tags as features during training.
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4. Experimental results

The first set of experiments, in section 4.1., considered the entire set of gold-

standard annotations. In the second set, we assess the importance of silver

data, i.e. data annotated by recognising dictionary entries on raw text. We

evaluate the performance of our classifier trained on silver data only, and

we also combine gold and silver data to measure whether the combination

can boost performance. In succession, we investigate how we can produce

string similarity patterns based on dictionary knowledge to further increase

recall. Finally, we investigate how the proposed aggregate classifier performs

in absence of gold-standard annotations.

4.1. Baselines

Firstly, we tested how the dictionary performs as a single recogniser, includ-

ing or excluding synonyms. Secondly, we trained two NE recognisers, namely

a MaxEnt and a perceptron classifier, on half the PK corpus (invivo/invitro-

train) and tested them on the other half (invivo/invitro-test). Finally, we

used our prediction aggregation algorithm to combine predictions originat-

ing from the dictionary, with predictions originating from the classifiers.

Table 2 presents the results from our baseline experiments. It is worth

noting that the pure dictionary-based approach is not 100% precise as our

voting system assumes. Careful error analysis revealed that there are at

least two entities, i.e. “nitric oxide” and “tranylcypromine” that have not

been tagged in the gold-standard corpus. Consequently, the evaluator marks

them as false-positives while, in fact, they are perfectly correct predictions.

Another interesting observation is that including synonyms causes precision

to degrade. Synonyms in DrugBank often include acronyms, which have

not been tagged appropriately in the test corpus. As before, the evaluator

classifies them as false-positives.

In general, we can see that both the dictionary and the classifiers ex-

hibit very high precision and good recall, whereas combining the two has

a minimal positive effect on overall performance. The perceptron classifier,

despite training significantly faster, consistently showed inferior performance
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in comparison with MaxEnt.

Unfortunately, no other experimental results on the exact data that we

experimented with have been published. However, to put our results into

perspective, we can consider the results of a recent evaluation challenge,

SemEval-2013 Task 9: DDIExtraction [16]. Its first subtask was concerned

with recognising and classifying drug names. Several participating systems

aimed at recognising generic and branded drug names, among other entities.

Table 3 show the exact-matching precision, recall and F-Score achieved by

the best performing systems in terms of F-Score in the categories of generic

and branded drug names. The DDIExtraction 2013 task was evaluated on

the DDI corpus, which consists of 784 DrugBank texts and 233 MEDLINE

abstracts and was manually annotated [44]. Although the data used in this

work are not identical to the DDI corpus, the results in table 3 can be used

as indirect baselines. It can be observed that the our baseline results in table

2 are comparable if not slightly better than the best performing systems the

DDIExtraction2013 task, despite the fact that we trained on significantly

smaller and possibly lower-quality data.

Our baseline experiments show that, despite acquiring state-of-the-art

precision, there is still space for improvement with regards to recall. High

precision indicates that the model extracts some very informative features

while training, whereas not so high recall essentially reflects lack of enough

training data. Ideally, we would need more gold-standard annotations, how-

ever, as discussed previously, this is not always feasible.

4.2. Combining heterogeneous models

Attempting to improve recall, we trained separate models purely on silver

data, i.e. data annotated by direct string-matching dictionary entries. An-

notation coverage ultimately depends on the quality of the dictionary, its

coverage and how up-to-date it is. DrugBank is a good candidate for this

task, as it is a comprehensive dictionary of drugs and also freely available.

The 360 full papers mentioned in section 3.2.3. were annotated and parti-

tioned into 30 collections, each one containing 12 items. This was done in an
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effort to incrementally check whether the addition of silver annotations has

any positive or negative effects on classifier’s performance. We found that

we had to include all 30 partitions in order to witness some improvement.

Table 6 summarises the results of our experiments. The MaxEnt classifier

trained on silver annotation data achieves marginally higher precision and

significantly lower recall than the same classifier trained on gold-standard

data. This is expected, since the silver annotations reflect the contents of

the dictionary, only. Trained on a mixture of gold and silver data, the

MaxEnt classifier achieves 0.5% lower precision and 0.3% higher recall than

its equivalent trained on gold-standard data.

Including the dictionary boosts the recall of the MaxEnt classifier trained

on a mixture of gold-standard and silver annotation data by 1.3% in com-

parison with its baseline equivalent. The last 2 rows of Table 4 show that all

statistics were slightly boosted just by utilising these extra, easy to produce

silver annotations.

In all our experiments so far, the best achieved recall is 89.7%, far less

than precision, thus, we focus on improving it. Careful examination of false-

negatives reveals that most of them are either acronyms (e.g. HMR1766),

long chemical descriptions (e.g. 5beta-cholestane-3alpha, 7alpha, 12alpha-

triol) or terms whose lexical morphology is particularly different than the

usual morphology of drugs (e.g. grapefruit juice). We attempted to capture

acronyms by employing a state-of-the-art acronym disambiguator, AcroMine

[45], however it did not disambiguate any of the acronyms in question, listed

below:

- ANF

- E3174

- PO4

- RPR 106541

- HMR1766

- MDZ 4-OH

- MDZ 1’-OH

Under data sparsity, it is crucial to extract maximum utility from our

training set, which necessitates incorporation of features with low occurrence

frequency. The MaxEnt and perceptron models we employ do not consider

the uncertainty introduced by low frequency training data, hence a frequency

threshold value is introduced to control the compromise between precision
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and recall. For our experiments we set this threshold at 5, as lower values

detrimentally affected precision. As discussed, a number of false-negatives

were missed due to their morphology which is different than the usual mor-

phology of drugs. These two facts, suggest that probably some informative

features did not qualify due to the frequency threshold value. It should be

noted that, in contrast to the MaxEnt classifier, which is probabilistic, the

perceptron classifier is not affected by the frequency threshold. The per-

ceptron is essentially a neural network, thus it does not gather probabilities

and therefore performs best when no frequency threshold is applied.

Beyond the scope of this paper, there are more sophisticated methods to

select important features or tune feature weights to address data sparsity.

In general, two smoothing approaches [46] are applied: linear interpolation

[47] and back-off models [48–51]. Data sparsity can also be addressed by

feature relaxation, based on hierarchical features [52]. A more sophisticated

approach to feature weighting would be to employ Dirichlet regression [53–

55] rather than MaxEnt. Dirichlet regression considers frequencies directly

as the dependent variable, rather than probabilities as in multinomial logistic

regression. The sum of frequencies for a particular feature represents its

“precision”. It should be noted that for high frequency data Dirichlet and

multinomial logistic regression models behave similarly.

4.3. Evolving string-similarity patterns

In this section we aim to improve recall by learning string similarity pat-

terns based on dictionary knowledge. Exploring ways to restore the predic-

tive power the model could have if more training data were available, we

develop a mechanism to deal with these easy, yet elusive false-negative cases

discussed in the previous section. We attempt to genetically evolve string

patterns that can then be used as regular expressions to capture drug names

that are not present in the dictionary. We followed a three-step process de-

scribed below: genetic programming, filtering and pattern augmentation.

Following the work of Tsuruoka et al. [24], we also use a form of re-

gression in order to learn common string patterns of drug names. More
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specifically, we used genetic programming, also known as symbolic regres-

sion, a technique which allows the evolution of programs at the symbolic

level [56]. Genetic programming is used in this task as a global optimi-

sation algorithm.

The pseudo-random sampling inherent in genetic programming means

that no hard guarantees about the final outcome can be made. However, the

randomness also enables good coverage of the fitness landscape and therefore

avoids falling into local optima, which is essential to solve our problem.

Furthermore, the self-driven nature of evolution is robust as it makes little

to no assumptions about the fitness landscape, thus mitigating bias during

the learning stage, which enables it to produce meaningful solutions where

other global optimisation algorithms can falter [56]. Learning by means of

evolution is a good fit for our use-case as it allows finding decent solutions

with minimal prior knowledge.

Genetic programs assemble variable length program structures from the

basic units, i.e. functions and terminals. The assembly occurs at the begin-

ning of a run, when the populations is initialised. In succession, programs

are transformed using genetic operators, such as crossover, mutation and re-

production. The algorithm evolves a population of programs by determining

which individuals to improve based on their fitness, which is in turn assessed

by the fitness-function.

In our implementation, genetic programs were represented as trees that

were traversed in a depth-first manner. A fitness function, a function set and

a terminal set are required for developing a genetic algorithm. Terminals

provide the values that can be assigned to the tree leaves, while functions

perform operations on either terminals or on the output of other functions.

Typically, the function set of a genetic algorithm that deals with numerical

calculations contains the four basic arithmetic operations (+ - * /), while the

terminal set contains one-digit non-negative integers, [0-9]. In the current

case, the function and terminal sets have to deal with strings. The terminal

set contains all latin lowercase letters, [a-z], plus several other characters

needed for building meaningful regular expressions, i.e. | \* + ? ( ) [ ]. The

function set contains several string-manipulating functions, e.g. split, join
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and concatenate.

We employed two genetic operators, crossover and mutation. As illus-

trated in figure 2, tree-based crossover generates new individuals by swap-

ping subtrees of existing individuals. The population percentage applicable

to crossover was set to 35%. Mutation typically operates on one individual.

As shown in figure 3, a point in the tree under mutation is chosen and the

corresponding subtree is replaced with a new randomly generated subtree.

This new subtree is created in the same way, and is subject to the same lim-

itations as the original trees in the initial population. As a matter of future

work, more genetic operators can be employed. Although we attempt to

employ the simplest genetic operators possible, evolving similarity patterns

by genetic programming is the most demanding part of this work, in terms

of computational complexity.

Each “organism” in the genetic population is a small program. When

executed, the program produces a string that is assigned a score accord-

ing to the fitness function. For this purpose, all the single-word terms

were extracted from DrugBank and were used as “test-data” within the

fitness function, which returns the proportion of matches as a measure

of fitness. In case the string produced is not a valid regular expression,

the candidate receives negative score and will most likely be disregarded

in the next generation. For instance, a candidate that matches 50/6,700

terms in DrugBank is obviously fitter than one that matches only 10/6,700

terms, which in turn, is fitter than one whose string does not compile as

a regular expression. However, genetic programming did not achieve any-

thing less than 100% error when attempting to match entire tokens, and

so we limited the testing scope to the last 4, 5 or 6 characters of each to-

ken. This decision was made after observing that word-endings tend to

be more similar than word-beginnings in drug names, mainly for confor-

mance with the WHO’s international non-proprietary name stem group-

ing (who.int/medicines/services/inn/stembook/en, accessed: 15 April

2015). This had a major positive effect on the population in most executions.

After 200 experiments with 80 generations per experiment and 10, 000 in-

dividuals per generation, the 30 best-evolved individuals were selected. Each
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individual is a function that builds a string that represents a potentially

common suffix, in the form of a regular expression pattern. The pattern

produced by the best individual matched 7.3% of the terms in the test-set

(130 terms). It should be noted that the evolutionary process evaluates can-

didates using a list of singletons and not actual sentences. As a consequence,

these patterns will most likely introduce false-positives if applied directly on

real text, thus, decreasing precision.

In succession, we aim to keep the top performing patterns only, i.e. the

least likely to introduce false-positives. This filtering can be done either

manually or algorithmically. Since the number of patterns is small, the

cost of manual checking by a domain expert is limited. Non-experts could

also accomplish this task. Instead, we chose to increase the applicability of

our approach, we selected the best patterns automatically. We calculated

all possible combinations of sets of 5 string patterns and performed an ex-

tensive evaluation process where each combination was evaluated only for

false-positives on 10 randomly selected paragraphs from the original training

set (PK corpus). We selected 5 sets of patterns (25 patterns) which intro-

duced the least false-positives. These 25 patterns were reduced to 11 after

removing duplicates and those that would clearly introduce false-positives.

For example, the pattern “m?ine” was removed because it would recognise

“fluvoxamine” correctly, but it would also incorrectly recognise as drugs

words such as “examine”, “define”, “jasmine” and “cosine”. Table 5 shows

the 11 best performing patterns, accompanied with the number of matches

and an example for each one, while figure 1 shows the tree that corresponds

to the best performing pattern.

Finally, in the pattern augmentation step, we augmented these 11

patterns by wrapping them as follows:

\b (\d?\,?\d’?\-?)?\w+ <pattern>+ \b

The string “\b” at the start and end of the pattern, make it applica-

ble to whole words only. The string “(\d?\,?\d’?\-?)?\w+” specifies op-

tional triggers, i.e. digits, commas and dashes, mainly for matching hy-

droxylated compounds. For example if a pattern applies to “midazolam”,
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it also matches “4-hydroxymidazolam”, “4,5-hydroxymidazolam” and “4,5’-

hydroxymidazolam”. It is common knowledge in biochemistry that all or-

ganic compounds go through oxidative degradation when they come in con-

tact with air. Hydroxylation is the first step in that process and con-

verts lipophilic compounds into water-soluble (hydrophilic) products that

are more readily excreted. We observe many mentions of such compounds

in pharmacology papers, and therefore we attempt to capture them with

this simple regular expression. The pattern augmentation rule, was chosen

manually, introducing a minimal human interaction in this last step.

The genetic programming paradigm parallels nature in that it is a never-

ending process. In practise however, and particularly when evolving code,

arbitrary complexity is rarely desired because it is very easy for the model to

over-fit or start deviating substantially from a good solution approximation.

We adopt two simple and widely used termination criteria to address this.

We stopped the evolution process (a) after a number of iterations (genera-

tions) and (b) by setting a maximum allowed tree depth (10). The patterns

were evolved assuming that each will span a single word term.

4.4. Evaluation of evolved patterns

We evaluated the best augmented patterns (table 5) as a separate classifi-

cation model. During aggregations, similarly to the dictionary predictions,

positive predictions of the pattern model are assigned a probability of 100%.

Table 6 shows evaluation results. As a first observation, classifier ensembles

trained both on gold-standard and silver annotation data do not perform

better than classifier ensembles trained on gold-standard data, only. Com-

bining the dictionary and the pattern model compensates for the lack of

a lower-quality model both for the MaxEnt and the perceptron classifier.

Comparing tables 2, 4 and 6 demonstrates how we gradually moved from the

recall range 84%-88% to 89%-93%, while keeping precision above 96%-97%.

In fact, there are some verified annotation inconsistencies in the test corpus

responsible for a minor decrease in precision. More specifically, some terms,

such as 3-hydroxyquinidine, cycloguanil and 4-hydroxyomeprazole, have not
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been appropriately tagged as drugs.

4.5. Ignoring gold-standard data

In our experiments so far, we assumed that at least some gold-standard data

is available for training. However this might not always be the case. In this

section, we are concerned with the question: “How much worse would results

be, in the absence of a gold-standard training set?” This is an important

question because, as discussed earlier, gold-standard annotations are time

consuming and costly. Ignoring expensive annotations, we experiment with

classifiers trained on the easy-to-produce automatically generated annota-

tions, the dictionary and the pattern model. The same gold-standard corpus

was used for testing and each incremental improvement was also tested for

statistical significance against the previous one using chi-square test, with

and without Yate’s correction. In all cases, improvements were found to be

statistically significant with p-values ranging from 10−4 to 4 × 10−4. The

results obtained are shown in Table 7.

Comparing these results with the ones from our baseline experiments,

presented in Table 2, shows that the MaxEnt classifier trained solely on sil-

ver annotation data, combined with the dictionary and the pattern model,

achieves similar performance to the MaxEnt classifier trained on gold-standard

data. This result is encouraging, since it suggests that access to gold-

standard data is not necessarily a prerequisite for high performance drug-

NER.

5. Discussion

Using a lexical database to annotate NEs in raw text is not a new concept.

In fact, since lexical databases are manually annotated, annotating sentences

for NEs from scratch certainly contains some level of effort duplication. We

attempted to automate the annotation process by utilising such resources.

Unfortunately, our results show that using a dictionary as a direct annotator

of drug names achieves top precision but limited recall. Classifiers trained on
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gold-standard annotations achieved comparable precision but much higher

recall.

For these reasons, we attempted to experiment with methods to pre-

process DrugBank before using it as an annotator. To increase recall we

generalised dictionary entries into regular expression patterns. We were

expecting that the patterns would be able to capture drug names that were

not listed in the dictionary but share common morphological characteristics,

such as suffixes or prefixes, with some dictionary entries.

Obtaining such patterns automatically and accurately is hard and, thus,

our list of patterns is neither perfect nor complete. Perhaps a pharmacolo-

gist cooperating with a regular-expression expert would find higher quality

patterns, i.e. patterns that generalise better. However, we prefer to explore

the extent to which automatic methods can address this task adequately. In

the future it would be very interesting to compare our automated method

with expert-driven regular expressions, together with incorporation of rules

derived from existing WHO and FDA drug nomenclature processes.

Throughout our experiments, we relied heavily on the proposed algo-

rithm for aggregating predictions, which is also not perfect. It is based

on assumptions that may not hold in a different context. Moreover, the

algorithm always favours predictions of the knowledge-based models (dic-

tionaries and regular expressions) against learning models, accepting the in-

consistencies of knowledge-based models as valid. The manually constructed

dictionary was of major importance for this study, as it was used in a num-

ber of ways. It was the basis to extract synonyms, common word-ending

patterns, and was also seen as a direct annotator for an entire corpus. Vot-

ing systems similar to the proposed prediction aggregation algorithm are

becoming increasingly popular mainly to boost performance but also for the

overall stability of the resulting classifier [57–61].

It is also noteworthy that both sets of gold-standard data, for training

and testing, are of roughly the same size. Contrasting this with other sim-

ilar NER experiments, we find that the testing-set is usually a lot smaller

than the training-set regardless of the evaluation scheme (holdout or cross-

validation). This is due to the fact that the problem of data-sparsity is
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pervasive across the entire text mining and NLP discipline (with regards to

probabilistic training). In practice, this means that there is rarely enough

training data, thus splitting it in two equally sized pieces will most likely

not lead to satisfying statistics. We decided to leave the data as is, in order

for the experiments to be as easily reproducible as possible.

Our results demonstrate that, even though availability of gold-standard

data is certainly helpful, it is not a strict requirement with regards to drug

NER. Drugs often share several morphological characteristics, which reduces

the contextual information that is needed in order to make informed predic-

tions. Nonetheless, it remains to be investigated whether our combination

of heterogeneous models will achieve high performance when tested against

larger corpora.

6. Conclusions and future work

This study mainly focused on achieving high performance drug NER with

very limited or no manual annotations. We achieved this by merging predic-

tions from several heterogeneous models including models trained on gold-

standard data, models trained on silver annotation data, DrugBank and,

finally, evolved regular expression patterns. We have shown that state-of-

the-art performance in drug NER is within reach, even in the presence of

data sparsity.

Our experiments also show that combining heterogeneous models can

achieve similar or comparable classification performance with that of our

best performing model trained on gold-standard annotations. We have

shown that in the pharmacology domain, static knowledge resources such

as dictionaries actually contain more information than is immediately ap-

parent, and therefore can be utilised in other, non-static contexts (i.e. to

devise high-precision regular expression patterns). Including synonyms in

the dictionary or disambiguating acronyms did not improve results in this

study mainly due to certain design decisions that surround the PK corpus.

More specifically, none of the tagged acronyms were identified by AcroMine,

whereas most of the identified synonyms have simply not been tagged ap-
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propriately in the test-set. Generally speaking however, we would expect a

significant performance boost from applying these methods.

We plan to extend this work in the future. First of all, we plan to take

advantage of all the annotations in the PK corpus. Being able to recognise

both drugs and drug-targets is essential for the task of identifying relation-

ships and interactions between them. We are also very interested to see if we

can improve on, or find more accurate regular expression patterns in order

to enrich our “safety net” model. Moreover, choosing a drug name is a very

long and costly process, and therefore generating good quality candidates

automatically would be very useful. Finally, we would like to extend our

prediction-aggregation algorithm so as to assign probabilities to predictions

of the knowledge-based models (dictionaries and regular expressions).
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[43] C. Mihăilă and R. T. B. Batista-Navarro, “What’s in a name? entity

type variation across two biomedical subdomains,” in Proceedings of

the Student Research Workshop at the 13th Conference of the European

Chapter of the Association for Computational Linguistics (P. Lison,

M. Nilsson, and M. Recasens, eds.), (Avignon, France), pp. 38–45, As-

sociation for Computational Linguistics, Apr. 2012.

[44] I. Segura-Bedmar, P. Mart́ınez, and C. De Pablo-Sánchez, “Using a

shallow linguistic kernel for drug-drug interaction extraction,” Journal

of Biomedical Informatics, vol. 44, pp. 789–804, Oct. 2011.

[45] N. Okazaki, S. Ananiadou, and J. Tsujii, “Building a high quality sense

inventory for improved abbreviation disambiguation,” Bioinformatics,

vol. 26, no. 9, pp. 1246–1253, 2010.

[46] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-

niques for language modeling,” in Proceedings of the 34th Annual Meet-

ing on Association for Computational Linguistics, ACL ’96, (Strouds-

burg, PA, USA), pp. 310–318, Association for Computational Linguis-

tics, 1996.

[47] F. Jelinek, B. Merialdo, S. Roukos, and M. J. Strauss, “Self-organized

language modeling for speech recognition,” in Readings in Speech Recog-

nition (A. Waibel and K.-F. Lee, eds.), (San Francisco, CA, USA),

pp. 450–506, Morgan Kaufmann, 1990.

29



[48] S. M. Katz, “Estimation of probabilities from sparse data for the lan-

guage model component of a speech recognizer,” in IEEE Transactions

on Acoustics, Speech and Singal processing, vol. ASSP-35, pp. 400–401,

Mar. 1987.

[49] M. Collins and J. Brooks, “Prepositional phrase attachment through a

backed-off model,” in Proceedings of the Third Workshop on Very Large

Corpora (D. Yarowsky and K. Church, eds.), (Cambridge, MA, USA),

pp. 27–38, Association for Computational Linguistics, 1995.

[50] D. Roth and D. Zelenko, “Part of speech tagging using a network of

linear separators,” in Proceedings of the 36th Annual Meeting of the

Association for Computational Linguistics and 17th International Con-

ference on Computational Linguistics - Volume 2, ACL ’98, (Montreal,

Quebec, Canada), pp. 1136–1142, Association for Computational Lin-

guistics, 1998.

[51] D. M. Bikel, R. Schwartz, and R. M. Weischedel, “An algorithm that

learns what’s in a name,” Machine Learning, vol. 34, pp. 211–231, Feb.

1999.

[52] G. Zhou, J. Su, and L. Yang, “Resolution of data sparseness in named

entity recognition using hierarchical features and feature relaxation

principle,” in Proceedings of the 6th International Conference on Com-

putational Linguistics and Intelligent Text Processing (A. Gelbukh, ed.),

CICLing’05, (Berlin & Heidelberg, Germany), pp. 750–761, Springer-

Verlag, 2005.

[53] G. Campbell and J. E. Mosimann, “Multivariate methods for propor-

tional shape,” in Proceedings of the Section on Statistical Graphics,

Annual Meeting of the American Statistical Association, (Alexandria,

VA, USA), pp. 10–17, American Statistical Association, 1987.

[54] R. H. Hijazi, Analysis of compositional data using Dirichlet covariate

models. PhD thesis, The American University, Washington, DC, USA,

2003.

30



[55] R. A. Hijazi and R. W. Jernigan, “Modelling compositional data using

dirichlet regression models,” Journal of Applied Probability and Statis-

tics, vol. 4, no. 1, pp. 77–91, 2009.

[56] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, Genetic Pro-

gramming III: Darwinian Invention and Problem Solving. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., May 1999.

[57] P. N. Bennett, S. T. Dumais, and E. Horvitz, “The combination of text

classifiers using reliability indicators,” Information Retrieval, vol. 8,

pp. 67–100, Jan. 2005.

[58] K. Al-Kofahi, A. Tyrrell, A. Vachher, T. Travers, and P. Jackson,

“Combining multiple classifiers for text categorization,” in Proceedings

of the tenth international conference on Information and knowledge

management, CIKM ’01, (New York, NY, USA), pp. 97–104, ACM,

2001.

[59] Y. Yang, T. Ault, and T. Pierce, “Combining multiple learning strate-

gies for effective cross-validation,” in International Conference on Ma-

chine Learning (J. Furnkranz and T. Joachims, eds.), (Madison, WI,

USA), pp. 1167–1174, The International Machine Learning Society,

2000.

[60] Y. Bi, S. Mcclean, and T. Anderson, “Combining rough decisions for

intelligent text mining using Dempster’s rule,” Artificial Intelligence

Review, vol. 26, pp. 191–209, Nov. 2006.

[61] L. Si, “Boosting performance of bio-entity recognition by combining

results from multiple systems,” in Proceedings of the 5th International

Workshop on Bioinformatics, BIOKDD ’05, (New York, NY, USA),

pp. 76–83, ACM Press, 2005.

[62] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Ge-

netic Programming. Published via lulu.com and freely available at:

www.gp-field-guide.org.uk (Accessed: 15 April 2015), 2008. (With

contributions by J. R. Koza).

31

lulu.com
www.gp-field-guide.org.uk


Algorithms

Algorithm 1 Aggregation of predictions

1: List L →[ ]
2: for all Sentence s ∈ Text do
3: Map M → {:prediction :confidence}
4: for all Tokens t ∈ s do
5: if ∃ dictionary then
6: if dictionary.predict(t) → POSITIVE then
7: PUT M {prediction 1.0}
8: else
9: for all Model m ∈ Models do

10: if m.predict(t) → POSITIVE then
11: STORE {prediction confidence}
12: end if
13: end for
14: PUT M {prediction max-confidence}
15: end if
16: end if
17: end for
18: DROP overlapping/intersecting spans*
19: ADD L M
20: end for
21: return L

* Rules for dropping spans:
- Identical/Intersecting : first span is kept
- Contained : Contained spans are dropped
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Figure 1: The best-evolved “organism”

Figure 2: Example of one-point crossover between parents of different sizes
and shapes. Image source: [62]
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Figure 3: Example of subtree mutation. Image source: [62]
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Tables

token type features

initial capital letter contains hyphen
all lowercase letters contains slash
all letters contains period
all digits contains uppercase
contains digit contains letters

Table 1: Binary token type features

classifier P R F1

Dictionary 99.7% 78.5% 87.8%
Dictionary + synonyms 93.4% 78.9% 85.6%
MaxEnt(gold) 98.3% 84.5% 91.0%
Perceptron(gold) 97.5% 72.0% 82.8%
MaxEnt(gold) + Dictionary 99.1% 88.4% 93.4%
Perceptron(gold) + Dictionary 97.6% 84.3% 90.4%

Table 2: Results of baseline classifiers trained on gold-standard data (P:
precision, R: recall, F1: F-Score)
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category general drug names branded drug names
system NLM LHC [16] UTurku [15]
team National Library of Medicine University of Turku
approach dictionary-based SVM classifier (TEES)
precision 72.5% 94.5%
recall 91.7% 88.1%
F-Score 81.0% 91.2%

Table 3: Results of the best performing systems (in terms of exact-matching
F-Score) in general and branded drug name recognition in the DDIExtrac-
tion 2013 task [16].

classifier P R F1

MaxEnt (silver) 98.7% 47.1% 63.7%
MaxEnt (silver) + dictionary 99.2% 78.5% 87.6%
Perceptron (silver) 98.3% 76.9% 86.3%
Perceptron (silver) + dictionary 99.3% 78.5% 87.7%
MaxEnt (gold + silver) 97.8% 84.8% 91.0%
MaxEnt (gold + silver) + dictionary 98.6% 89.7% 93.9%
Perceptron (gold + silver) 97.2% 79.1% 87.2%
Perceptron (gold + silver) + dictionary 98.0% 85.1% 91.1%

Table 4: Results of classifiers trained on gold-standard and silver annotation
data (P: precision, R: recall, F1: F-Score)

evolved patterns matches example

a(z|st|p)ine? 130 nevirapine
(i|u)dine? 72 lepirudin
azo(l|n)e? 62 fluconazole
tamine? 44 dobutamine
zepam 17 bromazepam
zolam 13 haloxazolam
(y|u)lline? 12 enprofylline
artane? 11 eprosartan
retine? 10 hesperetin
navir 9 saquinavir
ocaine 9 benzocaine

Table 5: Evolved patterns
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classifier P R F1

MaxEnt (gold) + dictionary + patterns 97.3% 93.0% 95.1%
MaxEnt (gold + silver) + dictionary + patterns 97.3% 93.0% 95.1%
Perceptron (gold) + dictionary + patterns 95.8% 88.9% 92.3%
Perceptron (gold + silver) + dictionary + patterns 96.0% 88.8% 92.3%

Table 6: Evaluation results of ensembles that contain the pattern classifier
(P: precision, R: recall, F1: F-Score)

classifier P R F1

MaxEnt (silver) + dictionary + patterns 97.4% 85.4% 91.0%
Perceptron (silver) + dictionary + patterns 97.3% 85.1% 90.8%

Table 7: Results of classifiers that did not use gold-standard data (P: preci-
sion, R: recall, F1: F-Score)
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