
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

28 | P a g e
www.ijacsa.thesai.org

Data Flow Sequences: A Revision of Data Flow

Diagrams for Modelling Applications using XML.

James PH Coleman

Edge Hill University

St Helen’s Rd, Ormskirk, UK, L39 3LG.

Abstract—Data Flow Diagrams were developed in the 1970’s

as a method of modelling data flow when developing information

systems. While DFDs are still being used, the modern web-based

which is client-server based means that DFDs are not as useful.

This paper proposes a modified form of DFD that incorporates,

amongst other features sequences. The proposed system, called

Data Flow Sequences (DFS) is better able to model real world

systems in a way that simplifies application development. The

paper also proposes an XML implementation for DFS which

allows analytical tools to be used to analyse the DFS diagrams.

The paper discusses a tool that is able to detect orphan data flow

sequences and other potential problems.

Keywords—Data Flow Diagrams; Modelling diagrams; XML;

Data Flow Sequence Diagrams

I. INTRODUCTION

Data Flow Diagrams (DFDs) [1] were developed in the
late 1970’s as a method of modelling the flow of data through
an information system. According to Bruza [2] they are often
used in the preliminary design stages to provide an overview
of the system. Today there are a number of advanced
modelling tools (including UML [3] – which was developed
by Grady Booch, Ivar Jacobson and Jim Rumbaugh at
Rational Software in the 1990s) and Business Activity
Models [4] and other tools) that not only describe the data
flow, but also specify the processing steps involved. These
tools can then be (in some cases) to automatically develop the
code.

Data flow diagrams are one of essential perspectives of the
structured-systems analysis and design method SSADM [5].
SSADM is one particular implementation and builds on the
work of different schools of structured analysis and
development methods.

Kolhatkar [6] proposed the development of an XML
representation of DFDs to overcome a number of identified
weaknesses with the graphical DFDs used. These included: the
amount of time it takes to actually “draw” the DFDs given that
DFDs are usually developed iteratively and ambiguity in
understanding given that there are a number of different
models in drawing DFDs. There exists at least 2 major
versions (Yourdon & Coad [7] and Gane & Sarson [8]).

II. DATA FLOW SEQUENCE DIAGRAMS

In this paper we will consider a revised and modernised
form of DFD that is better suited to modern applications,
particularly web-based applications. Web based applications

are characterised by the client-server nature of the relationship
– where the main entity (the User) communicates with a client
system (usually called a web browser), and the web browser
then communicates with one/more servers (called web
servers) which may themselves communicate with other
processes using system systems as SOAP [9] HTTP-based
systems.

The main difference between an application and a web-
based application stems from the fact that web-based
applications exists within a context of a web-page that is
displayed by the web browser. This web-page is downloaded
from the web server, which is again in the context of a web-
page (the application). This means that all data flows
communicate with processes that are sub-components of a
page (or group of processes), and these pages are downloaded
from pages from the Server.

In order to support this extended definition, DFS diagrams
include the concept of sequence – that is, dataflows are
sequenced. This indicates the sequence in which dataflows,
and processes/entities receive data, process data and then
produce output.

Processes run on either the Client system, the Server
system or on a separate system detached from the client or
server. An example of this would be a DB server. Even though
a DB system (or datastore) may actually be running on the
same networking device as the web server, by putting it as
being separate from the Web Server, this indicates that the DB
server may be physically separate.

Kolhatkar [6], in his proposal for representing DFDs in
XML, established a number of XML tags, including:
<process>, <entity>, <dataflow> and <datastore>, each with a
number of attributes. Processes, entities and data stores have
an id attribute that is used in the dataflow to identify the
source and destination tags.

This article introduces a number of new concepts to the
DFD, forming the Data Flow Sequence Diagrams (DFS).
These changes are:

The Introduction of a Client and Server as sites for
executing processes, and

On the Client and Server, there are Process Groups (called
a procgroup) which conceptually form a page equivalent for
web-based applications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227102059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

29 | P a g e
www.ijacsa.thesai.org

Clients and procgroups allows the Designer to introduce
the concept of a web page cookie – where a cookie is datastore
on a client and inside a procgroup, so that if the procgroup
closes then the datastore is lost. This mimics the behaviour of
page-bound cookies which are only accessible from the
current web page, and when the web page is replace, then the
cookie is removed. At the same time, the cookie is also
accessible to the same web-page (procgroup) on the server.

Similarly, processes, datastores and the server allows DFS
to mimic the PHP session variable – which is a variable that
only exists on the server. It has a wider scope than the
procgroup, but always only exists on the server.

rocesses exist on both clients, and servers. Processes can
be executed inside a procgroup, if it is a process created by a
web page, or outside the procgroup environment as would
happen for instance with a PHP DB request, which comes
from a process in a procgroup on the server and is sent to a DB
server for processing, and then returned.

Irrespective of whether a process is in a procgroup or not,
dataflows connect entities to/from processes, datastores
to/from processes or process to/from process.

Figure 1 illustrates a DFS diagram that represents a sub-set
of the Guest Book system where the User has supplied his
personal information, this data is stored in a DB, and then all
guest book entries are displayed. In this example, there is a
procgroup that is labelled “cgbook.php” which indicates that
the included processes are a part of the gbook.php file on the
Client. Similarly, there is a procgroup called sgbook.php
which includes the processes that are executed on the Server.

III. XML REPRESENTATION

Figure 2a illustrates how a portion of this DFS is
represented in XML. For clarity, the Context diagram has been
removed, as has a number of the context-level dataflows.

<?xml version="1.0" encoding="UTF-8"?>

<!-- New document created with EditiX at Wed Dec 05
15:16:12 GMT 2012 -->

<dfs>

...

<level id="1">

<entity id="E1"><label>User</label></entity>

<client>

<process id="CP1"><label>request web
page</label></process>

<procgroup id="gbook.php">

<process id="CP2"><label>Display Web
Page</label></process>

<process id="CP3"><label>Obtain User
Data</label></process>

<process id="CP4"><label>Display Guest Book and
prepare for next entry</label></process>

</procgroup>

Fig. 1 DFS diagram for Guest Book Example system

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

30 | P a g e
www.ijacsa.thesai.org

</client>

<server>

<process id="SP1"><label>load web
page</label></process>

<procgroup id="gbook.php">

<process id="SP2"><label> Process Guest Book
Entry</label></process>

</procgroup>

</server>

<datastore id="DB1"><label>Guest Book
DB</label></datastore>

<dataflow from="E1" to="CP3" seq="5"><label>Enter
user data</label></dataflow>

<dataflow from="E1" to="CP3" seq="6"><label>Submit
Form</label></dataflow>

<dataflow from="CP3" to="SP2" seq="7"><label>Submit
Form Data</label></dataflow>

<dataflow from="SP2" to="DB1" seq="8"><label>Store
User Data</label></dataflow>

<dataflow from="SP2" to="DB1"
seq="9"><label>Request GB Data</label></dataflow>

<dataflow from="DB1" to="SP2"
seq="10"><label>Retrieve GB Data</label></dataflow>

<dataflow from="CP4" to="E1" seq="11"><label>Display
GB Data</label></dataflow>

…

</level>

</dfs>

Fig 2a: Figure 2a illustrates a simplified implementation of a web-based
guest-book application.

Each process, entity, dataflow, datastore, procgroup has a
unique identifier. The uniqueness of these different objects
enable the dataflows to specify the relevant process, entity or
datastore without needing to distinguish between local and
global identifiers, and also allows dataflows to link between
levels. That is, a Level 2 DFS diagram is able to reference an
entity at a higher (or lower) level.

<!ELEMENT dfs (context , level)>

<!ELEMENT level (entity+ , client ,

server , datastore+ , dataflow+)>

<!ATTLIST level

id CDATA #REQUIRED

>

<!ELEMENT dataflow (label)>

<!ATTLIST dataflow

from CDATA #REQUIRED

to CDATA #REQUIRED

seq CDATA #REQUIRED
>

<!ELEMENT label (#PCDATA)>

<!ELEMENT datastore (label)>

<!ATTLIST datastore

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT server (process+ , procgroup+

)>

<!ELEMENT procgroup (process+)>

<!ATTLIST procgroup

id CDATA #REQUIRED

>

<!ELEMENT process (label)>

<!ATTLIST process

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT process (label)>

<!ATTLIST process

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT client (process+ , procgroup+

)>

<!ELEMENT procgroup (process+)>

<!ATTLIST procgroup

id CDATA #REQUIRED

>

<!ELEMENT process (label)>

<!ATTLIST process

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT process (label)>

<!ATTLIST process

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT entity (label)>

<!ATTLIST entity

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT context (process , entity+ ,

dataflow+)>

<!ELEMENT dataflow (label)>

<!ATTLIST dataflow

from CDATA #REQUIRED

to CDATA #REQUIRED

seq CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

<!ELEMENT entity (label)>

<!ATTLIST entity

id CDATA #REQUIRED

>

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

31 | P a g e
www.ijacsa.thesai.org

<!ELEMENT label (#PCDATA)>

<!ELEMENT process (label)>

<!ATTLIST process

id CDATA #REQUIRED

>

<!ELEMENT label (#PCDATA)>

Fig2b: provides the DTD for the DFS XML representation.

IV. DFS VALIDATION AND ANALYSIS

Having the DFS being represented using XML enables
automatic validation and analysis of the DFS diagram to
ensure the diagram truly represents the real world. As an
example, an analyser tool has been developed that is able to
follow the flow of data from process to process. It is also
possible to start at a dataflow and back-track to find out where
the data came from.

Figure 3 illustrates part of the track of a dataflow in the
system described in Figure 2 above – the Guest Book system.
Here the tool shows the different paths. By holding the mouse
over a dataflow, you are able to see the destination
process/entity/datastore.

Fig. 2 DFS Analyser

Analysers can also search for a number of anomalous
conditions such as:

 Where there exists a process for which there output
dataflows but no input data flows

 Where there exist a process that has an input dataflow
(or dataflows) but no out dataflow.

 Processes where there are no connecting dataflows.

 Datastores where there are input but no output dataflows

 Datastores has output dataflows but no input dataflows.

 Dataflows between entities without an intervening
process

 Dataflows between datastores without an intervening
process

The Analyser can also provide a definitive list of the
elements that make up the DFS diagram in the form of a
symbol table that lists all the key information about the
entities, processes and datastores showing whether they are
client/server/other based and whether the a process is part of a
procgroup. Similarly the system shows all dataflows, and
indicates which element it is connected to. In this way the tool
aids the designer is locating data flows and process orphans.

V. CONCLUSIONS

DFS Diagrams enable developers to model real world
applications with a much richer diagrammatic system than the
traditional Data Flow Diagram. DFS Diagrams are specifically
designed to support web-based applications with the concept
of a client and server being an integral part of the DFS system.

With the ability to specify the DFS Diagram using XML,
then the diagram can be analysed using XML processing tools
such as XPath and XSL. Further, the XML representation can
also be used to analyse the DFS diagram looking for
fundamental errors in design, as well as the ability to follow a
dataflow in sequential order from any starting point to the
logical end of the dataflow.

The XML representation can be expanded to include code
specification, and in this way can be sued to automatically
create applications.

The Analyser currently provides a limited set of validation
and analyser tools. Given the flexibility of XML and its
efficiency in processing, other analytical tests can be
incorporated into the system to aid finding logical and
practical problems with the DFS design.

REFERENCES

[1] W. Stevens, G. Myers, L. Constantine, "Structured Design", IBM

Systems Journal, 13 (2), 115-139, 1974.

[2] Bruza, P. D., Van der Weide, Th. P., "The Semantics of Data Flow
Diagrams", University of Nijmegen, 1993

[3] Marc Hamilton, “Software Development: A Guide to Building Reliable

Systems” p.48; Prentice Hall, 1999.

[4] Cadle, J, Eva M, Hindle K, Paul D, Rollaston C, Tudor D, Yeates D:
“Business Analysis” 2nd Edition; British Informatics Society Limited;

2010

[5] SSADM. “Business Systems Development with SSADM”. The
Stationery Office. 2000. p. v. ISBN 0-11-330870-1.

[6] S S Kolhatkar “XML Based Representation of DFD: Removal of
Diagramming Ambiguity” International Journal of Advanced

Computer Science and Applications, Vol. 2, No. 8, 2011

[7] Coad, P.. Yourdon E, “Object-Oriented Analysis”, 2nd Edition,
Englewood Cliffs, NJ: Prentice-Hall, 1991.

[8] C. Gane and T. Sarson. “Structured Systems Analysis: Tools and

Techniques", New York: IST, Inc., 1977

[9] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000;
http://www.immagic.com/eLibrary/ARCHIVES/SUPRSDED/W3C/W0

00520N.pdf Accessed 8/1/2013.

