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To my parents



To everything there is a season,

A time for every purpose under heaven:

A time to be born, and a time to die;

A time to plant, and a time to pluck what is planted;

A time to kill, and a time to heal;

A time to break down, and a time to build up;

A time to weep, and a time to laugh;

A time to mourn, and a time to dance;

A time to cast away stones, and a time to gather stones;

A time to embrace, and a time to refrain from embracing;

A time to gain, and a time to lose;

A time to keep, and a time to throw away;

A time to tear, and a time to sew;

A time to keep silence, and a time to speak;

A time to love, and a time to hate;

A time to war, and a time of peace.

Ecclesiastes 3:1-8
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Abstract

In many magnetic resonance imaging (MRI) applications, it is necessary to compare 

regions of interest (ROIs) on different images of the same patient. This comparison is 

often made difficult when the scanned tissue volume is not in exactly the same three- 

dimensional location each time. Registration, the accurate alignment of the images 

through the determination of a transformation from one image space to another, is 

necessary so that ROIs may be compared correctly.

This thesis presents an implemented software system for the image processing and 

registration of MRI finger images. The particular application of this system is for pa­ 

tients suffering from rheumatoid arthritis. Firstly, features are derived from the images 

that will aid the registration process. The finger bones are considered to be the most 

reliable structures within MRI finger images and therefore, various image processing 

algorithms are applied to the images to create boundaries that are characteristic of the 

finger bones. In addition, a novel algorithm is presented which combines boundaries 

from many slices into a single image. Secondly, the rotational and translational offset 

between two images of the same finger is calculated. The Hough Transform is used to 

fit ellipses to the joint side of the two bones in the combined slice image. The displace­ 

ment between the best-fit ellipse on images of the same finger provides the rotation 

and translation required to register the images. Finally, the calculated rotational and 

translational offset is applied to one of the images to register it to the other image. 

The system is applied to various data sets supplied by the University Hospital of Wales 

and is tested through fully worked examples. An analysis of the results is given.
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Chapter 1 

Introduction



CHAPTER 1. INTRODUCTION 2

This thesis documents the creation of a novel system for the image processing and 

registration of human finger images obtained by Magnetic Resonance Imaging (MRI). 

The purpose of the system is to aid clinicians' understanding of finger disease, in partic­ 

ular rheumatoid arthritis (RA). The system has been developed through collaboration 

between the University of Glamorgan and the University Hospital of Wales (UHW).

The system contains image processing tools that are used to extract features from 

the finger images. These features provide necessary information for image registration. 

The finger image has unique features and problem areas that require a systematic 

approach different from methods used for other parts of the body. The literature 

review detailed in Chapter 2 shows that such a system does not appear to already 

exist.

The developed system incorporates established image processing techniques and 

also new techniques, investigated and designed to meet the specific requirements of 

this application. All the techniques are interlinked to provide a working system.

At UHW, a small bore MRI scanner is used to acquire finger images of patients 

suffering from RA and also images of fingers of people not affected. The images are 

two-dimensional cross-sections of finger joints. All the images are stored on a computer.

The images are displayed by a viewer, created at UHW from complementary re­ 

search [OConnor98b]. The image processing and registration system is incorporated 

into the viewer to detect features in the MR images that can be used for registration. 

The difficulties which arise in the initial study of registration are:

  it is not known what constitutes a useful registration feature in an MRI finger 

image;

  there could be more than one such useful feature in an MRI finger image;

  the locations of useful features in an MRI finger image are unknown.
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When features are located in an image they are fed into the registration process. 

Particular difficulties here are:

  image features may be derived from different cross-sections of the finger;

  anatomical changes to the finger over time could affect the derived features;

  small changes in the position of the finger lead to large changes in the registration 

process - it is ill-conditioned.

Ideally the final registration algorithm must take all these points into account and 

give a measure of accuracy of the registration achieved.

The general structure of the registration procedure is shown in Fig. 1.1.

Acquire Images

Locate features

Register

Figure 1.1: The general structure of the registration procedure.

This chapter introduces the reader to the background to this research - the basic 

concepts of MRI and the particular images used in this specific application. The issue 

of registration is introduced in Section 1.2 before an overview of the thesis is outlined.
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1.1 Background

In this section, a brief introduction to Magnetic Resonance Imaging (MRI) is given. The 

resulting MRI images acquired for this project are described, followed by an explanation 

of the different imaging protocols used at UHW.

1.1.1 A Brief Introduction to Magnetic Resonance Imaging

The main source of information concerning the medical application in general and Mag­ 

netic Resonance Imaging (MRI) and Rheumatoid Arthritis (RA) in particular, came 

from staff at the University Hospital of Wales, whose help and expertise is acknow­ 

ledged here and appreciated. Further information was obtained from selected texts 

and journals.

One of the earliest articles on MRI came from the Nottingham University research 

group and was published in the British Journal of Radiology in 1978 [Hinshaw78].

The basis of the use of MRI is provided in "Magnetic Resonance in Medicine" 

[Rinck93]. This starts with a historical section on the foundation of MRI, explains 

the basics of MRI, equipment and images and gives examples of specific applica­ 

tions. Further information is provided by Christensen's Physics of Diagnostic Ra­ 

diology [Curry90], which deals with imaging techniques explained from the perspective 

of the Physicist.

Atomic nuclei are known to have magnetic properties. This forms the basis of 

magnetic resonance imaging. Whereas x-ray images stem from interactions between 

the high frequency electromagnetic radiation and the electron clouds of atoms, the 

Nuclear Magnetic Resonance (NMR) signal stems from the interaction of radiowaves 

with the atomic nucleus itself. Hence there is a completely different contrast behaviour 

of MRI compared to other medical imaging techniques [Rinck93]. Contrast resolution 

is the principal advantage of MRI [Curry90].
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Clearly, hydrogen (HI) nuclei occur naturally in the human body principally in 

water and fat. In the presence of a magnetic field a single energy level splits into 

two distinct energy levels. At equilibrium there is a slightly larger population in the 

lower, more stable, energy level than in the higher, excited level. By introducing a 

radio frequency (RF) pulse into the magnetic field, some nuclei will jump to the higher 

energy level. Once the RF pulse has been switched off, the nuclei return to the lower 

level, emitting a signal [Rinck93].

The frequency components of the emitted signal are analysed using Fourier Trans­ 

forms in order to measure the intensity of each frequency. Magnetic Resonance signals 

are sine and cosine waves and can be defined by amplitude, frequency and phase. The 

amplitude is also called the signal strength and reflects the brightness of a picture 

element (pixel) of an MRI image [Rinck93].

The MRI signal can often have a very low intensity and therefore can be severely 

affected by background noise. To improve the signal-to-noise (S/N) ratio, the images 

are taken more than once and the data from each image are averaged to produce the 

final image [Rinck93]. In this study, the images usually result from the average of two 

acquisitions.

The three dominant factors which affect the contrast of an MRI image are the Tl 

and T2 relaxation times and the proton density [Rinck93]. "The Tl relaxation time 

characterises the process of returning to a state of equilibrium from an excited state, 

the T2 relaxation time characterises the dephasing of the spins and the proton density 

reflects the water content" [ibid.], more particularly, the number of hydrogen nuclei 

present per unit volume [Stewart2000]. Adjusting the relaxation times will create 

proton density-weighted, Tl-weighted or T2-weighted images. The weighted images 

have differing contrast.
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MRI is believed to be safe as there are no known side effects. However, patients with 

cardiac pace-makers or any internal metal prostheses are not scanned as a precaution, 

because of the strong magnetic field. The disadvantages of MRI are that it is expensive 

and not widely available. However, this does not affect this project as adequate time 

is provided by the project collaborator, UHW. For more detailed information on MRI 

the reader is referred to texts such as [Curry90] and [Rinck93].

1.1.2 MRI Finger Images

The MRI signal is reconstructed into a 256 x 256 grey-level image using Surrey Medical 

Instruments (SMIS) software. In the image, an intensity value of 0 is mapped to black 

and 4095 is mapped to white.

By convention, the letters x, y and z are used to indicate directions in three di­ 

mensions. In this study, the finger to be scanned is placed with its long axis along 

the z direction and its short axis along the y direction (illustrated in Fig. 1.2). The x 

direction is the vertical axis. The MRI images in this project are cross-sections (slices) 

of finger joints. These images are acquired in the y direction and are known as saggital 

slices [Rinck93].

For this project, the proximal interphalangeal (PIP) joint, usually on the middle 

finger, is the object being imaged. An example MRI finger image is shown in Fig. 1.3. 

The two bones in the joint are labelled as the proximal phalanx and the middle phalanx, 

the former being nearer the hand and the latter nearer the finger tip. "Two types of 

bone tissue can be discerned. Cortical bone has a dense structure, while trabecular 

bone has a spongy appearance. The long bones have a thick outer layer of cortical 

bone with a thin inner layer of trabecular bone. The short bones, on the other hand, 

are composed of mainly trabecular bone with a thin layer of cortical bone" [MedSci98], 

Cortical bone appears very dark on an MRI image, but trabecular bone appears much 

lighter.
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Figure 1.2: Two dimensional cross-section of a finger.

Trabecular 
Bone

Cartilage 

Middle Phalanx

Tendon

to finger tip <

Synovium 
Dorsal

Hole

Proximal 
Phalanx

Synovium 
Palmar

Cortical 
Bone

to vmst

Figure 1.3: MRI scan of an RA patient.
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Between the bones are narrow stripes of cartilage. The flexor tendon can be seen 

running below the finger. The joint capsule, which is more easily seen below the middle 

phalanx, contains synovial tissue, a normally thin lining of the joint. This is labelled 

above and below the bones as synovium dorsal and synovium palmar respectively. 

There is also a clearly visible "hole" (bone erosion) in this patient's finger.

RA has a destructive effect on the finger joint. The normally thin lining of synovial 

tissue swells and may erode the bones and thin the cartilage. Added to the discomfort 

of the swelling, RA finger joints can become very stiff and painful [Plant95b]. The 

speed at which the disease affects the joint varies from patient to patient and is not 

dependent on length of illness. There is, however, a level of disease activity. With 

treatment the activity of the disease can be reduced. The activity of the diseased tissue 

is distinguished as active synovium and non-active synovium. Gadolinium-enhanced 

finger images (explained in the next section) can clearly show the activity of the diseased 

tissue [Plant95a].

MRI has the potential to image synovial tissue directly in RA patients, which 

is not possible by x-ray imaging [Plant95b]. Scanning the progress of the disease 

allows monitoring with the prospect of improving drug therapy and also of early secure 

diagnosis. Early secure diagnosis can justify the use of aggressive therapies.

1.1.3 Imaging Protocols

Different clinical trials require the use of different sequences of scans, depending on the 

nature of the trial. At UHW, three imaging protocols have been tried and tested.

The first imaging protocol acquires PD-weighted, T2-weighted and Tl-weighted 

sequences consecutively. The total acquisition time for this protocol is slightly more 

than seventeen minutes. Consequently, it is difficult for a patient to keep perfectly still 

during this time and the latter images can show movement.
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The second imaging protocol is a series of consecutive Tl-weighted scans, with the 

contrast agent, Gadolinium, intravenously injected after the first scan. This protocol is 

known, at UHW, as the Gadolinium-protocol and will be referred to as such throughout 

the thesis.

Each Tl-weighted scan is approximately three minutes in duration. A series of 

9 or 10 scans are taken in all making a total acquisition time of approximately 30 

minutes. Again, it is difficult for a patient to remain perfectly still during this time. 

Consequently movement may be observed in the images particularly between the first 

scan and the later ones.

The Gadolinium-protocol is used at UHW to assess disease activity in RA patients. 

Results [Plant95a] show that Gadolinium does enhance active synovial tissue and fluid 

in images of RA patients. In fact, Gadolinium enhances all regions of the entire im­ 

age to varying degrees. We found that the enhancement is minimal in non-synovium 

regions, but active synovium is enhanced greatly. Inactive synovium is only minim­ 

ally enhanced, as with the other regions. In some active cases, over 100% increase in 

synovium pixel intensity was obtained, resulting in much improved clarity. Results of 

the analysis of Gadolinium enhancement were presented as a poster at the American 

Conference of Rheumatology [Plant95a] (listed in Appendix E).

The third imaging protocol developed at UHW acquires all three weighted scans 

simultaneously. If required, Gadolinium is then injected into the patient and two more 

Tl-weighted scans taken to show the peak and decay of the contrast agent. This latter 

protocol has a valuable advantage over the other protocols in that each of the first 

three images acquired are subject to the same movement of the finger. This advantage 

removes some of the registration problems, which are discussed in the next section.

To monitor the course of rheumatic disease, a patient must be scanned on successive 

occasions and the images analysed and compared. This immediately raises the issue of 

registration which is introduced in the next section.
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1.2 Registration

In many magnetic resonance applications, it is necessary to compare regions of interest 

(ROIs) on different images. This comparison may be difficult as it is unlikely that the 

area being scanned is in exactly the same three-dimensional location every time. For 

example, a clinical trial may test the success of a certain drug by periodic scanning 

of the same tissue area. The slices taken in each set of scans will not exactly match 

across all sets. Another example of the difficulty of comparison is when a patient is 

unable to keep perfectly still during a series of scans. Hence, the later scans show 

some movement when compared to the earlier scans. The movement may affect which 

cross-sections are imaged for each slice.

Accurate alignment of the images is necessary, so that ROIs may be compared 

correctly. This is known as registration [Elsen93, Maguire91, Maintz98, Maurer93, 

West96, West99].

This section introduces the reader to the problem of registration. The application of 

registration presented in this thesis is specifically the registration of MRI finger images.

1.2.1 The Need for Registration

Repeated scanning of patients' fingers to monitor disease immediately creates registra­ 

tion problems. The problems can be broadly categorised as:

  incorrect positioning for scanning;

  finger movement;

  changes within the finger.

Each of these types of problems are now explained in the context of the specific 

application of this research to MRI finger images.
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Incorrect Positioning for Scanning between Serial Examinations

To monitor, for example, the course of rheumatic disease, repeated scans of patients' 

joints must be taken on successive occasions. To assess treatment progress, in an 

ideal situation the same cross-sections of the finger would be compared. Ensuring that 

comparisons are made of the same cross-sections requires identical re-positioning of the 

finger for scanning, assuming that the finger has not altered physically.

At UHW, the patient's finger is positioned in the MRI scanner with the aid of a 

plastic syringe. The syringe is fitted to the finger and excess space packed prior to 

scanning. There is currently no method at UHW of ensuring that a patient's finger is 

in exactly the same three-dimensional location every time it is scanned. Hence, it is 

very likely that the finger is not re-positioned in the same way. The position can differ 

in any, or all axes, rotationally and in relative angles of articulated joints. Here is an 

immediate need for registration.

MRI scans of rheumatoid arthritis (RA) patients require the measurement of syn- 

ovial tissue around the joint. As many RA patients have swollen fingers, small female 

patients find it easier to insert their hand into the scanner. Conversely, small female 

patients tend to have short arms and sometimes struggle to position their finger far 

enough forwards in the scanner. Thus, the cross-sections taken may not contain all of 

the synovial tissue in the joint. Fig. 1.4(a) illustrates the MRI scanner and Fig. l-4(b) 

illustrates the positioning of a finger in the jig that is inserted into the scanner.

It is unlikely that any method will be found of ensuring that exactly the same 

cross-sections of the finger are taken each time. Even moulds made of the finger 

would be inadequate, as the physiology of the treated joint will often change between 

scan sessions. Sufficient clamping of the finger is necessary to reduce the number of 

registration problems.
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(a) (b) 

Figure 1.4: (a) MRI scanner (b) jig that holds the finger for scanning.

Finger Movement

The syringe used for positioning the finger in the MRI scanner restricts considerable 

amounts of, although not all, movement. Finger movement can occur in many direc­ 

tions: forwards, backwards, rotational or bending at articulated joints. In obtaining 

the results for a conference poster [Plant95a] it was found that very slight movements 

during scanning have a great effect on the images.

For simple motion, such as forwards and backwards movement, registration is very 

straightforward, requiring only a simple shift to match up the images. Rotational 

movement and bending at articulated joints have more severe consequences and may 

require a combined slice approach (explained in Section 5.4).

Slippage can also occur. When the finger is inserted into the scanner, this gives 

a forwards thrust. If the patient later relaxes then the constant pressure on the skin 

holds the skin in place while the internal joint relaxes back (slippage).
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Changes within the Finger

There are a number of different physiological changes that can occur inside the fin­ 

ger. Over time, and with treatment, the shape and size of the synovium may change. 

Further, RA has a destructive effect on the joint in that bone erosion and cartilage 

thinning may occur [Plant95b].

Digital arterioles have a pump flow of blood through them, whereas the veins and 

capillaries around the joint have a constant flow. The blood flow through these arteries 

could cause small amounts of movement within tissue regions during scanning [iiid.]. 

Also, the tendon below the joint could relax [ibid.].

1.2.2 The Meaning and Purpose of Registration

Registration, or image matching, is a growing area of research in medical research. The 

term registration is often used broadly to cover a wide variety of matching methods. 

Maurer and Fitzpatrick [Maurer93] define registration as the determination of a one- 

to-one mapping between the co-ordinates in one space and those in another, such that 

points in the two spaces that correspond to the same anatomic point are mapped to 

each other. They classify the mappings, which are also called transformations, as two 

dimensional for 2D spaces and three dimensional for 3D spaces.

Van den Elsen et al. [Elsen93] define a transformation as a set of equations that will 

map the co-ordinates of each point in one image into the co-ordinates of the physically 

corresponding point in the other image.

Thus, the registration procedure required is twofold. Firstly, points suitable for 

registration must be located in the image. Secondly, a transformation must be determ­ 

ined that maps the points in one image onto the points in the second image. This 

general structure is illustrated in Fig. 1.1.
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This research determines what the author considers to be the best features in MRI 

finger images to be used for registration. These features are boundaries that are as­ 

sumed to represent the bones in the finger joint being imaged. As such, these features 

are reliable structures for the registration process. The features are located using a 

combination of standard and new image processing techniques. Derived images con­ 

taining such features have the Hough transform applied to them to locate the best-fit 

ellipses to the boundaries in the image. The displacement of the best-fit ellipse between 

images of the same finger taken over time provide the relative rotation and translation 

required to register the images.

The final registration procedure is illustrated in Fig. 1.5.

Acquire 
Images

Preprocess

Standardise — > Locate 
Boundaries — * Segment — » Combine Slices

Apply the 
Hough Transform

Register

Figure 1.5: The final registration system.
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1.3 An Overview of the Thesis

In Chapter 2 a review of the literature is given. That review starts by discussing 

Magnetic Resonance Imaging (MRI) and then concentrates on the more specific area 

of registration.

Chapter 3 is split into two parts. In the first part, a set of criteria for drawing 

ROI boundaries is established based on an analysis of the results published in poster 

form [Plant95a] (listed in Appendix E). The second part of Chapter 3 discusses the 

tools required to locate features within MRI images that are useful for registration. 

The tools are created as part of this project to facilitate integration into the image 

processing system and to ensure control over the data structures. A simple drawtool 

is designed for the user to define region of interest (ROI) boundaries on the images. 

The calculation of statistics from the ROIs is also explained and the chapter goes on to 

discuss the requirements for defining a path structure for storing the ROI boundaries.

Applying various image processing techniques to MRI finger images to determine 

features useful for registration is the focus of Chapter 4. Standard techniques including 

contrast stretching, standardization and thresholding are applied and also composite 

methods are proposed as part of this research. The Fourier Transform is also introduced 

in Chapter 4 and various frequency domain filters are applied to MRI finger images. 

The use of Fourier Descriptors is also discussed. Chapters 4 and 5 outline two new 

processes, established for this work. The first process is an automated sequence of image 

processing techniques which consistently derive tissue boundaries which are assumed 

to be characteristic of the two bones in the MRI finger image. The bone boundaries 

provide reliable features to be used in the registration process. The second new process 

designed for this work is the combination of the bone boundaries from many slices. A 

sequence of algorithms create images that contain boundaries that are assumed to define 

the largest possible bone shape across many slices. Such boundaries have potential to 

remove many of the registration problems and improve the registration results.
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Chapter 5 describes the different methods that have been considered for the re­ 

gistration step. Simple techniques such as similarity detection and superimposition 

are described. Also, more complex Hough Transform methods are examined to fit an 

ellipse to the boundaries derived in Chapter 4 and also to describe its irregular shape. 

The use of moments to aid registration is also discussed in Chapter 5.

Finally, the proposed registration system, analysis and conclusions are given in 

Chapter 6. Suggested future work is also described.

At the end of the thesis are some appendices. A set of graphs showing inter observer 

variability in the development of a set of criteria for drawing region of interest bound­ 

aries can be found in Appendix A. As a step towards determining interior points of 

a polygonal ROI boundary, a detailed description of polygon complexities as summar­ 

ised in Chapter 3 is given in Appendix B. A pseudocode listing of the algorithm used 

to find the interior points of a polygon is given in Appendix C. Appendix D gives a 

detailed explanation of the Generalised Hough Transform results that are summarised 

in Chapter 5. The abstract to the published poster [Plant95a] can be found in Ap­ 

pendix E and, finally, a published paper outlining preliminary findings of this research 

[Williams2000] can be found in Appendix F.
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The investigated literature is presented in this chapter. Firstly, general registration is 

discussed and secondly, medical registration is discussed in more detail.

2.1 Applications of Registration

Registration has received much interest in imaging processing literature. Applications 

of registration can be divided into medical and non-medical applications. Non-medical 

applications of registration include:

  aerial photographs [Borgefors88, Kuglin75];

  microcellular systems [Kim96];

  printed circuit boards [Bose90];

  radar images [Chellappa97, Fornaro95];

  range images [Bergevin96, Chen95].

Medical applications of registration include:

  computed tomography (CT) [BajcsySS, Bajcsy89, Bartoo89, Dann88, 

Dann89, Engelstad88, Grimson96, Hemler94, Hemler95, Hemler96, 

Holton95, Kaplan89, Kovacic89, Lavallee95, Maguire91, Maintz96, 

Maurer97, Moshfeghi91, Petti94, Taneja94, vanHerk95, Wang96, West96, 

West99, Westermann96, Wong96, Zuiderveld96];

  computed radiography (CR) [Althof97];

  digital subtraction angiography (DSA) [Mandava89, Venot84b, 

Zuiderveld89];

  gamma ray imaging [Kenny90, Mandava89, Venot84a, Venot84b];

  magnetic resonance imaging (MRI) [Amit97, Apicella88, Apicella89, 

Bartoo89, Bookstein91, Bydder95, Chen94, Collins92, Dann89, Davis97,
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DeMunck96, EngelstadSS, Grimson96, Hemler94, Hemler95, Hemler96, 

Holton95, Kruggel95, Lavallee95, LeGoualher99, Lelieveldt99, Maguire91, 

Maintz96, Mandava89, Maurer97, Moshfeghi91, Petti94, Schwartz96, 

Studholme97, Taneja94, Turkington93, vanHerk95, Wang96, West96, 

West99, Wong96, Yang96, Zuiderveld96];

  Magneto-Encephalo-Graphy (MEG) / Electro-Encephalo-Graphy (EEG) 

[Schwartz96, Singh79];

  positron emission tomography (PET) [ApicellaSS, Apicella89, Bajcsy83, 

Dann89, Kovacic89, Maguire91, Studholme97, Turkington93, West96, 

West99, Wong96, Yang96, Zuiderveld96];

  radiation therapy images [Cai96];

  single-photon emission computed tomography (SPECT) [Bartoo89, 

DeMunck96, EngelstadSS, Holton95, Kaplan89, Kruggel95, Maguire91, 

Turkington93, vanHerk95, Zuiderveld96];

  video images [DeCastro87a, Herbin89, VenotSS];

  x-ray images [Amit96, Lavallee95, Mandava89, Venot84a, Venot84b].

The work of this thesis is only concerned with registering medical images.

2.2 Medical Image Registration Methods

Some comprehensive reviews of medical image registration are given in [Elsen93, 

Maintz98, Maurer93]. Van den Elsen et al. [Elsen93] state that "a wide variety of 

image matching methods have been proposed for medical applications, but assump­ 

tions made in these methods differ considerably".
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This section presents a review of current medical image registration methods. The 

registration methods are analysed in terms of their applicability to this research in 

order to determine appropriate methods for registering MRI finger images.

The review of registration work presented here is organised around a classification 

scheme designed by Maintz and Viergever [Maintz98]. The criteria they give is appro­ 

priate to the work of this thesis, highlighting the main considerations made in arriving 

at a registration method for MRI finger images.

The criteria classes are:

1. Dimensionality;

2. Nature of registration basis;

3. Nature of transformation;

4. Domain of transformation;

5. Interaction;

6. Optimization procedure;

7. Modalities involved;

8. Subject.

9. Object.

Maintz and Viergever [ibid.] also state that a registration procedure can always be 

decomposed into three major parts:

1. the problem statement;

2. the registration paradigm;

3. the optimization procedure.

Each of the criteria classes are now discussed in more detail.
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2.2.1 Dimensionality

Image matching can be performed on data organised into different numbers of dimen­ 

sions. 2D registration methods are concerned with aligning images (or slices) taken 

in the same plane relative to the patient. Examples of 2D applications include x-ray 

images, video images, MRI slices.

Some researchers are interested in single 2D images, for example, Amit and Kong 

[Amit96] register x-rays of a hand. Venot et al. [VenotSS] register video images of 

hands.

Some medical imaging techniques produce a set of 2D slices. Some researchers treat 

this scenario as a 2D problem and register individual slices, for example, Bajcsy et al. 

[Bajcsy83]. In contrast, other researchers stack the 2D slices to give a 3D representation 

of the object being imaged. Bajcsy et al. [Bajcsy83] register an entire CT scan using 

a total of 20 stacked atlas slices. They later create a 3D model from a stack of CT 

slices [Bajcsy89]. Hemler et al. [Hemler94, Hemler95] construct a 3D CT surface from 

a stacked set of 2D boundaries. Dann et al. [Dann89] create a 3D atlas from a stack of 

2D contours. Wang et al. [Wang96] treat a stack of image slices as a volume to search 

for implanted markers.

3D methods consider an image, not as a set of individual slices, but as a volu­ 

metric data set that can be registered with another (2D or 3D) image. Examples 

of 3D image registration are [Ashton97, Bergevin96, Collins92, Dann88, Davis97, 

Grimson96, Holton95, Kovacic89, Kruggel95, Maguire86, Schwartz96, Studholme97, 

Taneja94, Turkington93, West96, West99, Westermann96].

Some researchers have multi-dimensional registration requirements. Lavallee and 

Szeliski [Lavallee95] register 3D (MRI or CT) images to 2D x-ray projections in com­ 

puter and robot assisted surgery.
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In some methods, time may be included as an extra dimension; matching a time 

series of 2D images then becomes a 3D method and matching a time series of 3D images 

becomes a 4D method [Elsen93].

When 2D methods are used to register data obtained from 3D objects, it is as­ 

sumed that the images to be matched are made in exactly the same plane relative to 

the patient. Special patient positioning is required to meet this assumption, which 

complicates the imaging protocol [i&irf.]. This is especially true for MRI, where small 

variations in patient position may result in large changes in the content of a particular 

slice (as noted in Section 1.2.1). Van den Elsen et al. [ibid.] express the view that "even 

with careful provisions, the accuracy is rarely sufficient to warrant the adequacy of a 

2D matching approach". However, they are still used by some researchers reporting 

success with registering x-ray images and video images. The MRI finger images of this 

application are a set of 2D slices. These slices must be registered so that comparisons 

of synovium can be made in the monitoring of rheumatic disease. Therefore, a goal of 

this research is to assess the applicability of 2D methods for the registration of MRI 

finger images.

For many papers there appears to be a lack of discussion on the dimension of 

the images being registered. Authors of 3D methods are usually explicit about their 

dimension as are authors who stack the 2D slices into a 3D model. The majority of 

papers concern multimodal registration. Omitting a discussion of slice comparison is 

strange as movement between or during scanning can affect which cross-sections are 

imaged and also the parallelism of the slices. Chen et al. [Chen94] do look for the best 

matching slice in one image set to another reference slice before registration. They also 

assume the slices are parallel. With MRI finger images, it is possible that slices from 

subsequent occasions, or due to movement, are not parallel.
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2.2.2 Nature of registration basis

Some registration methods use points on the images to perform registration; these 

are known as point methods. Point methods involve determining the co-ordinates of 

corresponding points in different images and estimating the geometric transformation 

required to register the images using these corresponding points [Maurer93].

Registration algorithms may use either intrinsic or extrinsic points, or a combina­ 

tion of both. Intrinsic points are patient related properties, for example, anatomical 

landmark points (known as fiducial points [Maurer93]), geometric features or surfaces 

of skin. Extrinsic image properties are induced by artificial objects that are "added" to 

the patient, for example, skin markers. Contrast agents, such as Gadolinium (explained 

in Section 1.1.3), are considered to be intrinsic [Elsen93].

Intrinsic Methods

Intrinsic methods rely on patient-generated image content only [Maintz98]. Choos­ 

ing appropriate points on an image is a key factor in the success of a registration 

method that uses intrinsic points. Selecting appropriate anatomical landmarks is a 

labour-intensive, interactive process, which must be conducted by a knowledgeable 

user. Intrinsic point methods cause no discomfort or hindrances to the patient. Natur­ 

ally, it must be possible to extract similar structures from both images being registered 

[Elsen93].

Intrinsic registration methods can be based on a set of landmarks [Amit96, 

Maguire86, Maguire91], segmented structures [Bajcsy83, Hemler94, Hemler95, 

Hemler96, Lavallee95, Petti94, Taneja94, Turkington93] or directly from the image 

grey values.

Hemler et al [Hemler95, Hemler96] use thresholding to segment the skin surface 

of brain images to create a boundary. Skin surfaces alone are unsuitable as landmarks 

in our specific finger application, due to the danger of slippage (explained in Section
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1.2.1). Also, as discussed in Section 4.1.3, MRI finger image grey levels cannot be used 

for segmenting structures by thresholding or for direct registration.

Extrinsic Methods

Extrinsic methods add markers to the patient prior to scanning. For MRI, appropri­ 

ate non-metal markers with imaging capabilities must be made. Successful extrinsic 

markers can be viewed easily, can be extracted from images and have potential for 

automatic detection. Van den Elsen et al. state that "an obvious disadvantage of 

extrinsic methods is that they cannot be used in retrospect" [Elsen93].

A commonly used extrinsic object is a stereotactic frame [Hemler95] screwed rigidly 

to the patient's skull. Such frames are used for localization and guidance purposes in 

neurosurgery, which is one of the main applications of registration [Maintz98]. Maintz 

and Viergever [ibid.] also state that "the invasive nature of the frame during neurosur­ 

gery is not an additional strain on the patient. However, mounting a frame for the sole 

purpose of registration is not permissible." This is assumed to be due to legal or eth­ 

ical reasons. The authors also claim that until recently, the stereotactic frame method 

provided the "gold standard" for registration accuracy. Other implantable markers 

are used by [Maurer97, West96, West99]. The markers are made from hollow plastic 

cylinders, which will contain solutions that appear bright on the image being acquired. 

These markers are also invasive as they have a plastic base or post that is screwed into 

the patient's skull.

Externally attached markers [Holton95, Maguire91, Wang96] are non-invasive, 

but tend to be less accurate [Maintz98]. Optical digitizing systems [Grimson96, 

Westermann96] are also used as a non-invasive method.

Experiments performed at UHW have found external markers to be of no use for 

MRI finger images. Small cylindrical tubes of copper sulphate were attached to the 

finger prior to scanning. Correct repositioning of the tubes on a later scanning date
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is almost impossible. Also, internal slippage (explained in Section 1.2.1) would make 

the external markers of no benefit in registering the internals of the finger joint. A 

long-lasting dye could be used on the patient's finger, but this is not ideal for the 

patient.

As extrinsic markers have already proved unsuitable for this research, future work 

only investigates intrinsic methods. Locating useful features in MRI finger images to 

be used in registration is a key issue in this research.

2.2.3 Nature of transformation

A registration transformation is called rigid when only translations and rotations are 

used. When the transformation maps parallel lines onto parallel lines, it is called 

affine. When lines are mapped onto lines, without necessarily preserving parallelism, 

the transformation is called protective. Finally, when lines are mapped onto curves, 

the transformation is called curved or elastic [Maintz98].

It is essential that the transformation used for registration is adequate to describe 

the deformation of the body part under study [Elsen93]. For Rheumatology, where 

analysis of synovium is the primary issue, great care has to be taken that registration 

does not lose information vital to the application.

Some researchers use elastic mappings for intra-patient, inter-patient or patient to 

atlas matching [Bajcsy83, Bajcsy89, Dann88, Dann89, MoshfeghiQl]. One image (or 

the atlas) is deformed to fit the other image. Such deformations would change the 

synovium detail within MRI finger images and are therefore considered detrimental to 

the purpose of this thesis.

The global rigid transformation is used most frequently in registration applications 

[Maintz98]. (The term global is explained in the next section). It is popular because, 

in many cases, the rigid body constraint is at least approximately satisfied [ibid.]. The 

most common application is the human head [ifo'rf.]. For MRI finger joints, movement
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during or between scanning (explained in Section 1.2.1) could affect the rigid body 

constraint.

2.2.4 Domain of transformation

A transformation is called global if it is applied to the entire image and local if sections 

of the image have their own transformations applied [Maintz98]. Local transformations 

are seldom used directly as they may affect the local continuity of an image [ibid.]. In 

this work, global transformations are applied to particular features in the images to 

derive registration parameters which are applied to the entire image.

Applying rigid transformations globally is sufficient if the object being imaged is 

relatively stable. The other transformations could introduce distortions that were not 

present in the images beforehand [Elsen93]. Van den Elsen et al. [ibid.] argue that 

local rigid transformations seem, at first glance, to be useless, as the transformed image 

contains gaps (tears) that were not in the original images to be registered. However, 

they also state that such transformations are useful for a multimodal or time study in 

which the local region corresponds to a bone.

2.2.5 Interaction

There are three categories of interaction for registration algorithms: interactive, semi­ 

automatic and automatic. Interactive methods require user input to determine the 

transformation [Elsen93]. Semi-automatic methods require user interaction to select 

image properties to be used in a computer determined transformation. The user may 

also provide information for starting, guiding, or stopping the matching procedure 

[z6zW.]. Automated methods do not require user interaction [ibid.].

The amount of interaction required is an important indicator of the clinical ap­ 

plicability of a method [ibid.]. Maintz and Viergever [Maintz98] argue that "in many 

methods there is a trade-off between minimal interaction and speed, accuracy or ro-
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business". In interactive or semi-automatic methods, a trained operator is necessary 

but the results may be subjectively influenced [Elsen93].

2.2.6 Optimization procedure

Registration algorithms may be direct or search-oriented. A direct method simply 

carries out a specific transformation. A search-oriented method starts from at least 

one initial guess and, guided by a goodness-of-match measure, tries to find the best 

transformation. An exhaustive search is classified as direct [Elsen93].

When point-to-point matching is used in both direct and search-based methods, 

accuracy generally increases with the number of points used. However, interactive 

landmark selection may introduce errors which will lessen the accuracy [ifo'd.].

Direct methods assume registration is simple enough to be performed as a straight­ 

forward calculation. Generally, this is not true and complexities have to be broken 

down into manageable parts [i&zd.].

In search-based methods, a goodness-of-match function can be used to rate the 

transformations. The rating function has to be calculated often, which may compromise 

the accuracy of rating with computational speed and storage. A search-based method 

will assume that an optimal solution exists. Suitable rating functions are necessary to 

avoid an exhaustive search, which is usually not practical as it is too costly in time

2.2.7 Modalities involved

Some registration applications are concerned with multimodal images, i.e. registering 

images acquired from different formation techniques. Some examples of multimodal 

image registration are given here.
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  Registering MRI images with CT images

Hemler et al. [Hemler94, Hemler95, Hemler96] identify similar objects or 

structures in images to be registered. Their technique is designed for brain 

images and is also augmented to include images of the spine. Holton et al. 

[Holton95] use markers to register images of the head. Petti et al. [Petti94] 

register brain images by minimising the volume lying outside the inter­ 

section between one structure and its transformed counterpart. Maguire 

et al. [Maguire91] select landmarks to register brain images. Maintz et 

al. [Maintz96] extract ridge-like structures from brain images for registra­ 

tion. Implantable markers are often used to register images of the head 

[Maurer97, West96, West99]. Moshfeghi [Moshfeghi91] elastically deforms 

one image to match another. Taneja et al. [Taneja94] use a surface match­ 

ing algorithm to register head images.

  registering PET images with MRI images

Apicella et al. [ApicellaSS, Apicella89] use correlation to register images of 

the same scale. Kruggel and Bartenstein [Kruggel95] register brain volume 

surfaces by an initial 3D rigid transformation and then an elastic match that 

minimises the overall squared differences between the surfaces. Maguire et 

al. [Maguire91] select landmarks to register brain images. Turkington et al. 

[Turkington93] use a surface-fitting algorithm for three-dimensional image 

registration. West et al. use implantable markers to register images of the 

head [West96, West99]. Wong et al. [Wong96] use landmarks to register 

head and neck images. Yang et al. [Yang96] segment the brain into four 

different tissue types to perform registration.
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  registering PET images with CT images

Wong et al. [Wong96] use landmarks to register head and neck images.

  registering SPECT images with MRI images

Bartoo and Hanson [Bartoo89] use the image grey levels to classify brain 

tissues. Holton et al. [Holton95] use markers to register images of the head. 

Kruggel and Bartenstein [Kruggel95] register brain volume surfaces by an 

initial 3D rigid transformation and then an elastic match that minimises the 

overall squared differences between the surfaces. Maguire et al. [Maguire91] 

select landmarks to register brain images. Turkington et al. [Turkington93] 

use a surface-fitting algorithm for three-dimensional image registration.

  registering SPECT images with CT images

Bartoo and Hanson [Bartoo89] use the image grey levels to classify brain 

tissues. Kaplan and Swayne [Kaplan89] use anatomic or externally placed 

landmarks to register chest and abdominal images.

  registering x-ray images with CT/MRI images

Lavallee and Szeliski [Lavallee95] register 3D medical images (MRI or CT) 

with 2D x-ray projections during computer and robot assisted surgery.

Other registration applications are concerned with monomodal images i.e. images 

originating from a single image formation technique. Examples of monomodal image 

registration are given here.

  registering pairs of CT images

Holton et al. [Holton95] use markers to register images of the head.
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  registering pairs of MRI images

Holton et al. [Holton95] use markers to register images of the head. Kruggel 

and Bartenstein [Kruggel95] register a time series of brain images by an 

initial 3D rigid transformation and then an elastic match that minimises 

the overall squared differences between the surfaces.

  registering pairs of PET images

Junck et al. [Junck90] use correlation to rotate functional brain images to 

a standard vertical orientation, identify the antero-posterior centerline and 

align multiple images from the same brain level.

  registering pairs of SPECT images

Holton et al. [Holton95] use markers to register images of the head. Junck 

et al. [Junck90] use correlation to rotate functional brain images to a stand­ 

ard vertical orientation, identify the antero-posterior centerline and align 

multiple images from the same brain level.

  registering pairs of DSA images

Venot et al. [Venot84a] and Venot and Leclerc [Venot84b] developed new 

similarity measures for the registration of DSA images. They suggest their 

new method is better than traditional similarity measures such as the cor­ 

relation coefficient, the correlation function and the sum of absolute values 

of differences. However, they specify that their method is applied to non- 

noisy, dissimilar data. MRI finger images are noisy, therefore, this method 

is not pursued for this application.
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Other types of registration modalities are:

  images to a model

Amit and Kong [Amit96] create a model from a graph of landmarks to 

register x-rays of hands. Bajcsy et al. [Bajcsy83] create a deformable atlas 

to register brain images.

  patients to external landmarks or images

Crimson et al. [Grimson96] use an optical digitizing system to aid a surgeon 

marking internal landmarks to guide the progression of the surgery. Lavallee 

and Szeliski [Lavallee95] register 3D medical images (MRI or CT) with 2D 

x-ray projections during computer and robot assisted surgery.

The work of this thesis is concerned primarily with registering monomodal images, 

i.e. images originating from a single image formation technique. In this case, the 

technique is MRI. The purpose of registering monomodal images is for quantitative 

comparison, which increases the precision of treatment monitoring with serial images 

[Maurer93].

2.2.8 Subject

Intrasubject registration is when the images involved are from a single patient. In- 

tersubject registration is when the images involved are from more than one patient. 

Another category of registration subject is when one image is constructed from an in­ 

formation database obtained using many subjects. This type of registration is known 

as atlas registration [Maintz98]. Intrasubject registration is by far the most common 

subject registration [iftirf.]. Intersubject and atlas registration are used to gather stat­ 

istics on the size and shape of specific tissue structures [ifczd.]. This thesis is concerned 

primarily with intrasubject registration.
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2.2.9 Object

Medical registration applications have been applied to a variety of objects in the liter­ 

ature, including:

• abdomen/pelvic images [Venot84a, Venot84b];

• breast images [Davis97].

• chest/lung/abdomen images [Althof97, Kaplan89, Kenny90, Moshfeghi91];

• ear images [Herbin89];

• eye images [DeCastro87a, Peli87];

• hands [Amit96, Venot88];

• head and brain images [Amit97, Apicella89, Bajcsy83, Bajcsy89, 

Bartoo89, Bookstein91, Bydder95, Chen94, Collins92, Dann89, Davis97, 

DeMunck96, Engelstad88, Grimson96, Hemler94, Hemler95, Hemler96, 

Holton95, Kovacic89, Kruggel95, LeGoualher99, Maintz96, Maurer97, 

Petti94, Schwartz96, Studholme97, vanHerk95, Venot88, West96, West99, 

Westermann96, Wang96, Wong96, Yang96, Zuiderveld96];

• heart [Maguire86];

• humerus [Mandava89];

• knees [Herbin89, Venot88, Zuiderveld89];

• spinal images [Hemler94, Lavallee95];

• thorax [Lelieveldt99];
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2.3 Conclusions

The majority of published work in the area of medical image registration is concerned 

with multimodal registration of head or brain images. The particular application of 

this work is monomodal registration of MRI finger images. No work on registering 

MRI finger images has yet been found in the literature by the author.

There are many differences between the brain and finger image registration problem. 

A popular extrinsic technique for the registration of head and brain images is the 

application of a stereotactic frame. Extrinsic methods have been shown to be unsuitable 

for this research, therefore, future work only investigates intrinsic methods. Locating 

useful features in MRI finger images to be used in registration is a key issue in this 

research. Finger movement during scanning has already been shown to be a serious 

problem in this application (explained in Section 1.2.1). Maurer et al. [Maurer97] claim 

that, for brain images, "the effect of patient movement without rigid head fixation 

during scanning is negligible". Thresholding has been used to segment the skin surface 

of brain images to create a boundary [Hemler95, Hemler96]. Skin surfaces alone are 

unsuitable for MRI finger images, due to the danger of slippage (explained in Section 

1.2.1). In Section 4.2.3, structural boundaries that approximate the bones within the 

finger image are located. Lastly, grey level clustering has been used to segment brain 

tissue types [Bartoo89]. Section 4.1.3 shows that MRI finger image grey levels cannot 

be used for segmenting structures by thresholding or for direct registration.

Correlation methods are very useful for monomodal image registration, particularly 

when comparing serial images of the same patient, for example, when looking for small 

changes caused by disease [Maurer93]. Correlation methods try to find the optimum 

registration method by maximising the similarity between images of the same patient; 

these images differ mainly because of different image acquisition conditions and also 

possibly because of small object changes. An intensity scaling might first be necessary 

to correct for the differences in acquisition times, injected activities, such as Gadolinium
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(explained in Section 1.1.3), and backgrounds [iiid.].

Many similarity criteria have been experimented with in the literature, including 

the correlation function, the correlation coefficient, the sum of squares and the sum 

of absolute values of differences [zftirf.]. Suitable correlation methods to apply to MRI 

finger images are investigated in Chapters 4 and 5. In Section 4.2.3 intensity scaling 

is applied to correct the differences in the three weighted scans (explained in Section 

1.1.1), and the Gadolinium-enhanced images (explained in Section 1.1.3).
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Scanning patients with rheumatoid arthritis allows monitoring the progress of the dis­ 

ease with the prospect of improving drug therapy and also of early secure diagnosis. 

Early secure diagnosis may in turn warrant aggressive therapies. To this end, the MRI 

finger images must be analysed.

The commercially available SMIS software was used to outline regions of interest 

(ROIs) on the finger images. Statistics calculated from the ROI results were published 

as a poster [Plant95a]. The first part of this chapter analyses the method used to 

generate the poster data. A set of criteria for drawing ROI boundaries is developed 

to ensure that the boundaries are reproducible. Particular deficiencies with the SMIS 

software are also noted.

At the University Hospital of Wales, an image viewer [OConnor98a, OConnor98b] 

has been designed and created for the display of MRI finger images. The viewer incor­ 

porates various image processing functions that can be applied to the finger images. 

One of the main advantages of the viewer is that it is an extensible system and has 

potential for the addition of numerous image processing techniques as required by those 

involved in specific projects. The conclusions of the analysis on creating ROI boundar­ 

ies, provided in this chapter, generate enough reasons for the production of a drawtool 

to add to the functions of the viewer.

The second part of this chapter describes the development of the so-called drawtool, 

completed as part of the work of this thesis, for defining ROI boundaries. Once an ROI 

boundary is created, statistics are calculated from pixel intensities within the ROI. The 

formulae used to calculate the statistics are explained in Section 3.2.5. Section 3.2.6 

explains why storing information about the ROI boundary is advantageous in many 

applications. Further, a path structure for storing ROI boundaries is developed and 

RIFF files are examined as a means of storing the path structure in a file.
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3.1 A Set of Criteria for Drawing Region of Interest 
Boundaries

The anatomy represented in MRI finger images varies in shape and size from patient 

to patient. The observed effect of rheumatoid arthritis on the joint depends on the 

degree of disease activity at the time of scanning. A comparison of statistics generated 

from selected regions of interest (ROIs) will aid clinicians' analysis and understanding 

of rheumatoid arthritis. Therefore, it is absolutely vital that the definition of ROI 

boundaries is consistent and reproducible on subsequent scanning occasions and by 

different observers.

As a first step towards this, a set of criteria is established for the physical drawing of 

the ROI boundaries, firstly using an existing drawing package and then using a newly 

developed package. The criteria will aid the calculation of statistics which have clear 

medical meaning. This section outlines these criteria and explains the work conducted 

in establishing them.

Theoretically there are two aspects to reproducibility:

1. variability - whether the same results are obtained on successive attempts. 

The degree of spread shows the variability;

2. bias - a measure of the extent to which one observer's results are consistently 

higher or consistently lower than those of another observer. 

Variability in quantification of images may arise from:

• Patient variability (change with time).

• Equipment variability - drift in the machine and registration of the images.

• Observer variability, of which there are two types:

1. Intra observer variability, i.e. variability within the results of one observer. 

How accurately can one observer reproduce his/her own results?

2. Inter observer variability, i.e. between observers. Can two observers 

produce the same results independently?
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3.1.1 Assessment of Previous Image Analysis

This section explains the determination of the results for the published poster 

[Plant95a] and analyses these results.

Ten rheumatoid arthritis (RA) patients were scanned at the University Hospital of 

Wales (UHW) with the Gadolinium-protocol (explained in Section 1.1.3). All patients 

had erosive RA, with varying levels of disease activity. The middle finger (usually 

on the right hand) proximal interphalangeal (PIP) joint of each patient was scanned. 

Initial observations of the images obtained for the ten patients were seen to coincide 

with clinical diagnoses.

In order to measure the effect of the contrast agent (Gadolinium) on the images, 

Surrey Medical Instruments (SMIS) software was used to draw ROI boundaries on the 

images, from which statistics were calculated. For each of the ten patients, a middle 

slice (e.g. slice 4 or slice 5) was chosen for analysis. The analysis was carried out on the 

chosen slice for all scans taken per patient. The specified regions chosen to draw ROI 

boundaries on were the proximal phalanx, middle phalanx, synovium dorsal, synovium 

palmar and cartilage (illustrated in Fig. 1.3).

At this stage the size of an ROI, given by the number of pixels, was not being 

considered. Only the mean pixel intensity for a physical region was required. Therefore, 

the ROI boundaries were drawn well within each of the specified regions, rather than 

around it, to provide an accurate measure of mean pixel intensity for each tissue region. 

The mean pixel intensities of each ROI were plotted on a graph to show percentage 

increases in intensities.

The results showed that Gadolinium does enhance active synovium in RA patients. 

In fact, Gadolinium enhances all regions of the entire image to varying degrees. The 

enhancement was minimal in non-synovium regions, but active synovium was enhanced 

greatly. Inactive synovium was only minimally enhanced, as with the other regions. 

In some active cases, over 100% increase in synovium pixel intensity was obtained,
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resulting in much improved clarity.

Results of the analysis were presented as a poster at the American Conference of 

Rheumatology [Plant95a].

The method used to determine the results for the poster and the reproducibility 

of the ROI boundaries was analysed by collaboration with staff at UHW [Plant95b]. 

Observer and Rheumatology knowledge were combined to further analyse the patient 

images and assess the feasibility of producing criteria for drawing the ROIs. Dr. M. J. 

Plant, Senior Registrar, Rheumatology, UHW, provided the Rheumatology knowledge.

As part of the analysis, the ROI boundaries were re-drawn on the same specified 

regions as previously (i.e. the proximal phalanx, middle phalanx, synovium dorsal, 

synovium palmar and cartilage) and in addition the tendon (illustrated in Fig. 1.1). 

The boundaries were drawn using the SMIS software by two observers, the author 

and Dr. Plant. The mean pixel intensities from both observers' ROI boundaries were 

compared and the following inconsistencies noted.

1. By the end of a series of scans (i.e. the Gadolinium-protocol), the patient's 

finger had often moved and the shape and size of the synovium region appearing on 

that scan had changed. This problem of registration generally worsens if the patient is 

re-scanned at a later time.

2. Hardware problem - when trying to draw a freehand shape, the mouse cursor 

often jumps. An improvement could be the use of a light pen, although this raises the 

problem of parallax due to the screen not being flat. Another possible improvement 

would be to use a digitizer.

As stated earlier, the size of the ROIs has not been considered. However, the size 

of the synovium (i.e. its area in a given slice, quantified by the number of pixels) could 

be a useful statistic in assessing improvement in disease. This necessitates drawing 

an ROI boundary to specify the region, rather than within a vaguely specified region, 

as was done previously. Drawing around a region is sometimes a very difficult task.



CHAPTER 3. DEFINING AND STORING ROI BOUNDARIES 40

On some images, the boundary around the synovium is not easily seen. Some areas 

of synovium are observed to be heterogeneous, that is, they contain a mixture of grey 

levels. Thus, clarification is required of whether only the bright areas in the synovium 

(which are much easier to outline) or the whole region should be enclosed.

In attempting to outline whole regions, some drawbacks with the SMIS software 

are highlighted (noted below).

Drawbacks with the SMIS Software

As the synovium has no set shape or size, and varies completely from patient to patient, 

a rectangle or ellipse is of no use in drawing around the synovium. The only other 

options available from SMIS are a polygon or a freehand shape.

Drawing a freehand shape with SMIS involves moving the mouse cursor around the 

region with the left mouse button depressed. This is very difficult and inaccurate as 

the mouse cursor often "jumps".

With SMIS, depressing the left mouse button allows the user to select vertices for 

a polygon. Completion of the polygon is achieved by selecting the first vertex again. 

This procedure is much simpler than the one for freehand shape definition but also has 

problems associated with it. The final mouse click is frequently not accurately placed 

and goes unrecognised by the SMIS software; an extra click at the starting point is 

necessary. Sometimes the SMIS software completes the polygon prematurely.

It would be advantageous to draw around regions on one image and then copy the 

ROI boundaries to the other images, saving a great deal of time and effort. However, 

SMIS has no capabilities for saving the ROI boundaries that have been drawn.

These drawing problems form part of the need for an extensible system. The 

software developed to address these kinds of problems and limitations is discussed 

in Sections 3.2 and 3.2.6.
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3.1.2 Criteria for Drawing ROIs

Having analysed the way ROI boundaries were previously drawn, this section concen­ 

trates on developing a suitable set of criteria for drawing these boundaries. There can 

be no general criterion for drawing ROI boundaries on finger images, due to the dif­ 

fering natures of the specified tissue regions. An initial set of criteria for drawing ROI 

boundaries, based on the assessment made in Section 3.1.1, is summarised as:

1. For the proximal phalanx use a rectangle in its head (the elliptical part) 

only;

2. For the middle phalanx use a rectangle in the middle only;

3. For cartilage use a freehand boundary;

4. For the tendon use a rectangle;

5. For the synovium dorsal use a freehand boundary or a polygon;

6. For the synovium palmar use a freehand boundary or a polygon;

7. For synovium dorsal and palmar, draw the boundary just outside the 

region.

The criteria are assessed by both observers independently to see how reproducible 

the results are. ROI boundaries are drawn on slice 4, a central slice on which each 

tissue region is clearly seen. Boundaries are drawn on the pre-injection scan and the 

first two post-injection scans only, for all 10 Gadolinium-protocol patients. The first 3 

scans show the initial peak and decay of the contrast agent, Gadolinium.

Problems Encountered using the Criteria Independently

A number of problems were encountered by both observers and these are explained 

here.



CHAPTER 3. DEFINING AND STORING ROI BOUNDARIES 42

1. It is sometimes difficult to establish the position of the middle of the 

middle phalanx.

2. Distinguishing between bone and synovium is often difficult.

3. Outlining boundaries for synovium is often difficult due to the overlap 

of grey levels in the soft tissue surrounding the synovium.

4. The tendon is often very small.

5. Images are often very dark.

6. The cartilage cannot always be seen.

7. The synovium is not always enhanced.

8. There is considerable heterogeneity (i.e. a mixture of grey levels) present 

in the bones.

Comparison of Independent Exercises

Several discoveries were made during the independent analysis and it also became clear 

that several issues required clarification. In particular:

1. Synovium dorsal is easier to outline than synovium palmar.

2. In a synovium region, should only the bright areas be drawn around, or 

should the whole region be drawn around?

3. It is much easier to draw an ROI boundary well within a region, than 

to measure the exact size of a region by drawing around it.

Again there is some uncertainty over whether highlighted areas of synovium only or 

the whole region should be drawn around. Different assumptions, made by both observ­ 

ers, meant that one observer's ROIs were generally larger than the other's. However, 

there was not much discrepancy in the mean pixel intensities. A more rigorous analysis 

of the differences in observations is offered below.
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Observations from the Images

Synovial tissue has variable blood supply. The contrast agent, Gadolinium, highlights 

synovium which has a rich blood supply. Therefore, there could be more synovium 

present in the proximal interphalangeal (PIP) joint than is observed by eye. Some 

areas of synovium may become ischaemic (lacking blood supply) and autoamputate. 

With less blood, it is expected that the synovium will become less active (or entirely 

inactive). This raises an important problem in how to measure the amount of synovium 

in the PIP joint where there is also some inactive synovium present.

One patient's images show more synovium dorsal than has been seen on images 

from the other patients, due to the finger being positioned further forward in the 

scanner than usual. This indicates that the synovium dorsal may extend further back 

than previously realised and raises questions about whether the patients' fingers are 

positioned correctly for scanning.

Subsequent scanning of a patient, following treatment, could show a change of shape 

and size in the synovium, but it is difficult to be sure that this indicates improvement 

in the disease. The change in shape and size could be due to incorrect positioning for 

scanning (discussed in Section 1.2.1). A measure for the assessment of improvement 

needs to be determined. Current interests for UHW lie in the area of the synovium, its 

mean pixel intensity, and possibly the speed of increase of Gadolinium enhancement, 

that is, how quickly it reaches its peak intensity.

Registration presents a further problem when re-scanning, in that the slices are 

unlikely to be of exactly the same cross-sections of the finger as previously. One 

possible solution would be to combine information from four central slices (examined 

in Section 5.4, for comparison with another scan. However, this will lose vital spatial 

resolution important to the clinicians.

Due to the varying complexity of the images, it is inadvisable to have just one 

observer. Rather, averaged results should be obtained from two independent observers,
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or an automated method should be sought. 

3.1.3 Analysis of Data

In this section, the statistics calculated from the ROI boundaries drawn in Section 

3.1.2 are analysed to show the effect of inter observer variability in the analysis of MRI 

finger images.

A spreadsheet was set up, with one sheet for each of the six specified tissue regions 

(i.e. proximal phalanx, middle phalanx, synovium dorsal, synovium palmar, cartilage 

and tendon). On each sheet the mean pixel intensities for the six ROIs obtained by 

both observers are columnised. The differences and averages of the two columns are 

calculated. The differences are then plotted against the averages on an XY scatter 

graph. For synovium, the process was repeated for the area of the ROI as well. Fig. 

3.1 gives an example of the created graphs.
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Figure 3.1: Inter Observer Variability.
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The scatter graphs show any inter observer variability and bias in drawing the ROIs. 

In particular:

1. If the points are near the x-axis then there is little inter observer variab­ 

ility. Conversely, if the points are further away from the x-axis, then there 

is inter observer variability.

2. If the plotted values are scattered evenly either side of the z-axis, this 

shows no bias. If all points are above or below the z-axis, there is bias in 

the results. This indicates that one observer has, through positioning of an 

ROI, produced statistics which are consistently higher or consistently lower 

than those of the other observer.

In Fig. 3.1 there is no bias, but there is some variability. 

Analysis of Graphs

Presented below is a summary of the inter observer variability and bias as shown by 

the graphs, which can be found in Appendix A.

1. The synovium dorsal has a lot of inter observer variability, but no bias 

(illustrated in Figs. A.I and A.2).

2. The synovium palmar has a lot of inter observer variability and bias 

(illustrated in Figs. A.3 and A.4).

3. The proximal phalanx shows very little inter observer variability and no 

bias (illustrated in Fig. A.5).

4. The middle phalanx shows some inter observer variability and a little 

bias (illustrated in Fig. A.6).

5. The cartilage shows considerable inter observer variability, and bias 

(illustrated in Fig. A.7).



CHAPTER 3. DEFINING AND STORING ROI BOUNDARIES 46

6. Generally, there is not much inter observer variability in the tendon and 

no bias (illustrated in Fig. A.8).

The synovium results show considerable variation, especially palmar which also is 

very biased. Most of the error is due to the observers making different assumptions, as 

noted in Section 3.1.2. This clearly shows the need for a clearer and better defined set 

of criteria for drawing the ROI boundaries.

3.1.4 Further Image Analysis to Enhance the Criteria

The synovium areas are quite difficult to measure. The different assumptions made by 

both observers (noted in Section 3.1.2) are developed into two methods to investigate: 

Method 1

measure enhanced areas only within synovium regions (excluding enhance­ 

ment in tissues outside the joint).

Method 2

measure the whole synovium region (including any synovium which has not 

been enhanced).

Before an independent assessment of the revised criteria was carried out, the pre- 

injection scan and the second post-injection scan were compared, for all 10 patients, to 

observe, by eye, where the synovium was enhanced. Observations from this compar­ 

ison are tabulated in Table 3.1. Where synovium was observed to be enhanced, ROI 

boundaries were drawn to assess the feasibility and effectiveness of the two methods 

above.



CHAPTER 3. DEFINING AND STORING ROI BOUNDARIES 47

Patient
I

2

3

4

5

6 
(poor image)

7

8 
(Not very 

good image)

9
(finger well 
positioned)

10

Synovium Dorsal
diffusely enhanced; 
dorsal bulge;
diffusely enhanced;

thin strip of non- 
enhancing tissue;
very little dorsal 
enhancement;

diffusely enhanced;

enhanced, but not so 
bright;

enhanced, except for 
one low signal area;
tiny area of enhanced 
synovium;

diffusely enhanced;

diffusely enhanced, 
but with some low 
signal areas;

Synovium Palmar
no obvious enhancement; demarcation seen 
between capsule and connective tissue;
flexor tendon not seen in whole length (a 
different slice may improve this);
demarcation seen between capsule and 
connective tissue;
very prominent palmar enhancement, which 
is partly heterogeneous; some synovium in 
the palmar joint space;
difficult; 2 relatively bright areas, rest slightly 
bright, difficult to define; tail has possibly 
enhanced more than the proximal phalanx; 
may need to measure the whole synovium 
palmar region, which would be easier to do;
tissue, not enhanced, possibly difficult to 
outline; low signal area through the middle; 
demarcation between capsule and connective 
tissue;
no enhancement in synovium palmar but 
enhancement in palmar joint space;
can see demarcation line, enhanced above 
and below the line; large synovium palmar 
region difficult to see; palmar joint space 
enhanced a little;
mass of tissue but no enhancement;

no enhancement, but demarcation line very 
clear;

Table 3.1: Comparison of the second post-injection scan with the pre-injection scan.
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The observations listed in Table 3.1 are summarised here. From a sample of ten 

sets of images, from different patients:

• 9 patients were observed to have synovium dorsal enhancement;

• 3 patients were observed to have synovium palmar enhancement;

• 3 patients were observed to have enhancement in the joint space;

• 3 patients were observed to have enhancement in both synovium dorsal 

& synovium palmar;

• 1 patient was observed to have no enhancement in either synovial tissue 

areas.

Nine out of ten patients were observed to have Gadolinium-enhanced synovium.

During the analysis, some further observations were made from the images. In 

particular:

1. In patient 1, the synovium palmar region may include the capsule of the 

joint.

2. In patient 1, the finger has noticeably moved within approximately 5 

minutes of scanning. The bones and joint have moved, but not the skin. 

This could be due to slippage (explained in Section 1.2.1).

With the added information obtained in the above examinations, the two methods 

for drawing ROI boundaries are refined as:

Method 1

For synovium dorsal, synovium palmar and palmar joint space, outline en­ 

hanced areas only, relative to the pre-Gadolinium scan. If in doubt compare 

with the bone enhancement. Exclude any enhancement outside the joint 

capsule.



CHAPTER 3. DEFINING AND STORING ROI BOUNDARIES 49 

Method 2

For synovium dorsal, outline as much as can be seen. For synovium pal­ 

mar, outline the tissue, excluding the joint capsule where visible and any 

enhancement below the demarcation line. Measure as far back (towards the 

wrist) as can be seen, and as far forwards as the shoulder of the proximal 

phalanx.

Comparing the methods indicates that it is easier to measure just the bright areas 

than the whole of a synovium region.

3.1.5 Establishing a Coefficient of Variation

The exercise carried out in Section 3.1.2 was repeated using the revised criteria for 

drawing ROI boundaries, developed in Section 3.1.4. Spreadsheets were set up and 

similar scatter graphs are created (as in Section 3.1.3) to assess any improvement in 

the inter observer variability and bias.

To test the reproducibility of the results, a coefficient of variation (7) was defined 

and added to the previous results. The coefficient of variation is defined as:

100^^ = ——— (3A}

where era is the standard deviation of the differences between observers and fj, is the 

mean of the averages of the observer's results. Equation 3.1 is a commonly used measure 

in the medical field, and in particular is well-known to rheumatologists. The coefficient 

of variation gives a measure of any intra- or inter-observer variability. Naturally, a near 

zero coefficient shows minimal variation. The coefficient also shows if either of the two 

methods are preferable.

At this stage intra observer variability was also assessed. The exercise from Section 

3.1.2 is again repeated independently by both observers. Spreadsheets were again 

set up and each observers results are plotted on a graph to show any intra observer
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variability or bias. The graphs for this exercise can be found in Appendix A, Figs. A.9 

to A.18.

A summary of the observer variability and bias studies can be found in Table 3.2. 

The table lists the coefficients of variation calculated for both inter and intra observer 

variability. The calculations are applied to the mean pixel intensities and number of 

pixels for both synovium regions, with ROI boundaries drawn using both methods.

A number of observations are made from the summary in Table 3.2. In particular:

1. Estimation of pixel intensity is more precise than estimation of area.

2. Method 2 gives consistently better results than Method 1 for synovium 

dorsal but consistently worse results for synovium palmar.

3. Comparison of the intra observer variability results show that each ob­ 

server has a preference for different methods.

Method

1
1
1
1
2
2
2
2

Tissue

Synovium Dorsal
Synovium Dorsal
Synovium Palmar
Synovium Palmar
Synovium Dorsal
Synovium Dorsal
Synovium Palmar
Synovium Palmar

Parameter

mean pixel intensity
number of pixels
mean pixel intensity
number of pixels
mean pixel intensity
number of pixels
mean pixel intensity
number of pixels

7 (96)
(Inter - 

Observer)
11.6
30.7
9.4

35.7
6.7
13.4
14.4
61.2

7 (96) 
(Intra -
Obs. 1)

7.1
17.4

8
19.2
9.8
14
12

32.2

1(96) 
(Intra -
Obs. 2)

12.4
26.4
11.6

160.5
5.1
10.3
7.5

30.3

Table 3.2: Summary of the observer variability and bias studies.
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3.1.6 Conclusions

Revised criteria for drawing reproducible region of interest boundaries have been es­ 

tablished. A number of observations are made in analysing inter- and intra-observer 

variability and bias. In particular:

1. Measurement of the area of synovium is less precise than measuring the 

pixel intensity.

2. Inter observer variability - method 2 is more reliable for synovium dorsal 

and less reliable for synovium palmar. This partly relates to the fact that 

the palmar aspect of the joint is more complicated anatomically.

3. There is generally less intra observer variability than inter observer 

variability (as expected). Method 1 appears superior. The coefficient of 

variation produced by observer 1 for the area of synovium, using Method 

1, was 17% - 19%, which is moderately good.

4. Some of the poor variability is due to outliers which could possibly be 

improved by tighter definitions.
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3.2 The Region of Interest Drawtool

Analysing the method used to generate the poster data in the previous section has 

created sufficient reasons for the production of a drawtool to add to the functions of 

the viewer. This section describes the development of the drawtool.

Once an ROI boundary is denned, statistics are calculated. The statistics describe 

the nature of the ROI in terms of its size and average pixel intensity. For Gadolinium- 

enhanced images (explained in Section 1.1.3), a comparison of the average pixel intens­ 

ity before and after the Gadolinium injection describes the synovium activity in the 

joint [Plant95a].

As the images are set to a grey scale, the boundaries of the ROIs are drawn in 

different colours, e.g. red, green, blue, so that they are easily seen. A colour key is 

associated with the statistics so that it is clear to which ROI each set of statistics 

relates.

The boundaries of tissue regions within cross-sectional MRI image slices do not 

easily conform to a basic shape, such as a rectangle. However, these irregular shapes 

can be approximated with a polygon.

A polygon is drawn around a region of interest (ROI) by the user selecting the 

vertices for each segment. The vertices are stored in a list called the vertex list. The 

Visual Basic LINE function is used to draw the polygon edges between each vertex.

3.2.1 Interior Points of a Polygon

To calculate the statistics of an ROI, it is necessary to know which pixels lie on and 

within the ROI boundary. As the LINE function is used to draw each edge, the co­ 

ordinates of the pixels along the edges are not automatically known. Once the edge 

co-ordinates are known it becomes easier to determine the interior points. There are a 

number of techniques that can be used to find the interior points of a polygon. These 

techniques are explained in this section and the optimum method chosen.
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The simplest method is to examine every pixel in the image to see whether it lies 

inside the polygon. This is time consuming and wasteful and can be improved by the 

use of a bounding box [Rogers85]. Fig. 3.2(a) shows that using a bounding box can 

significantly reduce the number of pixels examined. However, for the polygon in Fig. 

3.2(b) the reduction is much smaller.

Image

Bounding Box

Polygon

(a) (b) 

Figure 3.2: Bounding box examples.

A better method is to obtain the co-ordinates of all pixels that lie on each edge of 

the polygon (Bresenham's Algorithm [Rogers85], explained in Section 3.2.2, is suitable 

for this). Provided these edge co-ordinates are sorted into scan-line order, it is possible 

to extract pairs of co-ordinates to scan between to find all the interior points. This is 

known as an ordered edge list algorithm. This algorithm is incorporated into the draw- 

tool. The algorithm is very powerful as only pixels lying on or within the boundary are 

processed and these pixels are processed only once. The algorithm's main disadvant­ 

age is the expense associated with maintaining and sorting the list of edge co-ordinates 

[Rogers85].

There are other techniques which provide an alternative to the ordered edge list 

algorithm. These techniques are explained now and their limitations for this application 

are highlighted. The techniques are the edge fill algorithm [AcklandSO], the fence fill 

algorithm [Dunlavey83] and the edge flag algorithm [AcklandSlj. These algorithms are 

used for filling polygons. To fill the polygon, pixels are activated. A repeated activation 

of a pixel has a negation effect.
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The Edge Fill Algorithm

The edge fill algorithm [AcklandSO] is very simple.

For each scan-line intersecting a polygon edge at (#i,2/7)1 complement all 

pixels lying to the right of (x,;, yj), i.e. (xi+k, t/j), for k = 1, 2,..., n — 1.

The algorithm is very poor in that it is applied to the whole image, whereas the ordered 

edge list algorithm is only applied to those pixels which lie on or within the polygon 

boundary. Also, each pixel may be processed more than once.

The Fence Fill Algorithm

The number of pixels addressed in the edge fill algorithm can be reduced by introducing 

a fence. This is the fence fill algorithm [DunlaveySS]. The fence is a vertical line and 

is conveniently placed at one of the polygon vertices.

For each scan-line intersecting a polygon edge at (x^yj\.

If the intersection is to the left of the fence, complement all pixels 

lying to the right of (x,-, t/j) but left of the fence.

If the intersection is to the right of the fence, complement all 

pixels lying to the left of (z;,yj) but right of the fence.

Despite improving the edge fill algorithm, the fence fill algorithm still processes pixels 

outside of the polygon and pixels are processed more than once.
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The Edge Flag Algorithm

The disadvantages of the edge fill and fence fill algorithms can be eliminated by a 

modification called the edge flag algorithm [AcklandSl]. The edge flag algorithm is 

made up of two steps. The first step outlines the boundary to establish pairs of span 

bounding pixels on each scan-line. The second step fills the polygon between these 

bounding pixels.

Boundary outline:

For each edge intersecting the polygon, complement the leftmost pixel that 

lies to the right of the intersection.

Fill:

For each scan line intersecting the polygon at (xi,yj): 

Set Inside to FALSE 

for x = Xi to xn-i

if the pixel at x is set to the boundary value then

negate Inside 

end if 

if Inside = TRUE then

set the pixel at x to the polygon value 

else

reset the pixel at x to the background value 

end if 

next x

The edge flag algorithm processes each pixel only once, but still processes pixels 

that lie outside the polygon. Software implementations show that the ordered edge list 

and the edge flag algorithm execute at about the same speed [WhittedSl].
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The Edge Flag Algorithm does not require building, maintaining and sorting edge 

lists as it relies on being able to complement pixels. When applied to this application 

of drawing polygons on medical images, the algorithm has limited use. To implement 

the edge flag algorithm would require using a list for the contour, as complementing 

pixels on the images is counterproductive. This then removes the main advantage of 

the algorithm and converts it into an ordered edge list algorithm. Alternatively, an 

extra copy of the image could be stored in memory, which is equally inefficient.

This thesis now resumes with the ordered edge list algorithm and shows a number of 

other problems that arise, which are not explicit in the literature. The algorithm uses 

Bresenham's Algorithm (explained in Section 3.2.2) to calculate the edge co-ordinates 

of each polygon edge. The edge co-ordinates are stored in a list and sorted into scan- 

line order (y first, then x}. Extracting pairs of edge co-ordinates will define the interior 

points of a polygon [Rogers85].

3.2.2 Bresenham's Algorithm

Bresenham's Algorithm [Bresenham65] seeks to select the optimum pixel locations to 

represent a straight line. These locations are represented by the variables x and y. 

Depending on the slope of the line, the algorithm increments by one unit in either x or 

y. The other variable is incremented by either zero or one, by examining the distance 

between the actual line location and the nearest grid locations. This distance is called 

the error. The algorithm is cleverly constructed so that only the sign of the error term 

needs to be examined.

The speed of the algorithm is increased by using integer arithmetic to eliminate the 

use of division [Rogers85]. The General Bresenham Algorithm is applicable to all four 

quadrants of an image, which enables the calculation of edge co-ordinates for lines in 

any direction.
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The General Bresenham Algorithm is implemented in this work to calculate the 

edge co-ordinates for each non-horizontal polygon edge. The co-ordinates are sorted 

into scan-line order (y first, then x) using a simple sort routine. Extracting pairs of 

edge co-ordinates to scan between should define all the interior points [Rogers85].

3.2.3 Implementation of Bresenham's Algorithm

An image can be thought of as a matrix of discrete cells, each of which can be made 

bright. Each cell is called a picture element, or pixel. It is not possible, except in special 

circumstances, to directly draw a straight line from one addressable point, or pixel, to 

another addressable point, or pixel. The line can only be approximated by a series 

of dots (pixels) close to the path of the line. Only in the special cases of completely 

horizontal, vertical, or ±45° lines will a straight line of dots or pixels appear. All other 

lines will appear as a series of stair steps. This is called aliasing (illustrated in Fig. 

3.3) [Rogers85].

Figure 3.3: Aliasing example.

This staircase effect means that for some lines it is extremely likely that the polygon 

boundary on certain scan-lines will be made up of more than one consecutive pixel. 

(In Fig. 3.3, the boundary contains two consecutive pixels on each scan-line.)

Consider the polygon in Fig. 3.4. The General Bresenham Algorithm calculates 

all co-ordinates that lie on each polygon edge. The edge co-ordinates are stored in an 

edge list and sorted into scan-line order, (y first, then x). Extracting pairs of edge 

co-ordinates from this list will immediately create errors. For instance, on scan-line j, 

edge co-ordinates A and B will be extracted to scan between, followed by C and D, 

whereas A and D should be the two points to scan between.
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AB CD

Figure 3.4: Consecutive pixels from shallow lines.

The direction of the edge can be used to determine which of the consecutive pixels 

should be stored in the edge list (illustrated in Fig. 3.5). For an anticlockwise cycle of 

vertices, a scan-line proceeding from left to right and intersecting a polygon edge will 

enter the polygon if the direction of the edge is down and will exit the polygon if the 

direction of the edge is up. Therefore, for downward pointing edges, the leftmost pixel 

only should be put in the edge list and for upward pointing edges, the rightmost pixel 

only should be put in the edge list. (The necessity of specifying the direction of the 

polygon is developed in Section 3.2.4.)

Figure 3.5: Anticlockwise cycle of vertices.

This simple amendment to Bresenham's Algorithm ensures that only the outermost 

of the consecutive edge pixels on any scan-line are stored in the edge list.
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3.2.4 Polygon Complexities

For every scan-line, intersections with a polygon are distinguished as edges and vertices. 

As has been shown, edge intersections represent polygon edges. Pairs of edge pixels 

can be scanned between to find the interior points of the polygon on that scan-line. A 

simple initial check that the edge co-ordinate at the intersection is not in the vertex 

list is sufficient to show that it is an edge intersection.

However, if the edge co-ordinate at the intersection is a vertex, a new set of problems 

is raised. In this section a brief overview of these problems is given. A more detailed 

description of the problems and how they are solved is given in Appendix B.

Solving these problems requires the direction of the polygon to be specified. In 

this work, the direction of the polygon is taken to be anticlockwise and the vertices 

are (re-)ordered accordingly. A set of rules are established, based on the anticlockwise 

cycle. Alternatively, a clockwise cycle may be used, but this would necessitate changes 

to the established rules.

The polygon vertices can be grouped as those which:

• are edge equivalent - i.e. they can be treated as ordinary edge co­ 

ordinates;

• are a peak or a trough - i.e. they have to be treated differently;

• lie on a horizontal edge - these require a third approach.

Each of these types of vertices are now explained.
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Edge Equivalent Vertices

Some vertices can be treated as edge co-ordinates as the scan-line intersecting with 

these vertices either enters or exits the polygon (illustrated in Fig. 3.6). In Fig. 3.6(a) 

vertices A and C are treated as non-vertex edge co-ordinates and are scanned between 

to find the interior points of the polygon along scan-line j. In Fig. 3.6(b), vertex A 

is treated as a non-vertex edge co-ordinate and is paired with the edge co-ordinate at 

point p to scan between.

Figure 3.6: Edge equivalent vertices (a) vertices A & C treated as non-vertex edge 
co-ordinates (b) vertex A treated as a non-vertex edge co-ordinate.

Peaks / Troughs

Some of the vertices extracted from the edge list could be peaks or troughs (illustrated 

in Fig. 3.7). In Fig. 3.7, vertices (7, F and H are considered peaks and vertices B,D 

and (?, troughs. Some peaks and troughs are considered external to the polygon, for 

example, vertices J3, D, F and H. The other peaks/troughs are considered internal to 

the polygon. An external peak/trough represents a single pixel on the boundary and, 

therefore, must be treated differently. An internal peak/trough lies within the polygon 

along a scan-line and is, therefore, ignored.
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Figure 3.7: Vertices as peaks/troughs.

Horizontal Edges

Horizontal edges may occur at different locations in a polygon. Figs. 3.8 to 3.11 

show some examples of how horizontal edges may be situated in polygons. A 

horizontal edge may be the only part of a polygon on a particular scan-line, for 

example, scan-line j in Fig. 3.8, or be independent of the polygon on the rest of 

the scan-line, for example, scan-line i in Fig. 3.8. Other cases of horizontal edges 

are when they are combined with other parts of the polygon, such as starting (Fig. 

3.9a), ending (Fig. 3.9b) or occurring in the middle (Figs. 3.10 and 3.11) of a scan-line.

H

Figure 3.8: Independent horizontal edges.
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(a) (b) 

Figure 3.9: Horizontal edges, (a) example 1 (b) example 2.

B

Figure 3.10: Horizontal edges, example 3.

H

Figure 3.11: Horizontal edges, example 4.
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Each of these cases must be treated differently. To determine the rules for each 

case, consider what occurs immediately prior to and after each horizontal edge along 

the scan-line on which it falls. A summary of the derived rules are presented here. A 

more detailed description of the rules is given in Appendix B.

The end vertices of an independent horizontal edge, such as BC and EF in Fig. 

3.8, are treated as edge equivalent vertices (explained in Section 3.2.4).

Now consider the horizontal edges, AF and DE, in Fig. 3.9(a) and (b) respectively. 

AF and DE fall at the beginning and end, respectively, of scan-line j. Vertex A in Fig. 

3.9(a) and vertex D in Fig. 3.9(b) can be treated as edge equivalent vertices (explained 

in Section 3.2.4). Vertex F in Fig. 3.9(a) and vertex E in Fig. 3.9(b) must be ignored 

as, in both examples, vertices A and D are the correct pair to be scanned between.

Now consider the polygons in Figs. 3.10 and 3.11. In both examples, the horizontal 

line CD falls in the middle of the polygon along scan-line j. In both cases, vertex A 

will already have been determined as the starting point for scanning. Therefore, vertex 

C is ignored. In Fig. 3.10, vertex D is ignored as there is more of the polygon to come 

along scan-line j, after D. (Vertex F is the true end point for scanning in this example.) 

However, in Fig. 3.11, vertex D is the end point for scanning from A. (Vertex F is an 

external trough (explained in Section 3.2.4.))

In Appendix B, a fuller explanation of each case of horizontal edges is given and 

how the rules to treat them are derived. It is shown that the direction of the line is 

crucial in determining which vertex is the true end point for scanning. Thus, the need 

to define the direction of the polygon is again made explicit.
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The Interior Points of a Polygon Algorithm

Having considered all possible polygons, an algorithm is constructed to determine all 

those pixels which lie on and within the ROI boundary, from which statistics are 

calculated.

Once the polygon has been defined using the drawtool, initial preparatory steps 

are:

1. Ensure the polygon vertices have an anticlockwise cycle (the developed 

rules are based on an anticlockwise cycle of vertices);

2. Remove any vertices that lie on the middle of a horizontal edge (as the 

vertices are user defined, it is possible for this to occur);

3. Use the above amendment to the General Bresenham Algorithm to 

determine all edge co-ordinates for each polygon edge;

4. Sort the edge co-ordinate list into scan-line order (y first, then x).

The edge co-ordinates can now be extracted from the edge list and the established 

rules will determine which co-ordinates are the correct ones for scanning between on 

each scan-line. A pseudocode listing of the algorithm can be found in Appendix C.
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3.2.5 Region of Interest Statistics

Once an ROI boundary is created, statistics are calculated. The interior points of 

the ROI are determined using the algorithm in Section 3.2.4. This section gives the 

formulae used to calculate the statistics.

The size of the ROI is determined by calculating the number of pixels within the 

region, including the boundary. The average pixel intensity, of, for an m x n region is 

calculated with Equation 3.2

m-1 yi n-1= t_ "t=U "J=U~ZJ /„ O x 
X = ——————————————— i<J'^Jm x n

where Xij is the pixel intensity at (i, j). The average pixel intensity has potential 

to describe how active the synovium is in a Gadolinium-enhanced image of a patient 

with rheumatoid arthritis [Plant95a].

The standard deviation gives a measure of spread of the pixel intensities within an 

ROI. Equation 3.3 gives the formula used for calculating the standard deviation. <r, for 

an m x n region.

\
.. _ -rr\2

<7 = *~ '~
m x n

-xY—^ (3-3)

The statistics are displayed in a table with a colour key associating to which ROI 

each set of statistics relates. The statistics can also be stored in a text file.

A histogram showing the spread of grey levels within an ROI is also created. As 

the grey level range is 0 to 4095, the histogram is grouped into 16 blocks of 256 grey 

levels each. The number of pixels falling within each block is also displayed.
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3.2.6 The Region of Interest Path Structure

The drawtool of Section 3.2 allows the user to draw around regions of interest (ROIs) on 

the images. Some forms of image analysis require the use of the same ROI boundaries 

on different images. Examples are comparing finger slices from scans taken on different 

occasions in a clinical trial or in assessing the stability of the MRI scanner in imaging 

fluids (as is required in other UHW projects). Storing the ROI boundaries would be 

beneficial in such tasks.

This section explains the necessary data structure for defining an ROI boundary. 

The requirements for the data structure are explained in terms of the expected use of 

the drawtool.

Initial Considerations

An ROI boundary is a path around the ROI. The vertices that make up the boundary 

form a very efficient path definition. A path structure facilitates storage of the path 

and its characteristics or properties. A general path structure facilitates all types of 

ROIs, for all images and all UHW projects. Thus, the extensibility of the system as a 

whole is continued.

Firstly, consider the different ROI boundary shapes. Rectangles and polygons are 

implemented in the drawtool of this project. Other UHW projects require different 

drawtool shapes, for example, freehand [OConnor98b], which, once drawn, is the same 

as a polygon. Therefore, it is necessary to define a general path structure which fa­ 

cilitates all possible shapes for all UHW projects. A general path structure ensures 

consistent data storage across all UHW projects. This approach allows for the incor­ 

poration of an editor based on paths if required by other UHW projects.
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Secondly, consider the different properties of an ROI boundary:

1. Does the ROI boundary form an open or a closed region?

2. How many vertices/segments are in the ROI boundary?

3. What is the colour of the boundary (colour is used to distinguish between 

ROIs)?

4. What type of line is used (for example, solid, dotted, dashed)?

A general ROI path structure contains information for all properties of ROI boundaries.

Codes, referred to as action codes, are used to store the boundary information. Each 

property has its own action code. The code is a number that defines which action to 

take when the system is faced with a choice about how to render a line.

Each segment is most easily described by the co-ordinates of its end vertices, with 

an accompanying action code defining the shape of the segment between those vertices. 

Storing these end vertices and accompanying action codes only is an efficient use of 

computer storage space. Another action code stores the number of vertices on the ROI 

boundary.

The general path structure allows for the inclusion of circles and ellipses. Circles 

and ellipses are usually defined by their centre points and radii. To conform to the 

general storage of pairs of vertices that mark the ends of a segment, circles and ellipses 

can be stored similarly. For a circle, centre (Cx ,Cy ) and radius r, two points from the 

circle circumference are stored, such as (Cx — r,Cy ) and (Cx + r,Cy ). For an ellipse, 

centre (Cx ,Cy ) and major and minor radii a and b respectively, four boundary points 

are stored, such as (Cx - a, Cy ), (Cx + a, Cy ), (Cx , Cy - b) and (Cx , Cy + b).

The ROI boundary is stored in a data structure composed of a header, containing 

the action codes and data, containing the end vertices of each segment of the boundary 

(illustrated in Fig. 3.3 for an ROI boundary with n vertices).
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Header
action code 1 action code 2 action code n

Data
Xl yi X2 y-i ... X n yn

Table 3.3: Region of interest path structure.

To allow encoding of all possible ROI boundaries, action codes are defined for the 

following boundary properties:

• The number of vertices that make up the boundary.

• The shape of the boundary (rectangle, polygon, circle, ellipse, freehand, 

hybrid).

• Whether the ROI boundary is a closed or open region (for a closed region 

the two end vertices are joined together).

• What colour the ROI boundary is.

• What line type has been used for the ROI boundary.

• Reserved action codes (allows room for later additions to the data struc­ 

ture).

Numbers are used to signify which action to take. For example, the action code for 

boundary shape is defined as:

1 = rectangle.

2 = circle/ellipse.

3 = polygon.

4 = freehand.

5 = hybrid.

The action code for closed/open boundary is a binary code, where "0" is closed and 

"1" is open.
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Tables. 3.4 and 3.5 give two examples of ROI boundaries that have been stored in 

the path structure. Table. 3.4 gives an example of a red rectangle. The path structure 

is listed as:

4 vertices in a rectangle (2) that is a closed (0) region and is red (10) the 

line is solid (00) and the reserved codes are 00. The vertex co-ordinates 

then follow ((100, 110), (100, 125), (120, 110), (120, 125)).

4 2 0 1 0 0 0 0 0 100 110 100 125 120 110 120 125

Table 3.4: Path structure example of a red rectangle.

Table. 3.5 gives an example of a blue polygon. The path structure is listed as:

5 vertices in a polygon (3) that is a closed (0) region and is blue (30) the 

line is solid (00) and the reserved codes are 00. The vertex co-ordinates 

then follow ((30, 90), (100, 50), (200, 100), (190, 200), (70, 210)).

5|3 0 3 0 0 0 0 0 30 90 100 50 200 100 190 200 | 70 210

Table 3.5: Path structure example of a blue polygon.

Resource Interchange File Format (RIFF) Files

The ROI boundary information contained in the general path structure must be stored 

in a file. The standard MS-DOS file access functions, such as JopenQ, can be used to 

store data in a file. However, multimedia functions provide several advanced features, 

such as memory-buffered access and functions for creating and reading the data from 

Resource Interchange File Format (RIFF) files [Conger93]. The RIFF standard is ideal 

for storing blocks of data in a single file. In this section, RIFF files are presented and
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applied to storing ROI boundary information via the general path structure explained 

in the previous section.

The RIFF format provides a generalized method for storing different types of data 

in an organized format in a single disk file. The RIFF format is easy to use and supports 

any type of data. The basic idea behind the RIFF file format is that each disk file 

consists of a series of "chunks" of data. Each chunk has a header which begins with a 

four-letter code that identifies the chunk. Following the chunk identifier is a value that 

gives the chunk's length in bytes. The chunk length is very important as it makes it 

possible to easily locate the next chunk in the file. RIFF files are not just a big block 

of data, but an organized series of independent units, which makes RIFF files easy to 

navigate.

Fig. 3.12 illustrates the RIFF structure for a simple file containing two blocks of 

data. All RIFF files start with an outermost RIFF chunk that encompasses the entire 

file. The first four bytes of any RIFF file will be the ASCII character codes for the 

letters R, I, F, F, which make RIFF files easy to identify. Next is a value that stores 

the length of the file, followed by another four-character code that specifies the "form- 

type" for the file. The form-type allows certain predefined RIFF files to be recognised. 

After the form type come all of the chunks that make up the file's data. Each chunk 

starts with a four-character ID value and then the length of that chunk. Note that the 

chunks themselves do not have a "form-type" like the RIFF chunk.

A RIFF file can be designed as a hierarchical system of "parent" and "child" chunks 

to any desired level of nesting. In navigating a RIFF file, moving to a subchunk level 

from a parent chunk is referred to as "descending" into the subchunk, while moving 

back up to the parent level is referred to as "ascending". Multimedia functions exist 

which make creating, reading and modifying RIFF files very easy [Conger93].
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The "RIFF" Chunk
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Figure 3.12: RIFF file hierarchy of chunks.

RIFF files are used to store the ROI boundary information in the path structure. 

An ROI is made up of segments. Each segment can be stored separately in a chunk, 

but this means that only one ROI could be stored in a RIFF file and the path structure 

header information would unnecessarily be repeated for every segment.

Instead, at the top level of chunks, each ROI is stored in a chunk. Therefore, a set 

of ROIs can be stored in a single RIFF file. The path structure, consisting of header 

and data, is stored in the data section of each chunk.

Other UHW projects may require ROI boundaries that have segments taken from 

different shapes. These "hybrid" boundaries can easily be accommodated in this RIFF 

structure. A parent chunk will define the general information of the boundary and 

child chunks will store the information from each segment.

Other UHW projects use editing tools to amend the ROI boundary [OConnor98b]. 

The path structure is very easily changeable for amendments to the boundary and the
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multimedia functions make rewriting the path structure to RIFF files very easy.

3.3 Summary

In this chapter, a set of criteria for drawing ROI boundaries is established. A critical 

analysis of the method used to produce data for the published poster [Plant95a] is 

presented and better methods for drawing reproducible ROI boundaries are developed. 

Inter- and intra-observer variability and bias are examined and a coefficient of variation 

is developed.

The requirements for creating region of interest (ROI) boundaries are explained. 

A robust algorithm for determining the interior points of a polygon is also presented. 

A brief overview of the derived rules for finding these interior points is given in this 

chapter. A detailed explanation of the rules is given in Appendix B. A pseudocode 

listing of the algorithm can be found in Appendix C.

Once an ROI boundary is drawn, statistics are calculated. The statistics calculated 

for each ROI are explained and the formulae used, given. Histograms are also created.

Storing the ROI boundaries is advantageous in many applications. A general path 

structure for storing boundary information is developed and RIFF files are shown to 

be useful for storing the path structure in a file.

In the next chapter, the MRI images are processed to find features which can be 

used for the registration process in Chapter 5.
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In Chapter 2 an overview of registration methods is presented. Before applying relevant 

methods to this application, it is necessary to derive features within MRI images that 

can be used for registration. Determining such features is the focus of this chapter.

Recall from Chapter 2 that extrinsic point methods are unsuitable for this applic­ 

ation. Therefore, only intrinsic point methods are investigated. Intrinsic points are 

patient-related properties, for example, pixel intensities, anatomical landmark points 

(known as fiducial points [Maurer93]), geometrical features or surfaces of skin. Skin 

surfaces alone are unsuitable as landmarks in this application, due to the danger of 

slippage (explained in Section 1.2.1).

Firstly, the use of pixel intensities is examined via a number of well known and 

some newly developed image processing techniques. Secondly, the identification of 

useful anatomical features is investigated via well known image processing techniques 

and new methods are derived in the context of this research. A new combined method is 

presented which derives structural boundaries that represent the bones in an MRI finger 

image. These boundaries can be used for the registration process (to be explained in 

Section 5.3). Thirdly, frequency domain techniques are examined and applied to MRI 

finger images. The Discrete Fourier Transform, the Convolution Theorem and various 

frequency domain filters are discussed. The method of Fourier Descriptors is examined 

as a means of determining the parameters required to register a pair of images.

4.1 Locating Features By Pixel Intensities

The purpose of this section is to examine whether MRI finger image pixel intensities 

can produce enough information to make possible the registration of the images. The 

well known image processing techniques examined here are contrast stretching, stand­ 

ardizing and thresholding. A new standardizing method is presented that combines 

information from more than one image to produce sequences of images with the same 

mean and standard deviation.
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4.1.1 Contrast Stretching

The MRI finger images (explained in Section 1.1.2) have a grey level range of 0 (black) 

to 4095 (white). However, different weighted images (explained in Section 1.1.1) have 

differing contrast. Fig. 4.1 shows three different weighted images. The Tl-weighted 

image is considerably darker and has lower contrast than both the PD- and T2-weighted 

images.

(a) (b) (c) 

Figure 4.1: (a) PD-weighted image (b) T2-weighted image (c) Tl-weighted image.

Locating a particular feature within two or more images having different weightings 

can be hampered by very large cross-image pixel intensity differences in tissue regions. 

Contrast stretching [Gonzalez92, Sonka96] increases the active range of grey levels in 

an image. Stretching the used grey levels out to the maximum possible range of grey 

levels, will increase the contrast such that the weighted images have a more similar 

appearance of grey levels. Equation 4.1 gives a formula for contrast stretching.

^ - Amin ] ^ B (4.1)

for i,j = 0,1,2,..., 255, where Bmin and Bmax are the selected minimum and maximum 

grey level, respectively, for the new contrast-stretched image 5, and Am,-n and Amax
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are the minimum and maximum grey levels, respectively, from the current image A. 

Fig. 4.2 shows the effect of contrast stretching the images in Fig. 4.1.

Figure 4.2: (a) PD-weighted image contrast stretched (b) T2-weighted image contrast 
stretched (c) Tl-weighted image contrast stretched.

The three weighted images now look more alike, compared to each other, in terms 

of contrast and have more similar, though not equal, means and standard deviations, 

as can be seen in Table 4.1. Contrast stretching alone does not provide any new 

information that can be used for registration. However, when other image processing 

techniques, such as standardization (explained in Section 4.1.2), produce very dark 

images, contrast stretching will brighten the image so that further processing decisions 

can be made.

Fig. (weight)
Mean
Standard deviation
Contrast stretched
Fig. (weight)
Mean
Standard deviation

4. la (PD)
383
622.2952

4. 2 a (PD)
389
631.8603

4-lb (T2)
290
496.1749

4.2b (T2)
388
664.2108

4.1c (Tl)
253
331.5253

4.2c (Tl)
441
578.9117

Table 4.1: Means and standard deviations for Figs. 4.1 & 4.2.
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4.1.2 Standardization

Section 4.1.1 introduces the problem of locating features within different-weighted im­ 

ages. Contrast stretched images do not reveal features useful for registration, but 

do produce images with more similar, but not equal, means and standard deviations. 

Standardizing is a technique which will produce images with approximately the same 

mean and standard deviation. In this section, consideration is given to well known 

standardizing techniques and a new method, derived for this work, which combine in­ 

formation from more than one image, to produce images with approximately the same 

means and standard deviations. Standardizing images in this way is particularly useful 

for locating structural features (to be explained in Section 4.2).

One very simple standardizing technique is to subtract the average grey level in­ 

tensity of an image from every pixel in the image. However, this method does not take 

into account the variance of the grey levels. A better method of standardizing is to 

subtract the mean from each pixel and then divide by the standard deviation. That is:

(4.2)

for i,j — 0,1, 2,..., n — 1, where XA is the average pixel intensity of image A and a A is 

the standard deviation of image A.

The above process is performed for all n x n pixels in the image. The resulting 

image has zero mean and the standard deviation is 1. Contrast stretching (explained 

in Section 4.1.1) the standardized image will re-spread the pixel intensities across the 

grey-level range available. Fig. 4.3 shows the result of standardizing (by Equation 4.2) 

and contrast stretching (by Equation 4.1) the images in Fig. 4.1.



CHAPTER 4. PROCESSING OF RAW IMAGE DATA 78

Figure 4.3: (a) PD-weighted image standardized and contrast stretched (b) T2- 
weighted image standardized and contrast stretched (c) Tl-weighted image standard­ 
ized and contrast stretched.

The standardizing process is performed on each image independently. The resulting 

images appear more alike and have more similar measures of spread, as in the contrast 

stretching case in Section 4.1.1. However, making the images have identical measures 

of spread, will help towards locating the same structures (explained in Section 4.2) 

within these images. To achieve this, a new approach was developed for these images. 

The method combines information from two images so that the standardized images 

have the same mean and standard deviation.

Let A and B be two images with different contrast. A simple technique is to 

divide each pixel in image B by the average pixel intensity of B and then multiply by 

the average pixel intensity of image A. Both images now have the same mean, but 

different variances. Instead a method was developed which includes both the mean 

and the standard deviation and is based on equation 4.2, thus combining information 

from both images.

Let C be the required standardized version of an image A with respect to image 

B. Equation 4.3 gives the new formula for standardization. The standardized image 

C, is defined in terms of images A and 5, for i,j = 0,1,2, ...,255, where ~X A and 

XB are the average grey levels of image A and B respectively and aA and aB are
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the standard deviations of image A and B respectively. Fig. 4.4 shows the result of 

applying Equation 4.3 to the images in Fig. 4.1

+ (4.3)

Figure 4.4: (a) PD-weighted image (b) T2-weighted image, new standardizing method 
(c) Tl-weighted image, new standardizing method.

Table 4.2 gives a comparison of the mean and standard deviation for the images 

in Figs. 4.1 and 4.4. As can be seen, the new method produces means and standard 

deviations that are almost equal.

Fig. (weight)
Mean
Standard deviation
New standardizing method
Fig. (weight)
Mean
Standard deviation

4. la (PD)
383
622.2952

4.40- (PD)
383
622.2952

4-lb (T2)
290
496.1749

4-4b (T2)
383
622.2724

4.1c (Tl)
253
331.5253

4-4c (Tl)
384
622.2108

Table 4.2: Means and standard deviations for Figs. 4.1 and 4.4.
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The new standardizing technique is a very useful tool as a pre-processing step 

for weighted images and Gadolinium-enhanced images in deriving bone boundaries 

(explained later in Section 4.2.3).

4.1.3 Grey Level Thresholding

If tissues or landmarks could be classified or segmented by grey level values only, then 

clearly registration would be greatly simplified.

Consider the rectangles drawn on the finger image in Fig. 4.5. The rectangles 

lie within the proximal phalanx (PP), the middle phalanx (MP), the synovium dorsal 

(SD), the synovium palmar (SP), the joint space (JS), the tendon (T) and the eroded 

hole (H). A plot of average grey level plus or minus one standard deviation, for each 

rectangle, is given in the graph in Fig. 4.6.

Figure 4.5: MRI finger scan with rectangles drawn in the proximal phalanx, middle 
phalanx, tendon, hole, joint space, synovium dorsal and synovium palmar.

The graph illustrates the fact that for different regions of interest (ROIs), the av­ 

erage grey levels are very similar. Within plus or minus one standard deviation of the 

mean, many grey levels fall within different tissue regions. The range for each tissue 

region overlaps substantially with those of other regions. Thus, defining boundaries
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Figure 4.6: Average grey level plus or minus one standard deviation for each rectangle 
in Fig. 4.5.

for ROIs or landmarks by grey level alone is almost impossible for these sorts of im­ 

ages. Therefore, registration based on image grey levels alone is insufficient for this 

application and the identification of structural features will be required.

4.1.4 Reducing the number of grey levels

The MRI finger images have a grey level range of 0 (black) to 4095 (white). Reducing 

the number of grey levels [Rycroft98] may help to define tissue regions more clearly. A 

banded thresholding algorithm can be used to combine a set of grey levels into a single 

value. Fig. 4.7(a), (b), (c), (d), (e), (f) shows the result of reducing the number of 

grey levels in Fig. 4.5 to 64, 32, 16, 8, 4 and 2 respectively.

The resulting images do not have clear, smooth boundaries. This approach did not 

lead to an improvement for this application.
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Figure 4.7: Number of grey levels of Fig. 4.5 reduced to (a) 64 (b) 32 (c) 16 (d) 8 (e) 
4(f)2.

4.2 Locating Structural Features

In Section 4.1 it is shown that pixel intensities alone do not provide useful features 

for registration. Therefore, it is necessary to find some structural features within the 

images that can be used for registration. Some processing of the images is necessary to 

assist in locating such features. In this section, some well known image processing tech­ 

niques, such as edge detection, are investigated. A new algorithm is presented which 

derives structural boundaries that can be used in the registration process (explained 

in Chapter 5).
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4.2.1 Edge Detection and Gradient Operators

An edge can be defined as the boundary between two regions with distinct grey-level 

properties [Gonzalez92]. Section 4.1.3 shows that MRI finger images cannot be segmen­ 

ted in terms of grey level values alone. However, edge detectors can be used to locate 

useful structural features of an image. In this section, first derivative edge detectors 

are described and applied to MRI finger images.

The most common edge detectors are gradient operators. The gradient [Gonzalez92] 

of an image /(x, y) at location (x, y) is the vector:

Vf = Gx 91 
dx

Gradient vectors point in the direction of the maximum rate of change of / at (x, y). 

In edge detection, the magnitude, V/, is of primary interest, where

V/ = ma</(Vf) = \Gl + Gj]*

This quantity equals the maximum rate of increase of f(x,y) per unit distance in the 

direction of Vf. Much simpler to implement is the commonly practised approximation 

to the gradient by using absolute values:

V/ Gx G

The simplest way to implement gradient operators is to pass a mask, of size 3x3 

for example, over an image. As the mask passes over each 3x3 array of image pixels, 

calculations are performed for the centre pixel from its nearest neighbours.
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Examples of gradient operators are Sobel [Gonzalez92, Sonka96, Schalkoff89, 

Low91]:
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and Prewitt [Gonzalez92, Sonka96, Schalkoff89]:

-1

-1

-1

0

0

0

1
1
1

Gx =

Zg) -

G-,,

z3 )

-1
0

1

-1
0

1

-1
0

1

Z7) 

Z3 )

where z\, ..., Zg correspond to the grey levels of a subset of 3 x 3 pixels (with z\ in the 

top left position and ZQ in the bottom right position).

Note that all the mask coefficients sum to zero, indicating a response of 0 in regions 

of uniform intensity, as expected of a derivative operator.

Sobel and Prewitt edge detectors were applied to MRI finger images to determine 

some boundary, or shape within an image that can be used for registration. Fig. 4.8(b) 

and (c) show the effect of applying the Sobel and Prewitt Edge Detectors to the image 

in Fig. 4.8(a).
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(a) (b) (c) 

Figure 4.8: (a) MRI finger scan (b) Sobel Edge Detector (c) Prewitt Edge Detector.

The resulting images yield a great deal of information that is difficult to register 

without further processing. Thus, on their own, they are of little help.

A simplification algorithm has been developed which is designed to reduce the 

amount of information in the edge detected images to a more useful level. By selecting 

a minimum number of pixels, all horizontal, vertical, and ±45° diagonal straight lines 

of image pixels of length less than a desired minimum are removed from the image. 

Finding an appropriate minimum length requires some trial and error. Fig. 4.9 shows 

the straight line reduction effect for the image in Fig. 4.8(b), with the minimum pixel 

length set to 8.

Figure 4.9: Sobel Edge Detector, with binary threshold and minimum pixel length 
straight line reduction.
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Fig. 4.9 displays some features to be found in MRI finger images. In particular, 

the vertical lines that lie either side of the cartilage and the horizontal lines from the 

proximal phalanx are potential characteristics of a finger image. The diagonal lines 

which approximate the corners of the bones do not always appear in the segmented 

images. Finding common, simple features in images of the same patient taken over 

time will aid the registration process.

4.2.2 Laplacian and Zero Crossings

The Laplacian [Gonzalez92, Sonka96, Schalkoff89, Low91] of an image is a second-order 

derivative defined as:

The Laplacian may also be implemented in digital form for a 3 x 3 region by:

V2/ = 4z5 - (z2 + z4 + z6 + z8 )

The Laplacian is seldom used in edge detection due to its unacceptable sensitivity to 

noise and the double edges it produces [Gonzalez92] . The Laplacian is normally used 

to determine whether a pixel is on the dark or light side of an edge [Gonzalez92] .

As a second derivative operator, the Laplacian has a zero crossing at the location 

of each edge. This property gives the Laplacian a more general use in locating edges 

[Gonzalez92]. This concept is based on convolving an image with the Laplacian of a 

2D Gaussian function of the form:

= exp-
2<7 2

Let r2 = x2 + y2 , then the Laplacian of h is: 

and the zero crossings are at r — ±<7.
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Haralick [Haralick84] defines the zero crossings as:

,A I 1 - k exp -- (4.5)

where k is set so that the resulting weights sum to zero and A scales the values so that 

integer arithmetic can be used.

Figs. 4.10(b) and 4.11(b) show zero crossings applied to the finger images in Figs. 

4.10(a) and 4.11 (a) respectively, using a 5 x 5 mask derived from Equation 4.5, with

25k =
V2

and A = I.

(a) (b) 

Figure 4.10: (a) MRI finger scan (b) zero crossings of image showing clear boundaries.

In Fig. 4.10(b) there are some well defined boundaries, however, Fig. 4.11(b) shows 

an example where the boundaries are not so clearly defined. Despite Figs. 4.10(a) and 

4.11(a) having seemingly black backgrounds, the corresponding regions in Figs. 4.10(b) 

and 4.11(b) demonstrate that considerable information has been detected by the zero 

crossings. These 'noisy' regions indicate that the apparently uniformly black regions 

in the original images exhibit noise. These results contradict the statement made by 

Gonzalez and Woods [Gonzalez92]:
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Figure 4.11: (a) MRI finger scan (b) zero crossings of image showing relatively unclear 
boundaries.

...edge detection by gradient operations tends to work well in cases involving 

images with sharp intensity transitions and relatively low noise. Zero cross­ 

ings offer an alternative in cases when edges are blurry or when a high noise 

content is present. The zero crossings offer reliable edge location, and the 

smoothing properties of V2 /i reduce the effects of noise. The price paid for 

these advantages is increased computational complexity and time.

Figs. 4.10(a) and 4.11(a) yield different results partly due to the fact that Fig. 

4.11(a) contains a lower contrast than Fig. 4.10(a). The MRI finger images in this 

application will vary in contrast, making the use of zero crossings alone unreliable. In 

Section 5.2 some results of post-processing of the zero crossings images are given.

4.2.3 Bone Boundaries

In this section, a new method for determining structural boundaries is derived. These 

boundaries are characteristic of the shapes of the bones and will subsequently be re­ 

ferred to as bone boundaries. The method is composed of a sequence of processes that 

starts with an MRI finger image and results in a black and white image with clear bone 

boundaries displayed. The sequence will be referred to as the boundary sequence from 

here on.
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Consider the MRI finger image in Fig. 4.12(a). The first step in determining bone 

boundaries is to apply a 3 x 3 scaling mask [Gonzalez92] to the image. The purpose 

of the scale is to merge the highly heterogeneous regions of pixels within the image 

into blocked regions (illustrated in Fig. 4.12(b)). This stage is interactive as the user 

assesses whether or not the scaling is sufficient. The mask weights are initially set to 

1.0, but can be manually adjusted by the user if the resulting image is over- or under- 

scaled. Once a suitable scaling is determined the remaining stages are automatically 

completed.

(d) (f)

Figure 4.12: The boundary sequence.
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The second stage of the sequence is the application of the Laplacian derivative 

operator. The Laplacian gives a response of zero in regions of unchanging intensity. 

Therefore, the brightly merged regions from stage one are now seen as black regions 

(illustrated in Fig. 4.12(c)). This is important for the third stage.

When an image is convolved with V2/i (Equation 4.4), negative values are repres­ 

ented by black, positive values are represented by white and zeros are represented by 

mid-grey [Gonzalez92]. Therefore, the black regions in Fig. 4.12(c) become mid-grey 

in Fig. 4.12(d) while the rest of the image is a mixture of black and white.

The bone areas can now be clearly seen and are easily extracted with the use of 

a banded thresholding algorithm to make the mid-grey become the foreground and 

the rest become background (illustrated in Fig. 4.12(e)). Identifying the zero cross­ 

ings from this image as the boundaries between black and white is a simple matter 

[Gonzalez92].

The resulting image is a black and white image with clearly defined bone boundaries. 

Fig. 4.12(f) shows the boundaries derived from the finger image in Fig. 4.12(a).

The boundary sequence works well for images of the same weight (Section 1.1.1) as 

the images have similar contrast initially. However, choosing the right scaling weights 

at stage one can be time consuming. This problem is worsened when considering 

images taken from different weighted scans (explained in Section 1.1.1) or Gadolinium 

enhanced images (explained in Section 1.1.3) as these images have different contrast 

initially. Determining correct scale factors to produce images with the same brightness 

after stage one is very time consuming and subjective and will have a great deal of 

inter-observer variability.

In Section 4.1.2 it was shown that standardizing differently weighted images results 

in images with the same mean and standard deviation. The standardized weighted 

images have more similar contrast than the original images. Applying the same scale 

at stage one of the boundary sequence to standardized images will have better results,



CHAPTER 4. PROCESSING OF RAW IMAGE DATA 91

similar to those from images of the same weight initially. The boundary sequence can 

then be applied as above.

Fig. 4.13 show the result of applying the boundary sequence to the standardized 

images in Fig. 4.4. The two structural regions of interest are very similar, with subtle 

differences. Notice the gap in the region representing the proximal phalanx in Fig. 

4.13(c).

(a) (b) (c) 

Figure 4.13: Boundary sequence on different weighted images.

The boundary sequence produces images that can be used for registration (explained 

in Section 5.3).

4.3 Frequency Domain Techniques

Joseph Fourier (1768 - 1830) derived a technique which transforms real data, such as 

a set of pixel intensity values, into the frequency domain. This technique, the Fourier 

transform [Rinck93, Gonzalez92, Sonka96, Schalkoff89, Low91, Bracewell86], is now 

widely used in various applications.

There are many frequency domain image processing techniques which can be applied 

to an image. Standard image processing techniques, such as edge detection (explained 

in Section 4.2.1), may be more efficiently performed in the frequency domain. This 

efficiency comes from the Convolution Theorem (explained in Section 4.3.2) which
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reduces the spatial convolution to multiplication in the frequency domain. However, 

this improvement must be balanced against the extra processing time required to first 

calculate the Fourier Transform of the image data and then calculate the inverse Fourier 

Transform after processing to obtain the corresponding real data.

This section briefly explains the Fourier Transform and the Convolution Theorem. 

Then, frequency domain filters are explained and their specific application to MRI 

finger images given. Also, Fourier Descriptors are examined as a means of identifying 

the parameters required to register a pair of images.

4.3.1 The Fourier Transform

In this section, the Fourier Transform is explained briefly. For a more detailed explan­ 

ation the reader is referred to [Gonzalez92, Sonka96, Schalkoff89, Low91, Bracewell86]. 

If f(x] is a continuous function of a real variable x, then the Fourier Transform of 

f(x) is [Gonzalez92]:

/oo 
/(*) -00

and its inverse is:

/» 

-c

The Fourier transform of a real function is generally complex, that is:

F(u) - R(u) + il(u) (4.6)

where R(u) and I(u) are the real and imaginary components of F(u), respectively. 

Equation 4.6 can be expressed in exponential form [Gonzalez92], that is:

oo

-00

F(u) = 

where

)| = (tf(u)+ /»(«))*
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and:

The magnitude function |F(u)| is called the Fourier spectrum of /(x) and 4>{u] is 

called the phase angle.

The Fourier transform can easily be extended to data in two dimensions, which is 

more applicable to image processing. If /(x,y) is a continuous function of two real 

variables, x and y, then the two-dimensional Fourier transform and its inverse are 

denned by:

F(u,u)= / f° f(x,y)e-^ux+^dxdy
J J—oo

f(x,y) = f I™ F(u,v)e2"i{ux+vy)dudv
J J—oo

and the Fourier spectrum and phase are denned by:

In practice, an image is discretized into a square (n x n) array and therefore the 

two-dimensional discrete Fourier transform (DFT) is applied to the image data. The 

two-dimensional DFT for an n x n image and its inverse are defined as [Gonzalez92]:

1 n~*"~i
F(u, u ) = -EE/(;r ^)e

'* x=Q y=Q

for u,u = 0, l,2,...,n- 1 and
n—l n—1

, y) = - E E
u=0 v=0

for x,y = 0, l,2,...,n- 1.
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Implementing the DFT requires a large number of complex multiplications and 

additions. Gonzalez and Woods [Gonzalez92] show that the development of the Fast 

Fourier Transform (FFT) [Cooley65] reduces the computational time required from 

0(n2 ) to 0(nlog2 n), when n is a power of 2. This time reduction is a great saving 

when applying the Fourier Transform to a large 256 x 256 image.

4.3.2 The Convolution Theorem

The convolution [Gonzalez92, Sonka96, SchalkofF89, Low91, Bracewell86] of two func­ 

tions can be thought of as a weighted average, where one function gives the values to 

be averaged and the other function holds the weights. In image processing in the spa­ 

tial domain, convolution is most easily understood as an m x m mask of weights that 

passes over all possible m x m arrays of pixels within an image. The two-dimensional, 

discrete convolution (*) of an image /(or, y) with a linear operator h(x, y) for an n x n 

image is:
n-l n-1

f(x,y)*h(x,y) = £ £) f(j,k)h(x - j,y - k)
3=0 k-Q

for j,k = 0,1,2, ...,n — 1.

The convolution theorem is the foundation of frequency domain techniques 

[Gonzalez92]. The convolution theorem states that convolution in the spatial domain 

equates to multiplication in the frequency domain. That is:

f(x, y) * h(x, y) & F(u, v) x H(u, v)

where F and H are the Fourier transforms of / and h respectively.

In some cases it is more efficient to take the Fourier transform of an image, multiply 

by a chosen transfer function (H) and then take the inverse Fourier transform to obtain 

the new image.
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4.3.3 Filters

Two categories of frequency domain filters are Lowpass Filters and Highpass Filters 

[Gonzalez92, Sonka96]. Edges and other sharp transitions (such as noise) in an image 

make up a large proportion of the high-frequency components in the Fourier transform 

of the image. Reducing the high-frequency content of an image is the basis of lowpass 

filtering; a consequence of such filtering is a blurring effect on the image. Increasing 

the high-frequency components relative to the low-frequency components is the basis 

of highpass filtering and results in a sharpening effect on the image.

As registration requires some detail from the image, for example, edges or a bound­ 

ary, lowpass filtering (blurring) is of little use to this application. Highpass filtering 

(sharpening), however, has the potential to enhance the image detail which may then 

aid the registration process. In the following, some examples of highpass filters are 

given with their application to MRI finger images.

To apply a frequency domain filter to an image, the image must first be transformed 

into the frequency domain. The Fast Fourier Transform (FFT) is the quickest way to 

achieve this. Then the filter may be applied to the image. Finally, the filtered image 

is transformed back to the spatial domain by applying the inverse FFT.

Ideal Highpass Filter

The Ideal highpass filter is defined as:

0 ifD(u,v)<DQ 
H(u,v) = \

L ifD(u,v)>D0

where DQ represents the radius of this radially symmetric function and D(u,v] is the 

distance from a point (u,v) to the origin of the frequency plane, that is:

D(u,v] = (u 2 + v 2 )i
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In practice, when the filter is applied to an image, D(u,v] is actually the distance 

from a point (w,u) to the centre of the frequency plane. Therefore, D(u,v) must be 

defined as:

D(u,v] = [(u - cuf + (v - cu) 2]2

where (cit, cu) is the centre of the frequency plane.

(4.7)

1

r.

I-H
HH

0

Ideal Highpass Filter

DO
D(u, v)

Figure 4.14: Radial cross-section of the Ideal highpass filter.

The filter is called ideal as all frequencies inside a circle of radius DO are eliminated 

while all frequencies outside the circle are unaffected (illustrated in Fig. 4.14).

Butterworth Highpass Filter

The Butterworth highpass filter, of order n, is defined as:

.,. . 1

where DQ is the radius and D(u,v) is given by Equation 4.7.
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Unlike the Ideal highpass filter, the low frequency components within the circle are 

not eliminated, but are greatly attenuated (illustrated in Fig. 4.15). Changing the 

value of DO allows control over how many frequencies are attenuated. Changing the 

value of n controls how quickly the filter rises to 1. As n increases the Butterworth 

filter becomes more like the Ideal filter. In this application, n is set to 1.

HH HH

0.5--

Butterworth Highpass Filter

1 2 3 
D(u, v)/DO

Figure 4.15: Radial cross-section of the Butterworth highpass filter for n = 1.

Exponential Highpass Filter

The Exponential highpass filter is defined as:

where DQ is the radius and D(u, v] is given by Equation 4.7.

The Exponential highpass filter is similar to the Butterworth highpass filter in that 

the low frequency components within the circle are not eliminated, but are greatly 

attenuated (illustrated in Fig. 4.16).
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Exponential Highpass Filter

1 2 3 
D(u, v)/DO

Figure 4.16: Radial cross-section of the Exponential highpass filter.

Application of Filters to MRI Finger Images

The effect of highpass filtering is to sharpen image edges. The amount of sharpening is 

dependent on the choice of DQ. As DO increases, more low frequency components are 

attenuated. Edges and abrupt changes in grey level are associated with high frequency 

components. Therefore, it is expected that the sharpening of edges will improve the 

boundaries of particular regions of interest, which will then greatly improve the regis­ 

tration process. However, with MRI finger images, this expectation is not realised as 

described below.

In order to determine the next stage in the registration process, it is necessary to 

be able to see the resulting effect of each filter. However, the resulting highpass filtered 

images are very dark and need to be contrast stretched (explained in Section 4.1.1).

Experimentation with the Ideal highpass filter shows that, as DQ increases, bound­ 

ary detail is lost and speckled detail becomes more prominent. This means that the 

sharpest edges in MRI finger images are not boundaries between specific tissue types
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but come from the heterogeneity within specific tissue structures.

Experimentation with both the Butterworth and the Exponential highpass filters 

show that these filters do not enhance boundary edges in MRI finger images sufficiently 

to aid the registration process.

Fig. 4.17(a) to (c) show the results of applying the ideal, Butterworth and expo­ 

nential filters, respectively, to the finger image in Fig. 4.8(a), with D0 = 50.

Figure 4.17: Effect of highpass filters with DO — 50 (a) ideal (b) Butterworth (c) 
exponential.

4.3.4 Fourier Descriptors

The identification and registration of objects in images can be aided by the use of meas­ 

ures of 'shape'. A digital boundary can be described by a sequence of so-called Fourier 

descriptors [Gonzalez92, Sonka96]. These descriptors convey shape information. The 

general shape of a boundary is conveyed by just a few of the descriptors in the sequence 

while the majority of the descriptors contain the fine detail of the boundary. In this 

section, the derivation of Fourier descriptors is given, followed by their application to 

MRI finger images.

Suppose an image contains a closed boundary. The boundary may be expressed as 

an anti-clockwise sequence of pixels. Further, each pixel may be described as a complex 

number by using its co-ordinates, (:r,t/), as the real and imaginary components, i.e.
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(x + iy). If there are n points on the boundary, the two-dimensional boundary may be 

described as a one-dimensional sequence [Gonzalez92] :

s(k) = x(k) + iy(k)

for k = 0, 1,2, ...,n - 1. The Discrete Fourier Transform (DFT), a(u), of this sequence 

can be calculated giving:

n k=o
for u = 0,l,2,...,n- 1.

The complex coefficients, a(«), are called the Fourier Descriptors of the boundary. 

The inverse DFT restores s(fc), that is:
ra-l

s (k] = £ a(u)e^ukln
u-O

for k = 0, 1,2, ...,n- 1.

If only M Fourier coefficients are retained, i.e. by setting a(u) = 0 for u > M — 1, 

the boundary is approximated to:
M-l

s(k) = ^ a(u)ei2™fe/n
u=0

for A; = 0, 1,2, ...,n — 1. Although only M terms are used to construct each point, the 

same number of points exist in the approximate boundary.

The low-frequency and high-frequency components of the Fourier Transform cor­ 

respond to global shape and fine detail characteristics respectively in the image. As M 

decreases, more detail is lost on the boundary and the boundary will be approximated 

by its most general shape characteristics. M is normally selected to be an integer 

power of 2 so that the FFT (explained in Section 4.3.1) can be used to perform the 

calculations.

The application of Fourier Descriptors to registering MRI finger images has a great 

advantage in that images of the same patient will differ in fine detail (high-frequencies), 

but should have the same overall basic shape (low-frequencies).
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Application of Fourier Descriptors to MRI Finger Images

In this section, Fourier Descriptors are examined as a means of providing the parameters 

required for registration. The Fourier Descriptors are applied to the images containing 

bone boundaries (explained in Section 4.2.3).

Some simple transformations can be applied to the Fourier Descriptors to create 

descriptors that are invariant to rotation, translation and scale. Such descriptors are 

often applied to pattern recognition applications, for example, character recognition. 

In this application, it is necessary to determine a translational and rotational off­ 

set between a pair of images in order to register them. Therefore, invariant Fourier 

Descriptors are of little use in this application.

The centre of gravity of an image is represented by the complex vector a0 

[Granlund72]. The displacement between centres of gravity from two images of the 

same object could indicate the translational offset required for registration. Determ­ 

ining the rotational offset is not as easy. To rotate an image about the origin, the 

descriptors can be multiplied by eje , where 0 is the angle of rotation. Consider a set 

of descriptors, &„, derived from rotating the original descriptors, an , that is:

where a; = xa i + jyai and bi = xbi + jybi, for i = 0, 1, 2, ..., n - I.

It is possible to derive the angle of rotation, 6, via some simple algebraic manipu­ 

lations, that is:

xu + jybi = (xai + Jyai) el6 = (xai + jyai ) (cos6 + jsin6)

- yaisin9 + j (xaisinO + ya
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Therefore,

Xbi = xai cosB — yaisinO (4.8)

Vbi = xaisinO + yaicos9 (4.9)

From Equation 4.8

xu yaisinO cos9 = — + - ——— (4-10)
Xai X ai

Substituting Equation 4.10 into Equation 4.9 gives:

ybi - X
T* •"

• /, . = xaisinO +

A . _i / ybiXai -6 = sm ——5—
\ T • -t-x <z! *
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For all descriptors, the angle of rotation derived is the same. However, this test 

case does not work so easily in practice. When an image is rotated, the resulting pixel 

co-ordinates must be rounded to the nearest grid location, thus introducing some error. 

When determining 9 from the Fourier Descriptors of two images, where one image is a 

rotation of the other, the angle of rotation for each pair of descriptors is not the same. 

This complicates the process of finding a rotational offset between a pair of images.

Another problem is that the bone boundaries derived from two images of the same 

finger over time may differ considerably due to movement or incorrect positioning for 

scanning (explained in Section 1.2). Therefore, the Fourier Descriptors may be derived 

from boundaries with large differences in shape. This cannot be a good basis for any 

registration method. Therefore, it is necessary to apply Fourier Descriptors to selected 

open curves that are very similar. This is possible, but requires that the user selects 

the open curve. Applying Fourier Descriptors to open curves is a possibility; however, 

the translational offset, represented by the difference in the centres of gravity, has 

great potential for error if the open curves defined on two images are not the same. 

Translational registration based on centre of gravity could lead to mis-registrations. It 

is considered that this causes great enough potential error, without even considering 

the rotational offset, to warrant a better approach. These issues are further discussed 

in Section 5.5, where moments are applied to combined slice boundaries.
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4.4 Conclusions

In this chapter, various standard and new image processing techniques are applied to 

MRI finger images in both the spatial domain and the frequency domain. The aim of 

these techniques is to locate features within the images that can be used for registration.

Current contrast stretching and standardizing techniques alone do not produce any 

new information for registration and give no correlation between images of different 

contrast. The new standardizing technique (explained in Section 4.1.2) is particularly 

useful for images that are differently weighted or are Gadolinium enhanced. The new 

approach uses the mean and standard deviation from more than one image to produce 

images with the same spread. This process is a fundamental pre-processing step for 

the boundary sequence (explained in Section 4.2.3).

Registration cannot be based on image grey levels alone as the grey levels within 

different tissue regions overlap. Also, within particular regions of interest, the grey 

levels are heterogeneous. Re-mapping the grey levels to reduce the number of grey 

levels in an image does not produce clear, smooth, bounded regions in the images.

The classic edge detectors on their own produce images with too much information. 

However, a new straight line reduction algorithm is applied to reduce the amount of 

information to the most significant parts. The resulting images show some character­ 

istics of MRI finger images that can be used in the registration process (explained in 

Chapter 5).

The application of zero-crossings is very sensitive to image noise and the resulting 

images are not always easily visualised. The straight line reduction algorithm can 

simplify the images in terms of the number of straight lines seen, but the shape detail 

in the image is too easily lost.

The derivation of bone boundaries using the newly developed boundary sequence 

(explained in Section 4.2.3) is by far the most useful. These boundaries are used in 

Chapter 5 for the registration process.
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The application of frequency domain filters reveals that the sharpest edges in MRI 

finger images are not boundaries between different tissue structures, but come from 

the heterogeneity within tissues.

The method of Fourier Descriptors can give translational registration from the 

difference in the centroid of two images of the same finger. Determing an angle of 

rotation between two images is not as easy. Also, positional differences in the finger on 

two occasions forces the application of Fourier Descriptors to user-selected open curves 

on the images. If the defined open curves are not the same, which is highly likely, then 

registration based on the centroid could lead to gross mis-registrations.

Much of the work of this chapter was presented at the 2nd IMA conference on 

Image Processing and published in the conference proceedings [Williams2000]. A copy 

of the paper can be found in Appendix F.
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In Chapter 4 attention was given to locating structural features in MRI images that 

can be used for registration. In this chapter, the identified structural features are used 

in some existing and new registration techniques.

Firstly, a search for registration is made with the sum of absolute values of dif­ 

ferences method [Barnea72]. Secondly, a new, simple superimposing method is used 

to directly assess (mis-)registration or search for a best-fit. The results for both of 

these methods are presented in [Williams2000]. Thirdly, Hough Transform methods 

[Gonzalez92, CideciyanQO, Sonka96, Schalkoff89, Low91] are applied to the bone bound­ 

aries derived in Section 4.2.3. Results from the fitting of ellipses to the derived bound­ 

aries leads to a novel approach of combining the slices. The combined slice effect 

creates images that appear more similar over time. Applying the Hough Transform to 

such images produces better registration results. Further, the combined slice images 

reveal information about the MRI finger images that was not realised previously. Fi­ 

nally, moments are applied to the combined slice images to assess their feasibility for 

improving the registration results.

5.1 Similarity Detection

Barnea and Silverman [Barnea72] present a class of sequential similarity detection 

algorithms (SSDAs) which they use for translational registration.

Let an image, 5", and window, W, be defined as in Fig. 5.1. S is an L x L search 

area and W an M x M window containing a subimage from a second, reference image. 

Within image S1 , each M x M subimage (which is uniquely referenced by its top left co­ 

ordinates) is compared with window W to determine the best match. The parameters 

L and M are set, with M smaller than I, so that, at registration, a complete subimage 

is contained within the search area.

By searching a subset of the allowed range of reference points, translational re­ 

gistration is determined by finding a point, (i*, j*), which references the most similar
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L-M+1

-L-M+1-

AHowed range of 
reference points (i, j)

M

M

Window W 

•Sub image

Search Area, S

Figure 5.1: SSDA.

subimage to the window W. The choice of M will be crucial in determining the speed 

of the algorithm as M2 pixels are processed for every reference point (z, j).

One measure used to determine similarity is the sum of absolute values of differ­ 

ences (SAVD) [Barnea72, Yu89] of the corresponding pixels from the subimage and the 

window. That is:
M M

An extension to the SAVD is the normalised method, which subtracts the mean of each

subimage and the window from their respective pixel grey levels, i.e.
M M\\E(ij}\\ = EE\s( l >ti - S(*', j) - w(ij) + w\
;=i j-i

where S(i,j) is the mean grey level of subimage S at reference point (i,j) and W is the 

mean grey level of window W (taken from a second, reference image). The normalised 

SAVD gives the added advantage of ignoring different mean intensities in two regions 

of similar distributions of intensity, i.e. due to being of the same type of tissue. This 

advantage is particularly useful for registering Gadolinium enhanced images (Section 

1.1.3) and different weighted images (Section 1.1.1).
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The normalised S AVD method has been applied to sections of the MRI finger images 

of this project. For some local regions the resulting translation to achieve registration, 

by eye, look like a good match. However, even on pairs of images believed to exhibit 

relatively little actual finger movement, the best-fit result for different local regions 

from the same images suggest different translations to achieve registration. Further, 

when the SAVD algorithm is applied to the whole finger, the resulting transformation 

does not always match the local transformations. Combining transformations from 

different local regions could mean distorting one image to match the other. Distorting 

an MRI finger image could change the shape or size of the synovium. The aim of 

this research is to aid clinicians' understanding of the effect of rheumatic disease on 

synovium. To this end, a post-registration analysis of the shape and size of synovium 

could be crucial.

5.2 Superimposition

In this section a new, simple method for a registration search is derived from the basic 

concept of search within SSDA (explained in Section 5.1).

Suppose an image, A, called the active image, is to be registered with a reference 

image, R. The relative translation required to achieve registration is determined by 

considering the similarity of the contents of two equal sized subimages from each of the 

two images. A new image, N, is created by superimposing the active subimage onto 

the reference subimage.

The size of the subimage is set by the user drawing a rectangle around the whole 

finger or a particular region of interest in the active image. The rectangle is then 

automatically copied onto the reference image.

Each pixel in N which is outside the rectangle takes its value from the pixel in 

the corresponding position in the active image. Within the subimage rectangle, pixel 

values are assigned from the following test and the number of (mis-)matching pixels
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are calculated:

Ni,j =

A . . •™-i,]

Red

Blue

A;j < 

Aitj >

for all i, j in the subimage.

The rectangle can be automatically or manually moved within a search space to 

locate the position at which the greatest number of matching pixels occurs.

It was expected, where a good match of contents should occur, that corresponding 

pixels in two images of the same weight would differ in intensity by a small amount. 

However, closer examination of MRI finger images reveals that within some tissue re­ 

gions pixel intensities differ by 500 or more grey levels. To accommodate this difference, 

a tolerance, To/, was introduced to the above test. That is:

Aij 
Red
Blue

+ TolRij - Tol < Aitj < 

A^ < Rij - Tol 

Aitj > Ritj + Tol

for all i, j in the subimage. Pixel A,-j is said to match pixel jR;j if pixel AJ-J lies within 

plus or minus the tolerance of Rij. The number of these matching pixels is calculated. 

This algorithm raises some very important issues, such as, what is an acceptable 

tolerance level for registration and what total of "matching" pixels would warrant the 

term "registered". On examination, where tolerance levels are increased to 300 or 400, 

"registration" is possible. This level of tolerance is deemed to be too high and therefore 

a modified approach is necessary, as described below.
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Combined Methods

The newly developed superimposition method can be used directly on MRI finger 

images, or as a post-processing registration step on images containing features, located 

by methods explained in Chapter 4. In this section a combination of edge detectors or 

zero crossings followed by superimposition is shown to improve registration.

In Section 4.2.1 features of MRI finger images are located by applying the Sobel 

edge detector with a binary threshold and the straight line reduction algorithm. Two 

similarly derived images of the same finger can be superimposed as above and a best 

match searched for. As the images contain only black or white pixels there is no need 

for a tolerance level.

In many cases the maximum number of matching pixels gives a position which 

looks, by eye, to resemble registration. Within the user-selected subimage rectangle, 

the percentage of matching pixels at registration exceeds 90%. However, this measure 

is not altogether helpful, due to the vast quantity of background pixels in this type 

of image. A more correct measure is to calculate the number of matching foreground 

pixels alone, as these represent the actual structural features of the finger images. The 

positions at which maximum matching pixels are located are the same as previously, 

although the percentage of matching pixels falls to between 24% and 69%.

The combined approach is also applied to pairs of images produced by applying zero 

crossings (explained in Section 4.2.2) to MRI finger images. The speckled nature of the 

zero crossings images makes it almost impossible to see the detail in the superimposed 

image well enough for analysis. As an intermediate step, the straight line reduction 

(SLR) algorithm (explained in Section 4.2.1) was introduced to simplify the images 

to make superimposition more meaningful. By selecting a minimum number of pixels, 

the SLR algorithm removes from the image all horizontal, vertical, and ±45° diagonal 

straight lines of image pixels of length less than a desired minimum. If the chosen 

minimum is too small, too much detail is retained in the image. If the chosen minimum
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is too large then the curved detail around the finger joint is quickly lost while still 

retaining some unnecessary background information. No optimum value, which would 

be generally applicable to a range of MRI finger images, could be found to solve both 

of these.

5.3 Hough Transform Approaches to Registration

The boundary images derived in Section 4.2.3 can be used to register a pair of images 

through consideration of the shapes of the boundaries. The entire boundaries do not 

conform well to any geometric entity; however, particular open curves on the boundaries 

are characteristically elliptic.

The Hough Transform [Gonzalez92, Cideciyan90, Sonka96, SchalkofT89, Low91] is 

a well-known and useful tool for determining boundary shapes. The Hough Transform 

can be used to detect lines, circles, ellipses or even a non-standard shape.

Two Hough Transform based matching methods are presented in this chapter. The 

first method uses the Hough Transform to determine a best-fit ellipse to open bound­ 

aries. These elliptic shapes in the images may not be aligned with the cartesian image 

axes, therefore the fitting of ellipses at different orientations must be considered. The 

second method uses the Generalised Hough Transform to describe the irregular shape 

of the closed boundary. In both methods, the differences in the ellipse parameters, 

or the arbitrary shape parameters, detected in the two images determine the relative 

translation and rotation required to register the images.

5.3.1 The Hough Transform

Consider a point (x,-,yi) lying on a particular straight line of equation y = mx + c, 

illustrated in Fig. 5.2(a). An infinite number of lines pass through the point (zi,y,), 

all being represented by the equation y; = mxi + c. Rearranging that equation as 

c = -o:,-ra + t/j describes the equation of a single line in the me plane (also called the
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parameter space}. The lines potentially passing through a second point on the line, 

(xj, j/j), also have a corresponding single line in me space (c = —mxj + yj). By denoting 

the intersection of the two lines (illustrated in Fig. 5.2(b)) in me space by the point 

(m',c') we have that y = m'x + c' is the line passing through both (z;,y;) and (zj,yj) 

in xy space.

-fr-x in

(a) (b) 

Figure 5.2: Lines in xy and me space.

In the continuous parameter space, me, there are an infinite number of m and 

c combinations. To implement the Hough Transform it is necessary to subdivide the 

parameter space into discrete accumulator ce//s, for given ranges of m [mm,-n , mmax] and 

c [cmjn ,cma:E], at specific intervals. All cells in the accumulator array are initialised to 

zero. Then, for every point (2;, yi] in the image, the parameter m is set to each possible 

value mk in [mmin , mmax] and c = —ximk + yi is solved for c. The resulting c is rounded 

to the nearest discrete value in [cmin ,cmax], say Q, and A(m^ci) is incremented by 1. 

At the end of the procedure, the maximum in the accumulator array, M, at position 

A(mk, Q), corresponds to the position of the highest number of intersections. However, 

M will not exactly correspond to the number of points in the xy plane lying on the 

line y = mt-x + Cj, due to rounding of calculations (explained in Section 5.3.2).
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There is a problem, however, with using cartesian co-ordinates for a straight line, 

in that the magnitude of m approaches infinity as the line approaches the vertical. To 

avoid this difficulty, the polar co-ordinates of a straight line, xcosO + ysinO = r, can 

be used instead. The procedure for the Hough Transform, however, remains the same. 

The points on a line in xy space are now represented as sinusoidal curves in rO space, 

with intersections again indicating the straight line that passes through both (x,-, y,-) 

and (xj,yj).

The Hough Transform can be applied to geometric entities other than straight 

lines and even to open sections of boundaries. The basic difference in implementation 

is the number of parameters in the accumulator array. A circle, for instance, has 3 

parameters, whereas an ellipse has 5 parameters. In the next section, the formulae for 

detecting ellipses at any orientation in the Hough Transform procedure are explained.

Ellipses at any Orientation

An ellipse can be thought of as a set of n points, (xj, y;), denned by:

x,- = cx + acosO (5-1) 

yi = cy + bsinO

for i = 0,1, 2,..., n — 1, where (cx ,cy ] is the centre of the ellipse, a and b are the major 

and minor radii respectively and 0° < 0 < 360°. Fig. 5.3(a) illustrates an ellipse 

centred at the origin and having radii parallel to the cartesian axes. However, in this 

application we need to consider ellipses at any orientation as the best-fit ellipse to a 

bone contour may not be aligned with the cartesian axes. Fig. 5.3(b) shows the ellipse 

of Fig. 5.3(a) having been rotated anti-clockwise through angle SI

An ellipse can be rotated about its centre, (cx ,Cy), by using standard geometry 

techniques. First, the ellipse is translated to the origin by subtracting (cr ,cy ) from 

every point (x,-,j/i). Then the ellipse is rotated by S7 degrees. Finally, the ellipse 

is translated so that its centre is, again, (cx ,cy }. This process is represented by the
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(a) (b) 

Figure 5.3: Ellipse parameters.

transformation indicated by the following matrices. A point (a;,y) is transformed to a 

new location (z',y') by:

x y 1 I = ( x y 1

1 001

0 1 0

—— Cx ——Cy 1

cosfi smQ 0

— smfi cosft 0

. 0 01,

1 0 0

0 1 0

cx c 1

i.e.

x1 = (x — cx }cos$l — (y — cy )sin$l + cx 

y' = (x — cx ) sinft, + (y — cy ) cosft + cy

Substituting Equation 5.1 into Equation 5.2 yields:

x'i = (cx + acosO — cx ) costl — (cy + bsinO — cy ) sintl + cx 

y( = (cx + acosO - cx ) sintl + (cy + bsinO — cy ] cosfi + cy

for i = 0,1,2, ...,n — 1, hence

x'. = acosOcosSl — bsinOsinSl + cx

(5.2)

(5.3)

y. = + bsinOcostl + cy
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for i = 0, 1,2, ...,n - 1.

Equation 5.3 defines an ellipse centred at (cx ,cy ) and lying at an orientation of 0. 

Rearranging Equation 5.3 in terms of the centre point gives:

cx = x\ — acos9cos£l + bsinQsinSl (5.4) 

cy — y'i ~ acosOsinSl — bsin9cos$l

for i = 0, l,2,...,n-l.

The Hough Transform takes all points, (xi, yz-), on the boundary and solves Equation 

5.4 for 0° < 0 < 360°, a suitable range of 0 and appropriate values of a and 6, 

each at specified intervals. The accumulator array is five-dimensional with ranges for 

cx ,cy ,a,b and fi. Each element A(c£,c' ,ap ,6g ,f)r ) is initialised to zero. For every 

(c£,c^) solution of Equation 5.4 obtained, A(c£, c'y , ap ,bg , flr ) is incremented by 1. At 

the end of the process a value of M at position A(c£,c[,,ap, 69 ,fir ) in the accumulator 

array should indicate that the corresponding ellipse is common to M points on the 

boundary. Clearly, the largest value of M indicates the parameter values for the best- 

fit ellipse to the boundary.

Computational Efficiency

The Hough Transform algorithm involves many calculations. Firstly, for every bound­ 

ary pixel there is a search through all considered orientations, i.e. 0° < fJ < 360° in 

steps of, say, 1°. For each 0 there is a search through all possible points on an ellipse, 

i.e. 0° < 9 < 360°, in steps of, say, 1°. For each 0 there is a search through all possible 

values of major-radius, a, in steps of, say, 1, of the ellipse considered and then for each 

a there is a search through all possible values of minor-radius, 6, in steps of, say, 1, of 

that ellipse. For all boundary pixels and for all considered values of 0, 6, a and 6, the 

corresponding values of cx and cy are calculated.
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An example to give an idea of the potential size of the calculations involved is given 

here. For a 256 x 256 image, a and b cannot exceed 128 if the ellipse is to be contained 

within the image. (In theory, it is possible that an image may contain part of a larger 

ellipse.) For n boundary pixels and the £7 and 6 ranges being 360 in steps of 1°, there 

would be 360 x 360 x 128 x 128 x 2 x n calculations. That is, 4,246,732,800 x n 

calculations.

Finding the best fit ellipse of a set of co-ordinates, at any orientation, can be 

computationally very expensive. To minimise computer time and effort the following 

restrictions are imposed.

Firstly, ellipses are symmetrical. Therefore, orientations, 0, of 0° to 360° lead to 

the same ellipses as are produced for fi in 0° to 180° or -90° to 90°. Thus, the range of 

fi considered may be halved without loss of solutions.

Secondly, consider the ellipse /(c2 ,cy ,ai,6i,0) in Fig. 5.4(a) and the ellipse 

f(cx , cy ,a,2, 63,^) in Fig. 5.4(d), where a 2 = &i and 62 = a\. Rotating ellipse (a) 

by ft (Fig. 5.4(b)) is the same as rotating ellipse (d) by -(90 — ft). Similarly, rotating 

ellipse (a) by -ft (Fig. 5.4(c)) is the same as rotating ellipse (d) by (90 — ft). There­ 

fore, if there are no restrictions on whether a > b or vice versa, then the number of 

computations can be reduced by only considering positive (or only negative) angles of 

rotation, i.e. either 0° < ft < 90° or -90° < ft < 0°.

5.3.2 Hough Transform Results on Test Images

Fig. 5.5 is a test image which contains ellipses with differing values of cx,cy,a,b 

and ft as listed in Table 5.1. The ellipses are shown as black boundaries on a white 

background.

The Hough Transform is applied to the image in Fig. 5.5. For all foreground pixels, 

the centre co-ordinates, (cx ,cy ], of ellipses which might pass through the pixels are 

calculated using Equation 5.4 for a range of a and 6, 0° < 9 < 360° and 0° < ft < 90°,
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(d) (e) (f) 

Figure 5.4: Orientations of ellipses.

o

0

Figure 5.5: Test Ellipses.

each at specified intervals. Each cx and cy have been given to the nearest discrete value 

to give pixel location (cx , c ) and each corresponding A(cx , cy , c, 6,0) in the accumulator 

array (which has been initialised to zero) is incremented by one. At the end of the 

process, the best-fit ellipse is found by searching for a maximum in the accumulator 

array. The maxima found for the four test ellipses in Fig. 5.5 are listed in Table 5.2. 

In each case, the best-fit ellipse indicated by (cx , c'y , a, 6, H) is a perfect match with the 

corresponding test ellipse in Table 5.1.
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Ellipse
Ellipse 1
Ellipse 2
Ellipse 3
Ellipse 4

cx
80
65
165
180

Cy

85
192
75

200

a
7

16
20
10

6
12
9
8
15

ft
45°
30°
0°
0°

yVo. pixels
76
98
100
92

Table 5.1: Test Ellipses.

Ellipse
Ellipse 1
Ellipse 2
Ellipse 3
Ellipse 4

ft search (step)
0° to 90° (1°)
0° to 90° (1°)
0° to 90° (1°)
0° to 90° (1°)

Maximum in accumulator
356
360
360
360

/
Cx

80
65

165
180

c,
85
192
75

200

a
7
16
20
10

b
12
9
8
15

ft
45°
30°
0°
0°

Table 5.2: Best fit ellipses indicated by a maximum in the accumulator array.

The results in Table 5.2, although completely accurate in yielding a perfect best-fit 

ellipse in terms of (cx , cy , a, 6, ft), highlight a feature of the Hough Transform in that 

the maxima found do not exactly match the number of boundary pixels. In theory, 

if a boundary contained, say, 100 pixels, the maximum in the accumulator array 

would be expected to be close to, and no more than, 100. In practice, the number 

of pixels supposedly lying on the best-fit ellipse is frequently much larger than the 

actual known number of points. This apparently misleading value is due to several 

calculations being rounded to map to the same pixel. Therefore, each pixel on an 

ellipse may contribute to an array cell more than once. An example of this effect is 

given in Table 5.3.

Ellipse
Ellipse 3
Ellipse 3
Ellipse 3

X

169
169
169

y
83
83
83

a
20
20
20

6
8
8
8

e
77
78
79

ft
0°
0°
0°

Cx

165
165
165

cy
75
75
75

Table 5.3: Consequence of rounding in calculations for Equation 5.4.
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For a given point (169,83) on the boundary, the Hough Transform uses Equation 

5.4 to calculate (cx ,cy ), for a range of a, b and ft spaced at specific intervals. For B = 

77°, 78° and 79°, (cx ,cy ) have been rounded to pixel location (165,75). In this case, 

A(165, 75, 20, 8, 0) has been incremented 3 times for a single boundary pixel, due to 

necessary rounding of (cx ,cy ) values.

5.3.3 Hough Transform Results on Finger Images

In Section 5.3.2 the Hough Transform for ellipses was applied to a test image. In this 

section, the same method is applied to MRI finger images.

The boundaries derived in Section 4.2.3 are, as a whole, not very elliptical. 

However, there are areas which may be approximated by ellipses. The head of the 

proximal phalanx is characteristically elliptical as is the joint side of the middle 

phalanx. Fig. 5.6 shows user-defined open curves derived from boundaries from slice 

2 of two consecutive images of the same finger. (The open curves are taken from the 

closed curve boundaries in Fig. 5.8.) The number of pixels on the open curves are 

displayed in Table 5.4. The Hough Transform is applied to these open boundaries and 

the best-fit ellipses are shown in Table 5.5.

Fig.
5.6(a)
5.6(b)
5.6(c)
5.6(d)

Bone
Middle Phalanx (MP)
Proximal Phalanx (PP)
Middle Phalanx (MP)
Proximal Phalanx (PP)

No. open curve pixels
52
102
50
103

Table 5.4: Numbers of boundary pixels on an open boundary of finger bone.
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c

(a) (b)

C

(c) (d)

Figure 5.6: Open curves (a) first occasion middle phalanx (b) first occasion proximal 
phalanx (c) second occasion middle phalanx (d) second occasion proximal phalanx.

Fig.
5.6(a)
5.6(b)

5.6(c)
5.6(d)

Bone
MP
PP

MP
PP

fi range (step)
0° to 90° (1)
0° to 90° (1)

0° to 90° (1)
0° to 90° (1)

Maximum in accumulator
100
172
172
114
169

Cx

114
133
133
115
131

cv
118
119
119
117
121

a
8
13
13
8
13

b
17
16
16
18
17

n
8°

80°
81°
7°
0°

Table 5.5: Best fit ellipses indicated by a maximum in the accumulator array.

For the proximal phalanx, the centres of the best-fit ellipses found in both images 

(Figs. 5.6(b) and 5.6(d)) are displaced from each other by 2 pixels in both the x- and 

y-direction. One ellipse lies on the vertical, while the other has been rotated so that
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it almost lies on the horizontal. (For Fig. 5.6(b) there were two equally best-fitting 

ellipses.) In both images a is equal, but b differs by 1 pixel.

For the middle phalanx, the best-fit ellipses are displaced by 1 pixel in both the 

x- and y-direction with a being equal and b and f) differing by 1 pixel and 1 degree 

respectively.

The original MRI images from which Fig. 5.6 were derived were taken such that 

there was a deliberate attempt at moving the finger by an intended 1 pixel, between 

the two scans. The results in Table 5.5 closely match our expectation of a 1 pixel mis­ 

registration between the images. The difference in orientation of the proximal phalanx 

between the two images could be a result of bending at the articulated joint when the 

deliberate movement was introduced.

5.3.4 The Generalised Hough Transform

The nature of the boundaries derived in Section 4.2.3 cannot typically be represented 

by an analytic equation. However, an extension to the Hough Transform, known as the 

Generalised Hough Transform [Gonzalez92, Sonka96, Low91, Roach94], can be used to 

detect non-standard shapes in images.

The first stage of the Generalised Hough Transform is to define an arbitrarily chosen 

reference point (xref^yref) inside a boundary. Now each point, (z;,y;), on a boundary 

can be described in terms of the distance, r, from the reference point, the angle, /?, from 

the positive horizontal direction though (xi, yi) to the line joining (x,-, y;) and (zre/, yre/) 

and the gradient, H, of the tangent at (x;, yi). The geometrical relationships between 

(xt-,j/i), (xrey,yre/), r, J3 and ft are illustrated in Fig. 5.7. In the discrete case, fi 

is approximated by taking the direction (called orientation) from (x,-,y,-) to the next 

anti-clockwise adjacent pixel. Each point (x,-,y,-) on the boundary is related to the 

reference point (xre/,yre/) by Equation 5.5.
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£re/ = Xi + TCOSj3

2/re/ = yi + rsinj3

(5.5)

Figure 5.7: Geometry for R-Table entries.

Each r, j3 and £1 triplet found for each (x,-, y^) are stored, grouped by 0 value, in a 

look-up table, called an R-Table. An example of an R-Table is given in Table 5.6.

n3 (f3,U 03,l),(r3 .2, P3,2),~',(r3,r

" ^71 \ 71,1 5 A'71,1 ) 1\ 71,2 9 /^7l,2 / 5 * ' " 5 \ Tl,7Tl 1 r^Tl^TTlji )

Table 5.6: R-Table Example.
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When the R-Table is formed it can be used to determine whether a shape in 

another image (called the target] matches (or partially matches) the reference image 

from which this R-Table has been derived. The basic steps of the Generalised Hough 

Transform are:

• Create an accumulator array in (xref,yref).

• Find the orientation, fi, at each point (xi,yi) on the boundary in the target 

image.

• For the value of J7 determined, find each corresponding pair of r and /3 values 

in the R-Table.

• For each 0, r and j3 triplet obtained, solve Equation 5.5, and increment the 

accumulator array for every (xre/,yre/) obtained.

A large value in the accumulator array indicates that the shape, or part of it, has been 

found.

In the discussion so far it has been assumed that the orientation of the object is 

the same in both reference and target images. To allow for variations in orientation, a 

three-dimensional accumulator array must be created along with many sets of R-tables, 

one for each orientation, <£. Equation 5.5 is then modified to Equation 5.6.

xref = xi + rcos((3 + 0) (5.6) 

yref = y{ + rsin((3 + ([>)
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5.3.5 Generalised Hough Transform Results

More detailed descriptions of results can be found in Appendix D. The main findings 

are described here.

Consider the closed boundaries in Fig. 5.8. The boundaries are derived from the 

same slice of two consecutive images of the same finger. Further, between the two 

scans, a deliberate movement was introduced to try and mis-register the pair of images 

by a single pixel.

(a) (b) 

Figure 5.8: Closed boundaries of two MRI scans of a PIP joint.

To test the Generalised Hough Transform algorithm a single boundary, say, the 

proximal phalanx boundary in Fig. 5.8(a), is used as both the reference image and the 

target. As would be expected, in all such test cases the Generalised Hough Transform 

algorithm finds the same boundary with 100% matching pixels in exactly the same 

location.

The Generalised Hough Transform algorithm is now applied to the boundaries in 

both images in Fig. 5.8. One boundary is chosen to be the reference image from which 

the R-Table is created, and the same boundary in the other image is the target. The 

Generalised Hough Transform determines how many boundary pixels in the target 

image are the same as those in the reference image. Clearly, a high percentage of 

matching pixels implies that the boundaries are similar. Conversely, a small percentage
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of matching pixels implies that the boundaries are not similar. In all cases, reference 

and target are reversed and the results compared. The displacement of the reference 

point (xrej,yref} in the target image from the corresponding point in the reference 

image gives the relative translation and rotation required to register the images.

Table 5.7 shows the complete Generalised Hough Transform results for the 

boundaries in Fig. 5.8. (MP, here, stands for the middle phalanx and PP, for proximal 

phalanx.) The 100% matches in the test cases when a single boundary is used as both 

reference and target are included. Comparing the results when reference and target are 

reversed show complete accuracy in the number of pixels found to match between both 

images. The percentage of matching pixels differs minutely due to the slight difference 

in the total number of pixels on each boundary. More importantly, the relative 

translation between the two images is identical. This result shows that there is a 

possible mis-registration of a single pixel in the x-direction for the middle phalanx only.

Image used in R- Table
Fig. Bone No. Coords
5.8(a) MP 164 
5.8(a) PP 189 
5.8(b) MP 168 
5.8(b) PP 191

Fig. 5.8(a)
No. % Ref
164 100 (x, y) 
189 100 (x, y) 
87 51.8 (x-1, y) 
86 45.0 (x, y)

Fig. 5.8(b)
No. % Ref
87 53.0 (x+1, y) 
86 45.5 (x,y) 
168 100 (x, y) 
191 100 (x, y)

Table 5.7: Generalised Hough Transform results for Figs. 5.8(a) & 5.8(b).

The results in Table 5.7 are obtained for orientation, (7 = 0. Comparing these 

results with small changes in orientation, two additional pixels were found to match 

on the proximal phalanx for fi = 1°, i.e. a 1.1% increase, with a mis-registration of a 

single pixel in the y-direction.

Large changes in orientation of the boundaries in Fig. 5.8 will greatly reduce the 

number of matching pixels due to the approximate symmetry of the boundary about 

the axis of its greatest dimension. Applying the Generalised Hough Transform to open
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curves should allow a wider range of orientations and a better number of matching 

pixels.

Table 5.8 shows the Generalised Hough Transform results for the open boundaries 

of Fig. 5.6. When a single open boundary is used as both reference and target the 

results give a perfect match of 100% matching pixels in exactly the same location, as 

was achieved in the closed curve case above. The results in this table indicate that 

the two bones are mis-registered in different directions. The middle phalanx is seen as 

being displaced by 1 pixel in the cc-direction and the proximal phalanx by 1 pixel in 

the y-direction. Small changes in orientation do not improve these results.

Image used in R- Table
Fig. Bone No. Coords
5.6(a) MP 80 
5.6(b) PP 95 
5.6(c) MP 80 
5.6(d) PP 95

Fig. 5.6 top
No. % Ref
80 100 (x, y) 
95 100 (x, y) 
43 53.8 (x-1, y) 
40 42.1 (x, y+1)

Fig. 5.6 bottom
No. % Ref
43 53.8 (x+1, y) 
40 42.1 (x, y-1) 
80 100 (x, y) 
95 100 (x, y)

Table 5.8: Generalised Hough Transform results for Fig. 5.6.

The Generalised Hough Transform is applied to a variety of images and the results 

are detailed in Appendix D. In all experiments, the number of matching pixels for 

images of the same finger is, on average, 50%. A registration procedure would need to 

yield a very high percentage of matching pixels to give confidence in the results. The 

low percentages indicate a relatively poor accuracy of matching. This result reveals a 

fundamental characteristic nature of the boundaries being examined. The boundaries 

do appear, by eye, to be similar, i.e. they have the same characteristic shape, but there 

are actually many differences in locations of pixels along the boundary. Even the open 

curves do not result in the improvement expected.
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5.4 Combining the Slices

A study of the bone boundaries derived in Section 4.2.3 shows that the derived bound­ 

aries from the equivalent slice of images taken over time are not always sufficiently 

similar for accurate registration. This is partly due to differences in the positioning of 

the finger on the different scanning occasions resulting in that slice corresponding to 

different cross-sections of the finger.

A new technique has been designed for this research to derive similar bone bound­ 

aries from images taken over time. Firstly, the less reliable soft tissue boundaries are 

removed from the images (explained in Section 6.2.3). Then, the bone boundaries 

from all four slices of an image are superimposed onto a new image (illustrated in Fig. 

5.9(a)). The superimposed image is helpful in picturing the 2D slices derived from a 

volume. Filling the regions of the superimposed image (illustrated in Fig. 5.9(b)) cre­ 

ates a 2D image containing the maximum possible boundary shape for the bones across 

four slices. Finally, determining the boundary of this combined slice bone structure is 

quite simple using a scan-line algorithm (illustrated in Fig. 5.9(c)).

o

(a) (b) (c)

Figure 5.9: Combining the slices from Subject 1 (a) Merged image (b) Filled image (c) 
Detected boundary.
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It is expected that the combined slice image boundaries derived from images of the 

same patient taken over time will be more similar and will produce better registration 

results than those obtained for the individual slices. This is because the combined 

slice boundaries are generated from a four-slice volume and will, therefore, contain less 

movement and/or positional error than individual slices.

The combined slice algorithm is applied to images from 5 subjects, taken on 2 

occasions, illustrated in Figs. 5.10 to 5.14. The red pixels on these images illustrate 

the user-selected open curves used for the Hough Transform.

The search for registration is then made by applying the Hough Transform to a 

reference image from each subject (i.e. first occasion, T2-weighted image). Table 5.9 

lists the derived best-fit ellipses for each of the five subjects.

The resulting best-fit ellipse(s) are then fitted to the open curves in the other 

images. The displacement of the ellipses between images of the same finger provide 

the rotation and translation necessary to register the images. Tables 5.10 to 5.14 show 

the best-fit ellipses for each of the five subjects respectively. The best-fit ellipses are 

listed in the top line of each section of each table. The results for fitting ellipses to 

the boundaries are listed in the tables and grouped by bone boundary. Fully worked 

examples are given in Chapter 6 and an analysis of the results is given in Section 6.3.

Particular problems with the results for the proximal phalanx boundary (explained 

in Section 6.3) warrant the selection of narrower open curves. The Hough Transform is 

re-applied to narrower proximal phalanx curves (illustrated by red pixels in Figs. 5.15 

to 5.19) and the results are listed under "Narrower open curve results" in each table. 

In four out of five subjects, the narrower open curves produce a higher percentage of 

matching pixels. In some subjects, the percentage nearly doubles.
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o o o

(a) (b) (c)

(e) (f)

Figure 5.10: Open curves on combined slice boundaries for Subject 1 (a) first oc­ 
casion T2-weighted (b) first occasion PD-weighted (c) first occasion Tl-weighted (d) 
second occasion T2-weighted (e) second occasion PD-weighted (f) second occasion Tl- 
weighted.



CHAPTER 5. REGISTRATION METHODS 131

(a) (b) (c)

(d) (e)

Figure 5.11: Open curves on combined slice boundaries for Subject 2 (a) first oc­ 
casion T2-weighted (b) first occasion PD-weighted (c) first occasion Tl-weighted (d) 
second occasion T2-weighted (e) second occasion PD-weighted (f) second occasion Tl- 
weighted.
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(a) (b) (c)

(e) (f)

Figure 5.12: Open curves on combined slice boundaries for Subject 3 (a) first oc­ 
casion T2-weighted (b) first occasion PD-weighted (c) first occasion Tl-weighted (d) 
second occasion T2-weighted (e) second occasion PD-weighted (f) second occasion Tl- 
weighted.
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(c)

(d) (e) (f)

Figure 5.13: Open curves on combined slice boundaries for Subject 4 (a) first oc­ 
casion T2-weighted (b) first occasion PD-weighted (c) first occasion Tl-weighted (d) 
second occasion T2-weighted (e) second occasion PD-weighted (f) second occasion Tl- 
weighted.
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(a) (b)

(d) (e) (f)

Figure 5.14: Open curves on combined slice boundaries for Subject 5 (a) first oc­ 
casion T2-weighted (b) first occasion PD-weighted (c) first occasion Tl-weighted (d) 
second occasion T2-weighted (e) second occasion PD-weighted (f) second occasion Tl- 
weighted.
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Subject
1
1
2
3
4
5
1
2
3
4
5

Bone
MP
MP
MP
MP
MP
MP
PP
PP
PP
PP
PP

ex
129 
129
135
132
115
124
145
150
141
130
136

cy
112 
111
124
117
107
109
109
121
114
104
114

a
14 
14
16
17
17
11
13
12
11
13
19

b
11 
11
8
12
11
22
11
18
11
14
15

ft
76 

89, 90
57
66

66, 69
9

29
0

0-90
79, 80

71-72, 77

% match
65 
65
87
80
74
72
49
54
45
60
63

Narrower open curve results
1
2
3
4
5

PP
PP
PP
PP
PP

140
149
136
127
132

115
121
114
104
111

9
11
12
12
11

3
18
7

11
16

33, 34
0,1

58, 59
61
6

79
46
62
72
86

Table 5.9: Hough Transform best fit ellipses for 5 subjects.



CHAPTER 5. REGISTRATION METHODS 136

Bone
UP
MP
MP 
MP
MP
MP
MP
MP
PP
PP
PP
PP
PP
PP 
PP

Weight
T2 
T2
PD 
PD
Tl
T2
PD
Tl
T2
PD
Tl
T2
PD
Tl 
Tl

Occasion
1 
1
1 
1
1
2
2
2
1
1
1
2
2
2 
2

ex
129 
129
129 
129
130
131
131
131
145
146
145
148
148
146 
147

cy
112 
111
113 
112
113
112
112
112
109
109
109
110
110
110 
110

a
14 
14
14 
14
14
14
14
14
13
13
13
13
13
13 
13

b
11 
11
11 
11
11
11
11
11
11
11
11
11
11
11 
11

n
76 

89, 90
76 

89, 90
71

75, 76
75, 76
72-74

29
2-4

9-10, 29
2
2

29 
29

% match
65 
65
59 
59
74
64
60
64
49
39
43
47
48
42 
42

Narrower open curve results
PP
PP
PP
PP
PP
PP 
PP

T2
PD
Tl
T2
PD
Tl 
Tl

1
1
1
2
2
2 
2

140
140
144
145
145
145 
146

115
115
117
117
117
118 
118

9
9
9
9
9
9 
9

3
3
3
3
3
3 
3

33, 34
33
13

18, 19
18, 19

13, 16- 19 
13

79
78
79
79
78
68 
68

Table 5.10: Subject 1 Hough Transform results.
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Bone
UP
MP
MP
MP
MP 
MP 
MP
MP 
MP 
MP 
MP
PP
PP
PP
PP
PP
PP

Occasion
1
1
1
2
2 
2 
2
2 
2 
2 
2
1
1
1
2
2
2

Weight
T2
PD
Tl
T2
PD 
PD 
PD
Tl 
Tl 
Tl 
Tl
T2
PD
Tl
T2
PD
Tl

ex
135
135
135
122
124 
123 
123
124 
123 
122 
121
150
150
150
137
137
137

cy
124
123
123
123
124 
124 
125
124 
124 
123 
120
121
121
121
124
123
124

a
16
16
16
16
16 
16 
16
16 
16 
16 
16
12
12
12
12
12
12

b
8
8
8
8
8 
8 
8
8 
8 
8 
8
18
18
18
18
18
18

0
57
51
51
66
45 
53 
53
51 

57-59 
66 
71
0
3
1
0
0
0

% match
87
73
73
73
68 
68 
68
63 
63 
63 
63
54
48
49
44
47
49

Narrower open curve results
PP
PP
PP
PP
PP
PP

1
1
1
2
2
2

T2
PD
Tl
T2
PD
Tl

149
149
149
136
136
136

121
121
121
123
123
123

11
11
11
11
11
11

18
18
18
18
18
18

0,1
1
3
1
1
1

46
44
51
45
55
54

Table 5.11: Subject 2 Hough Transform results.
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Bone
MP
MP
MP
MP 
MP 
MP
MP 
MP 
MP
MP
PP
PP
PP
PP
PP
PP

Occasion
1
1
1
2 
2 
2
2 
2 
2
2
1
1
1
2
2
2

Weight
T2
PD
Tl
T2 
T2 
T2
PD 
PD 
PD
Tl
T2
PD
Tl
T2
PD
Tl

car
132
132
132
128 
128 
127
128 
127 
127
128
141
141
141
137
137
137

cy
117
116
116
128 
129 
125
128 
125 
124
128
114
114
114
122
122
122

a
17
17
17
17 
17 
17
17 
17 
17
17
11
11
11
11
11
11

b
12
12
12
12 
12 
12
12 
12 
12
12
11
11
11
11
11
11

ft
66

69-71
70-71

66 
66 

88-90
66 
82 

88-90
66

0-90
0-90
0-90
0-90
0-90
0- 90

% match
80
83
76
87 
87 
87
87 
87 
87
83
45
41
40
35
33
27

Narrower open curve results
PP
PP
PP
PP
PP
PP

1
1
1
2
2
2

T2
PD
Tl
T2
PD
Tl

136
136
136
133
132
132

114
114
114
123
123
124

12
12
12
12
12
12

7
7
7
7
7
7

58,59
61
68
46
55
60

62
65
74
56
63
65

Table 5.12: Subject 3 Hough Transform results.
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Bone
MP
MP 
MP 
MP
MP 
MP 
MP
MP 
MP
MP
MP 
MP
PP
PP 
PP
PP 
PP 
PP
PP
PP
PP

Occasion
1
1
1 
1
1 
1 
1
2 
2
2
2 
2
1
1 
1
1 
1
1
2
2
2

Weight
T2
PD 
PD 
PD
Tl 
Tl 
Tl
T2 
T2
PD
Tl 
Tl
T2
PD 
PD
Tl 
Tl 
Tl
T2
PD
Tl

ex
115
116 
115 
115
116 
115 
115
121 
120
120
121 
120
130
129 
130
130 
130 
129
135
135
135

cy
107
108 
106 
105
108 
106 
105
106 
103
105
108 
105
104
104 
104
103 
104 
104
101
101
101

a
17
17 
17 
17
17 
17 
17
17 
17
17
17 
17
13
13 
13
13 
13 
13
13
13
13

b
11
11 
11 
11
11 
11 
11
11 
11
11
11 
11
14
14 
14
14 
14 
14
14
14
14

n
66, 69

63
75 

79, 81
63
75 

79,81
63
81
77
63

77, 79
79,80
69,85 
79,80

69, 71-75, 79-80 
74, 82-85 

85
21

21-25
21, 35-39

% match
74
64 
64 
64
66 
66 
66
58 
58
73
74 
74
60
53 
53
58 
58 
58
47
47
46

Narrower open curve results
PP
PP
PP
PP
PP
PP

1
1
1
2
2
2

T2
PD
Tl
T2
PD
Tl

127
127
127
133
133
133

104
104
104
101
101
101

12
12
12
12
12
12

11
11
11
11
11
11

61
61

52,61
47-50
42,43
42,43

72
62
62
56
55
55

Table 5.13: Subject 4 Hough Transform results.
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Bone
MP
MP
MP
MP 
MP
MP 
MP
MP
PP
PP
PP
PP
PP 
PP
PP

Occasion
1
1
1
2
2
2 
2
2
1
1
1
2
2 
2
2

Weight
T2
PD
Tl
T2 
T2
PD 
PD
Tl
T2
PD
Tl
T2
PD 
PD
Tl

ex
124
124
124
120 
120
121 
121
121
136
136
136
133
133 
133
133

cy
109
108
110
113 
112
107 
106
108
114
114
114
111
111 
110
111

a
11
11
11
11 
11
11 
11
11
19
19
19
19
19 
19
19

b
22
22
22
22 
22
22 
22
22
15
15
15
15
15 
15
15

ft
9
13
8
0
2

12, 13 
14, 15

12
71, 72, 77

72
75
66

57,67 
85
69

% match
72
67
70
53 
53
55 
55
56
63
60
56
54
45 
45
56

Narrower open curve results
PP
PP
PP
PP
PP
PP

1
1
1
2
2
2

T2
PD
Tl
T2
PD
Tl

132
131
132
129
129
129

111
111
111
109
109
109

11
11
11
11
11
11

16
16
16
16
16
16

6
3-5
6,9

0
0
0

86
67
71
73
57
68

Table 5.14: Subject 5 Hough Transform results.
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o ^o <3°

o

(d) (e) (f)

Figure 5.15: Narrower open curves on combined slice boundaries: Subject 1 (a) first oc­ 
casion T2-weighted proximal phalanx (b) first occasion PD-weighted proximal phalanx 
(c) first occasion Tl-weighted proximal phalanx (d) second occasion T2-weighted prox­ 
imal phalanx (e) second occasion PD-weighted proximal phalanx (f) second occasion 
Tl-weighted proximal phalanx.
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(a) (c)

(e) (f)

Figure 5.16: Narrower open curves on combined slice boundaries: Subject 2 (a) first oc­ 
casion T2-weighted proximal phalanx (b) first occasion PD-weighted proximal phalanx 
(c) first occasion Tl-weighted proximal phalanx (d) second occasion T2-weighted prox­ 
imal phalanx (e) second occasion PD-weighted proximal phalanx (f) second occasion 
Tl-weighted proximal phalanx.
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(d) (f)

Figure 5.17: Narrower open curves on combined slice boundaries: Subject 3 (a) first oc­ 
casion T2-weighted proximal phalanx (b) first occasion PD-weighted proximal phalanx 
(c) first occasion Tl-weighted proximal phalanx (d) second occasion T2-weighted prox­ 
imal phalanx (e) second occasion PD-weighted proximal phalanx (f) second occasion 
Tl-weighted proximal phalanx.
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(a)

(d) (e) (0

Figure 5.18: Narrower open curves on combined slice boundaries: Subject 4 (a) first oc­ 
casion T2-weighted proximal phalanx (b) first occasion PD-weighted proximal phalanx 
(c) first occasion Tl-weighted proximal phalanx (d) second occasion T2-weighted prox­ 
imal phalanx (e) second occasion PD-weighted proximal phalanx (f) second occasion 
Tl-weighted proximal phalanx.
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Narrower open curves on combined slice boundaries: Subject 5 (a) first oc­ 
casion T2-weighted proximal phalanx (b) first occasion PD-weighted proximal phalanx 
(c) first occasion Tl-weighted proximal phalanx (d) second occasion T2-weighted prox­ 
imal phalanx (e) second occasion PD-weighted proximal phalanx (f) second occasion 
Tl-weighted proximal phalanx.
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5.5 Moments

The identification and registration of objects in images can be aided by the use of meas­ 

ures of 'shape'. Moments are a descriptive technique and can be applied to grey level 

images or boundaries. Moments have been used in the available literature to register 

images by aligning their principal axes [Kovacic89, BajcsySQ], and for characterizing 

polygons in terms of the principal axes [Tough84, ToughSS]. Moments are very useful 

in the application of pattern recognition [Bailey96, Mamistvalov98, Rothe96]. This 

section discusses the usefulness of moments in aiding the registration of MRI finger 

images.

For a 2D continuous function /(x,y), the moment of order (p + q] is defined as:

mpq /oo r<x> 
I xpyq f(x,y)dxdy 

-oo J— oo

for p, q = 0,1, 2,...

For a digitized image, the moments are:

yioo yoo -p -q

for p, q = 0,1, 2,...

A set of seven invariant moments can be derived from these moments. These mo­ 

ments are invariant to translation, rotation, and scale change. The invariant moments 

are extremely useful in applications of pattern recognition. In this application, a rota­ 

tional and translational offset is required for registration, therefore, invariant moments 

are not pursued in this project.

Moments can be applied to the original MRI finger images. However, as with the 

Superimposing method explained in Section 5.2, it is difficult to assess the accuracy 

of the results. Instead, moments are applied to filled boundary images as derived 

in Section 5.4. (An alternative method is to determine moments for the boundaries 

themselves.) An example of a combined slice filled image is given in Fig. 5.20.
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Figure 5.20: A combined slice filled image. 

The centroid, (xc ,yc ), can be used for translational registration, where

moo

Results vary depending on how far forward the finger is positioned. Fig. 5.21 gives a 

typical example of the location of the centroid and subsequent translational registration 

for two images of the same finger taken over time.

(a) (b) (c)

Figure 5.21: (a) & (b) Location of centroid on two images of the same finger (c) 

mis-registration of the two images.



CHAPTERS. REGISTRATION METHODS 148

The centroid appears to locate the centre of the field of view. Fig. 5.21(b) shows 

that incorrect positioning on a second occasion can lead to gross mis-registrations. A 

similar result will hold if the centroid is calculated for each bone separately, as the size 

of each bone differs considerably due to incorrect positioning for scanning.

It is possible to apply moments to user-selected open regions on the images. How­ 

ever, as discussed in relation to Fourier Descriptors in Section 4.3.4, if the open regions 

are not the same, matching based on the centroid could lead to gross mis-registrations.

The alternative method of determining moments for a boundary leads to similar 

results and the same conclusion as the registration is again based on the centroid of 

a user-defined open region. These findings confirm again the uniqueness of the MRI 

finger registration problem in comparison to the more common brain/head registration 

problem where the use of moments for registration has been successful.

The restrictions of moments and principal axes, as applied to MRI finger images, 

means that the results obtained by the Hough Transform fitting of ellipses to bone 

boundaries is by far the most useful method for registering MRI finger images.

5.6 Conclusions

In this chapter various registration methods are examined and applied to MRI finger 

images.

The sum of absolute values of differences approach to registration gives local res­ 

ults which are inconsistent with global results. To combine local results would mean 

distorting one image to fit another which will result in the loss of important synovium 

information.

Superimposing images is useful for registration but only when the tolerance level is 

raised to around 400. This problem is eliminated when derived black and white images 

are superimposed as there is no requirement for a tolerance level. Superimposing 

two similarly derived images results in reasonable registration accuracy. However, the
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features in these images do not always correspond to the same part of tissue and are 

therefore not reliable enough on their own for registration.

The Hough Transform is extremely accurate in locating a test ellipse, in terms of 

its centre, (cx ,cy ), major (a) and minor-radii (b) and its orientation (J7). The number 

of pixels reported to lie on a test ellipse is typically much higher than in reality. This is 

due to the discretization of the parameter space which naturally incurs rounding error.

The boundaries derived in Section 4.2.3 are not particularly elliptical in general 

shape. However, certain open curves on the boundary are generally elliptic, e.g. the 

head of the proximal phalanx and the joint side of the middle phalanx. The Hough 

Transform can be used successfully to find a best-fitting ellipse, at any orientation, 

to selected open curves on the boundary. The discretization of the parameter space 

yields rounding error again. Despite these difficulties, the displacement of the ellipse 

parameters between two images can give the relative rotation and translation required 

to register the images.

The Generalised Hough Transform is completely accurate in its ability to match 

100% pixels in exactly the same location when a single image boundary, or an open 

curve, is used as both reference and target image for a test case.

In the non-test case, the Generalised Hough Transform is completely accurate in 

finding the same number of matching pixels, with the same displacement between the 

two boundaries (or open curves) when reference and target are reversed.

However, in all experiments, the number of matching pixels between two images of 

the same finger is, on average, 50%. A very high number of matching pixels would give 

confidence in the registration procedure. This relatively poor accuracy of matching 

reveals a fundamental characteristic nature of these boundaries. Although, by eye, the 

two boundaries appear almost identical, i.e. there is a similar characteristic shape, 

there must be many differences in actual positions of pixels. This finding guides the 

author's approach to registration.
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Results from the fitting of ellipses to the derived boundaries leads to a novel ap­ 

proach of combining the slices. The combined slice effect creates image boundaries 

that appear more similar over time than do corresponding single slices. Applying the 

Hough Transform to such images produces better registration results.

The application of moments to combined slice images is very sensitive to finger 

positioning prior to scanning. The centroid of an image could be useful for translational 

registration. However, incorrect positioning for scanning, over time, can lead to gross 

mis-registrations. Applying moments to user-selected open regions of the images is 

possible, but if the open regions are not the same, which is highly likely, then matching 

based on centroid could lead to a mis-registration.

The Hough Transform fitting of ellipses to open curves is by far the most reliable 

method for the registration of MRI finger images. Care must be taken over selecting 

the open region, but differences in the open regions are not as critical for the Hough 

Transform as for centroid matching. This is due to the ellipse being fitted to a fixed 

boundary in the Hough Transform as opposed to using moments where the centroid 

can move as the open region varies in size.

In Chapter 6, the proposed registration system for MRI finger images is described. 

In this system, the Hough Transform is used to determine the parameters required to 

register a pair of images.
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The Proposed Registration System, 
Analysis and Conclusions
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This chapter details the proposed system for the registration of serially acquired medical 

images. As stated earlier, the particular application of this system is intra-patient 

analysis of MRI finger images. The purpose of the registration of MRI finger images 

is to aid clinicians' understanding of rheumatic disease.

6.1 The System

The final system for the registration of MRI finger images is composed of three stages. 

Firstly, the original images are processed to locate what the author considers to be 

the best features in MRI finger images to be used in the registration process. These 

features are located via a combination of standard techniques and also new techniques 

derived for this research. Secondly, a search for registration is made. The Hough 

Transform is used to find the best-fit ellipse to boundaries in the processed images. 

The displacement of the best-fit ellipse between images of the same patient provides 

the rotation and translation required to register those images. The final stage in the 

registration process is the actual registration of the original images.

At UHW the different weighted images are acquired simultaneously and are, there­ 

fore, subject to the same movement, if any, during scanning. Hence, it is assumed 

that such images are pre-registered. Images of the same subject acquired on more than 

one occasion require registration. For the purposes of this system, the T2-weighted 

image acquired on the first occasion is taken to be the reference image. The registra­ 

tion system proposed in this thesis is applied to the T2-weighted images acquired from 

subsequent occasions to register them to the reference image. It is possible to choose 

a different reference image and register the other images to it. The relative rotations 

and translations derived for the T2-weighted images are applied to the other weighted 

images as well.
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The final system for the registration of MRI finger images is illustrated in Fig. 6.1 

and is composed of the following steps:

1. Standardise all subsequent T2-weighted image slices based on the equi­ 

valent reference slice.

2. Derive feature boundaries for all standardised and reference image slices.

3. Remove all assumed soft tissue boundaries in all boundary image slices 

(explained in Section 6.2.3).

4. Combine the segmented bone boundary slices to create combined slice 

images.

5. Apply the Hough Transform to the combined slice T2 image from the first 

occasion to determine the best-fit ellipse to the boundary. Search to find 

the optimal location of this best-fit ellipse on the same image. This is ne­ 

cessary because particular rounding to the nearest pixel location, explained 

in Section 5.3.2, can cause error in the results of the Hough Transform. 

Search to find the optimal location of the best-fit ellipse to the boundaries 

on all the other combined slice images.

6. Register the original images using the relative rotation and translation 

obtained in step 5.

The next section provides a step-by-step account of the application of this system 

to MRI finger data.
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Acquire 
Images

Preprocess

Standardise — *• Locate 
Boundaries — * Segment — »• Combine Slices

Apply the 
Hough Transform

Register

Figure 6.1: The final registration system.

6.2 Results of the Proposed System

The final registration system described above is applied to MRI finger images. The 

system is tested with images from five subjects. For each subject three sets of different 

weighted images (explained in Section 1.1.1), are acquired simultaneously. Each set 

of images is comprised of four saggital cross-sections (explained in Section 1.1.2) - 

or slices - of the finger joint being imaged. As all three sets of images are acquired 

simultaneously, all slices are subject to the same movement, if any, during scanning. 

Therefore, such images are assumed to be pre-registered.

A second set of images of the same finger joint is acquired on a second occasion 

for all five subjects. Incorrect positioning for scanning, movement during scanning and 

changes within the finger necessitate registration. The registration system described 

above is applied to both sets of images to register them on a subject by subject basis.
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For all subjects, the T2-weighted image acquired on the first occasion is taken to 

be the reference image. The registration system is applied to register the T2-weighted 

image acquired on the second occasion to the reference image.

In this section, a detailed description is given of the application of the registration 

system to one of the five subjects.

Consider the T2-weighted images acquired from subject 1, illustrated in Figs. 6.2 

and 6.3. Fig. 6.2(a) to (d) are slices 1 to 4 respectively of the reference image and Fig. 

6.3(a) to (d) are slices 1 to 4 respectively of the T2-weighted image acquired on the 

second occasion.

6.2.1 Step 1 - Standardise

The first step in the processing stage of the registration system is to standardise the 

images. Different weighted images have different means and standard deviations and 

different contrast, complicating the determination of similar features in both images. 

Even images of the same weight will have different means and standard deviations. 

Standardisation produces images with very similar, if not identical, means and stand­ 

ard deviations and very similar contrasts. Thus, the location of similar features is 

simplified. Details of the standardisation procedure are given in Section 4.1.2.

The T2-weighted image acquired on the second occasion is standardised according 

to the reference image, on an equivalent slice basis. For example, slice 1 of the T2- 

weighted image acquired on the second occasion is standardised based on slice 1 of the 

reference image. Slice 2 of the T2-weighted image acquired on the second occasion is 

standardised based on slice 2 of the reference image and so on. Fig. 6.4 shows the 

resulting standardised images for subject 1.
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Figure 6.2: (a) to (d) Subject 1 reference (first occasion T2-weighted) image slices 1 
to 4 respectively.
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Figure 6.3: (a) to (d) Subject 1 second occasion T2-weighted image slices 1 to 4 
respectively.
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Figure 6.4: (a) to (d) Subject 1 standardised second occasion T2-weighted image slices 
1 to 4 respectively.
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6.2.2 Step 2 - Derive Bone Boundaries

Registration maps features or points in one image to features or points in another 

image. Therefore, it is necessary to derive similar features from both images. Step 

2 of the processing stage is an automated sequence of image processing techniques 

that derive boundaries in the MRI finger images. It is assumed that some of the 

boundaries approximate the two bones in the joint. A detailed description of the 

boundary sequence is given in Section 4.2.3. The resulting boundaries derived for 

subject 1 are illustrated in Figs. 6.5 and 6.6.

6.2.3 Step 3 - Segment

The boundary sequence in step 2 produces images that contain many boundaries. It is 

assumed that some of these boundaries approximate segments of the two bones in the 

finger joint. The other boundaries are assumed to represent segments from various soft 

tissues. For all subjects, boundary regions approximating the bones were derived which 

were consistent with clinicians' interpretations of MRI finger images at the University 

Hospital of Wales. Boundaries approximating soft tissues are not derived consistently. 

Bone boundaries are considered by the author to be stable and reliable structures 

to be used in the registration process. Soft tissue boundaries are considered to be 

ambiguous. To avoid unnecessary complications and mis-registrations, all assumed 

soft tissue boundaries are removed from all the images derived in step 2. Segmenting 

such boundaries is easily done using a simple filling algorithm. Figs. 6.7 and 6.8 show 

the resulting segmented images for subject 1.
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(a) (b)

f A

Figure 6.5: (a) to (d) Subject 1 boundaries derived from reference image slices 1 to 4 
respectively.
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(a) (b)

(c) (d)

Figure 6.6: (a) to (d) Subject 1 boundaries derived from second occasion T2-weighted 
image slices 1 to 4 respectively.
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(a) (b)

(c) (d)

Figure 6.7: (a) to (d) Subject 1 segmented boundaries derived from reference image 
slices 1 to 4 respectively.
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(a) (b)

(c)

Figure 6.8: (a) to (d) Subject 1 segmented boundaries derived from second occasion 
T2-weighted image slices 1 to 4 respectively.
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6.2.4 Step 4 - Combine the Slices

A study of the images derived in step 3 shows that the derived bone boundaries from 

images taken over time are not always sufficiently similar for accurate registration. This 

is partly due to differences in the positioning of the finger on the different scanning 

occasions.

A new technique has been designed for this research to derive similar boundaries 

from images taken over time. The boundaries from all four slices of an image are 

combined to give the maximum possible boundary shape for the bones across four 

slices. A detailed description of this technique is given in Section 5.4. Fig. 6.9 shows 

the resulting combined slice images for subject 1.

(a)

Figure 6.9: Subject 1 (a) combined slice reference image (b) second occasion combined 

slice image.
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6.2.5 Step 5 - Determine the Registration Parameters

A registration algorithm will determine the relative rotation and translation required 

to register two images. In this application, the Hough Transform is used to determine 

the registration parameters. A detailed explanation of the Hough Transform is given 

in Section 5.3.

The Hough Transform is applied to user selected open segments from both bound­ 

aries in the combined slice reference image (illustrated by red pixels in Fig. 6.10(a)) 

separately and the resulting best-fit ellipses are recorded. The rounding to the nearest 

pixel problem explained in Section 5.3.2 causes the reported number of pixels lying on 

the best-fit ellipse to be much greater than in reality. Consequently, the best-fit ellipse 

is sometimes missed. To ensure the best locations of the best-fit ellipse have been 

determined, an extra search is made through all possible orientations of the best-fit 

ellipse, calculating the number of matching pixels at each orientation. The ellipse(s) 

yielding the maximum number of matching pixels are taken to be the best-fit ellipse(s). 

Each best-fit ellipse is then fitted to the equivalent boundary in the second occasion 

combined slice image (illustrated in Fig. 6.10(b)).

Table 6.1 shows the locations of the best-fit ellipses on each boundary. The two 

boundaries are labelled MP (the middle phalanx) and PP (the proximal phalanx). 

The best-fit ellipse is expressed in terms of its centre point (cx,ct/), its major- and 

minor-radii a and b respectively and the orientation of the ellipse, 0. The number of 

boundary pixels that lie on the best-fit ellipse is also calculated as a percentage. For 

the middle phalanx (MP) three best-fit ellipses were found.
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(a) (b)

Figure 6.10: Subject 1 open curves on combined slice images (a) reference image (b) 
second occasion image.

Bone
UP 
MP
MP
PP
PP

Occasion
I
I
2
1
2

Weight
T2 
T2
T2
T2
T2

ex
129 
129
131
145
148

cy
112 
111
112
109
110

a
14 
14
14
13
13

b
11 
11
11
11
11

n
76 

89, 90
75,76

29
2

% match
65 
65
64
49
47

Table 6.1: Subject 1 fitting the best fit ellipses.

6.2.6 Step 6 - Actual Registration

The final stage of the proposed system for the registration of MRI finger images is the 

actual registration of the original images. The relative rotation and translation derived 

in step 5 of the registration procedure are applied to all second occasion images to 

register them relative to the reference image. Fig. 6.11 shows the resulting images for 

subject 1 after applying the registration parameters derived in step 5. Little can be 

deduced regarding the accuracy of the registration merely by visual inspection, but a 

full analysis of the results follows in Section 6.3.
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Figure 6.11: Applying the registration parameters to subject 1 second occasion images 
(a) to (d) slices 1 to 4 respectively.
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6.3 Analysis of the Registration System and Res­ 
ults

In this section, an analysis of the registration system described above and results for 

five available subjects is given. Table 6.2 shows the registration results determined for 

the five subjects.

Subject

I 
2 
3 
4 
5
1 
2 
3
4 
5

Bone

MP 
MP
MP 
MP 
MP
PP 
PP 
PP 
PP 
PP

Image 
(Occasion)

T2(2) 
T2 (2) 
T2 (2) 
T2 (2)
T2 (2)
T2 (2) 
T2 (2) 
T2 (2) 
T2 (2) 
T2(2)

Reference Image 
(Occasion)

T2(l) 
T2(l) 
T2 (1) 
T2 (1) 
T2 (1)
T2 (1) 
T2 (1) 
T2 (1) 
T2 (1) 
T2 (1)

Translation 
(x,y)
(2,0) 

(-13, -1) 
K 11) 
(-6, -1) 
(-4, 3)
(3,1) 

(-13, 3) 
H, 8) 
(5, -3) 
(-3, -3)

Rotation

0° 
9° 
0° 

-3°
-7°
-27° 

0° 
0° 

-58° 
-5°

Narrower open curve results
1 
2 
3
4 
5

PP
PP 
PP 
PP 
PP

T2 (2) 
T2 (2) 
T2 (2)
T2 (2) 
T2 (2)

T2 (1) 
T2 (1) 
T2 (1) 
T2 (1) 
T2 (1)

(5,2) 
(-13, 2) 
(-3, 9) 
(6, -3) 
(-3, -2)

-14° 
0° 

-12° 
-11° 
-6°

Table 6.2: Registration parameters obtained from fitting the best fit ellipses for five 
subjects.

For each subject the registration system is applied to register the T2-weighted image 

acquired on the second occasion to the reference image (T2-weighted image acquired on 

the first occasion). Registration parameters are determined for both bone boundaries 

in the images, namely, the middle phalanx (MP) and the proximal phalanx (PP). 

The registration results determine the relative translations and rotations required to 

register the images. For example, for the MP from subject 1, a shift of 2 pixels in
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the positive x-direction is all that is required to register the two sets of images taken 

over time. Where rotations are required, the rotation is performed first before the 

translation.

To analyse the results of the registration system, the derived best-fit ellipses are 

superimposed onto the combined slice boundary images (illustrated in Figs. 6.12 to 

6.16). The open curves are illustrated in the top row of each figure.

The registration parameters are applied to the second occasion combined slice im­ 

ages to register them with the reference image. The registered images are then super­ 

imposed to illustrate the accuracy and problems of the registration system (illustrated 

in Figs. 6.17 to 6.21).

For all subjects, the achieved registrations appear sufficient for the entire MP 

boundary, with the exception of subject 2 (illustrated in Fig. 6.18).

In most subjects, the achieved registration appears adequate for the entire PP 

boundary. However, in two subjects, the resulting registrations are not correct, for 

example, subject 4 illustrated in Fig. 6.20. The reason for these poor results is the 

approximately circular curvature of the PP boundary segment on which the best-fit 

ellipses are located. Consequently, the best-fit ellipse can be located in many places on 

the boundary. This condition accounts for the large rotations to achieve registration 

listed in Table 6.2. The particular case of a circle is even worse. For the boundary 

being examined, all rotations are identical and no rotation result for registration is 

determined. This condition is seen in the registration results for subject 3, where the 

best-fit ellipse was, in fact, a circle. On this occasion using no rotation works quite 

well, but generally it will not be clear what rotation is best. Thus, a restriction must 

be incorporated into the system to prevent the best-fit ellipse being a circle, i.e. a ^ b, 

to ensure that the orientation of the entire boundary is determined.
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O

(a) (b)

(d)

(e) (f)

Figure 6 12- Subject 1 T2-weighted images (a) first occasion open curves (b) second 
occasion open curves (c) first occasion middle phalanx best-fit ellipse (d) first occasion 
proximal phalanx best-fit ellipse (e) second occasion middle phalanx best-fit ell.pse (f) 
second occasion proximal phalanx best-fit ellipse.
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(a) (b)

(e) (f)

Figure 6.13: Subject 2 T2-weighted images (a) first occasion open curves (b) second 
occasion open curves (c) first occasion middle phalanx best-fit ellipse (d) first occasion 
proximal phalanx best-fit ellipse (e) second occasion middle phalanx best-fit ellipse (f) 
second occasion proximal phalanx best-fit ellipse.
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(a) (b)

(e) (f)

Figure 6.14: Subject 3 T2-weighted images (a) first occasion open curves (b) second 
occasion open curves (c) first occasion middle phalanx best-fit ellipse (d) first occasion 
proximal phalanx best-fit ellipse (e) second occasion middle phalanx best-fit ellipse (f) 
second occasion proximal phalanx best-fit ellipse.
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(a) (b)

(c)

(e) (f)

Figure 6.15: Subject 4 T2-weighted images (a) first occasion open curves (b) second 
occasion open curves (c) first occasion middle phalanx best-fit ellipse (d) first occasion 
proximal phalanx best-fit ellipse (e) second occasion middle phalanx best-fit ellipse (f) 
second occasion proximal phalanx best-fit ellipse.
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(a)

(c)

(e) (f)

Figure 6.16: Subject 5 T2-weighted images (a) first occasion open curves (b) second 
occasion open curves (c) first occasion middle phalanx best-fit ellipse (d) first occasion 
proximal phalanx best-fit ellipse (e) second occasion middle phalanx best-fit ellipse (f) 
second occasion proximal phalanx best-fit ellipse.
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(a) (b)

Figure 6.17: Superimposition of registration of combined slice boundaries, subject 1 
(a) middle phalanx (b) proximal phalanx.

(a)

Figure 6.18: Superimposition of registration of combined slice boundaries, subject 2 
(a) middle phalanx (b) proximal phalanx.
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(a) (b)

Figure 6.19: Superimposition of registration of combined slice boundaries, subject 3 
(a) middle phalanx (b) proximal phalanx.

<j

(a) (b)

Figure 6.20: Superimposition of registration of combined slice boundaries, subject 4 
(a) middle phalanx (b) proximal phalanx.
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(a) (b)

Figure 6.21: Superimposition of registration of combined slice boundaries, subject 5 
(a) middle phalanx (b) proximal phalanx.

Selecting narrower open curves on the PP boundaries (illustrated in Figs. 6.22 to 

6.26) will reduce the circularity problem described above. The best-fit ellipses obtained 

by re-applying the Hough Transform with these amendments are also given in Table 6.2, 

under the heading "Narrower open curve results". The large rotations are improved in 

both subjects 1 and 4 and an ellipse with an orientation of 12° is obtained for subject 3, 

rather than a circle. In Section 6.3.1, it is shown that these amendments also improve 

the accuracy of the Hough Transform results.

Examining the way in which the best-fit ellipse actually fits the proximal phalanx 

highlights the fact that the combined slice boundaries of each subject over time are 

not the same size and shape. This is particularly evident in subject 2. The bound­ 

aries differ for a number of reasons. The MP and PP boundaries differ across the 

slices. The MP boundaries have the same characteristic shape, but the PP bound­ 

aries are sometimes completely different. Bone is made up of two structures. The 

dense (dark in MRI) cortical bone surrounds the less dense (lighter in MRI) trabecular 

bone [MedSci98, Plant95b]. The MRI finger images clearly show both densities for the
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(a) (b)

Figure 6.22: Narrower open curves on combined slice boundaries: Subject 1 T2- 
weighted images (a) first occasion proximal phalanx (b) second occasion proximal 
phalanx.

(a) (b)

Figure 6.23: Narrower open curves on combined slice boundaries: Subject 2 T2- 
weighted images (a) first occasion proximal phalanx (b) second occasion proximal 
phalanx.
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(a) (b)

Figure 6.24: Narrower open curves on combined slice boundaries: Subject 3 T2- 
weighted images (a) first occasion proximal phalanx (b) second occasion proximal 
phalanx.

(a) (b)

Figure 6.25: Narrower open curves on combined slice boundaries: Subject 4 T2- 
weighted images (a) first occasion proximal phalanx (b) second occasion proximal 
phalanx.
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(a) (b)

Figure 6.26: Narrower open curves on combined slice boundaries: Subject 5 T2- 
weighted images (a) first occasion proximal phalanx (b) second occasion proximal 
phalanx.

proximal phalanx and mostly trabecular bone for the middle phalanx. The automated 

sequence of algorithms that derive the bone boundaries starts with a scaling function 

that merges the heterogeneous trabecular bone regions. Consequently, the derived 

boundaries are representative of the lighter trabecular bone and omit the dense cor­ 

tical bone. This condition does not really affect the middle phalanx boundaries, but 

does produce some very different boundaries for the proximal phalanx. Combining 

such boundaries could result in quite different combined slice boundaries

It is the aim at UHW to position the finger centrally in the MRI scanner. The 

acquired images will then represent the central volume of the finger. Thus, the four 

slices obtained will show symmetry about the centre. Consider the coloured version 

of a combined slice image illustrated in Fig. 6.27. The black, red, blue and green 

boundaries represent slices 1 to 4 respectively. The MP boundaries are nested and 

do not show symmetry about the central slices, suggesting that the four slices are not 

central to the finger. This could be as a result of different positioning of the finger
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between scanning sessions or could indicate that the finger is not positioned centrally.

Figure 6.27: Merged boundaries from Subject 3, first occasion T2-weighted images.

There are also problems with the rotations determined for the middle phalanx. The 

position at which the best-fit ellipse is located is often on such a boundary that small 

rotations and translations of the best-fit ellipse can create more than one equivalent 

result. This condition is particularly seen in the superimposition of the best-fit ellipses 

for the middle phalanx onto the combined slice boundaries derived for subjects 2 and 

5 (illustrated in Figs. 6.13 and 6.16 respectively).

6.3.1 Analysis of Assumptions

Each weighted image is acquired simultaneously and is, therefore, subject to the same 

movement, if any, during scanning. Therefore, it is assumed that the three weighted 

images are pre-registered. This assumption is backed up by some simple superim­ 

position testing. Derived boundary image slices from different weighted scans are 

superimposed to show the pre-registration. For example, consider the superimposed 

images in Fig. 6.28. Fig. 6.28(a) shows, for subject 1 occasion 1, the superimposition 

of the PD-weighted combined slice boundary onto the T2-weighted combined slice
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boundary. Fig. 6.28(b) shows, for subject 1 occasion 1, the superimposition of the 

Tl-weighted combined slice boundary onto the T2-weighted combined slice boundary. 

A new image, N, is created by superimposing the active subimage onto the reference 

subimage. Pixel values are assigned from the following test:

Ai,j

Red 

Blue

Aitj < 

Ai >

for all i, j in a specified subimage. (Note that no tolerance is needed here as the images 

are black and white.) The red and blue pixels indicate where pixels differ in the two 

images, however, the overall pre-registration is clearly seen.

(a) (b)

Figure 6.28: Superimposition of combined slice boundaries for subject 1 occasion 1 (a) 
PD-weighted combined slice boundaries superimposed onto T2-weighted combined slice 
boundaries (b) Tl-weighted combined slice boundaries superimposed onto T2-weighted 
combined slice boundaries.
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As the images are pre-registered, it is only necessary to take one image from both 

scanning sessions to calculate the registration parameters. The resulting parameters 

can be applied to all second occasion images to register them with the first occasion 

images.

To further test the registration system, the best-fit ellipse(s) determined for the 

reference image are also fitted to the combined slice boundaries for the other weighted 

images. As the images are assumed to be pre-registered, then the location of a best-fit 

ellipse should be the same for all the weighted images. Table 6.3 shows the best-fit 

ellipses determined for the first occasion images from subject 1.

Bone
MP 
MP
MP 
MP
MP
PP
PP
PP

Occasion
1 
1
1 
1
1
1
1
1

Weight
T2 
T2
PD 
PD
Tl
T2
PD
Tl

ex
129 
129
129 
129
130
145
146
145

cy
112 
111
113 
112
113
109
109
109

a
14 
14
14 
14
14
13
13
13

b
11 
11
11 
11
11
11
11
11

ft
76 

89,90
76 

89, 90
71
29

2,3,4
9, 10, 29

% match
65 
65
59 
59
74
49
39
43

Narrower open curve results
PP
PP
PP

1
1
1

T2
PD
Tl

140
140
144

115
115
117

9
9
9

3
3
3

33, 34
33
13

79
78
79

Table 6.3: Subject 1 fitting the best fit ellipses to different weighted image combined 
slice boundaries.

As can be seen from the table, three best-fit ellipses are determined by the Hough 

Transform for the reference (T2-weighted) image middle phalanx (MP) and a single 

best-fit ellipse for the proximal phalanx (PP)- A search is made to find the best 

location of the best-fit ellipses on the other weighted image boundaries. For the MP, 

the same three orientations of ellipses are located at one pixel shifts in the y-direction
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for the proton density-weighted (PD) image. For the Tl-weighted image MP, the 

same one pixel shift is determined, but the orientation of the ellipse differs by at least 

5 degrees. For the PP best-fit ellipse, the centre of the ellipse, (ex, cy), is located on the 

Tl-weighted image, but at a 1 pixel shift in the ^-direction for the PD-weighted image. 

The orientation of the best-fit ellipse differs by at least 25 degrees for the PD-weighted 

image. The Tl-weighted image locates the best-fit ellipse at the same orientation, but 

also at two other very different orientations.

Table 6.3 lists the results for subject 1 first occasion images only. Similar problems 

are found for the second occasion images and also for the other subjects. The reason for 

the discontinuity in the results is due to the nature of the boundaries being examined. 

The segment of MP boundary on which the best-fit ellipse is located is such that small 

changes in orientation and translations of the best-fit ellipse can result in more than 

one equivalent result. The segment of PP boundary on which the best-fit ellipse is 

located has approximately circular curvature resulting in many possible results. Thus, 

the Hough Transform fitting of a best-fit ellipse is very sensitive to slight changes in 

the boundaries being examined.

Selecting narrower open curves on the proximal phalanx (illustrated in Fig. 6.29) 

greatly improves the registration results. The narrower curve reduces the circular 

curvature of the boundary. The results from re-applying the Hough Transform to the 

narrower curves are also given in Table 6.3 under the heading "Narrower open curve 

results"). The percentage of boundary pixels lying on the best-fit ellipse is now nearly 

double what it was previously. In four out of the five subjects, narrowing the PP 

boundary greatly improves the percentage number of matching pixels.
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(a) (b)

Figure 6.29: Narrower open curves on combined slice boundaries for Subject 1 (a) 
T2-weighted images (b) PD-weighted images (c) Tl-weighted images.

6.4 Conclusions of Thesis

This thesis presents a novel system for the image processing and registration of MRI 

finger images. Such images are acquired at the University Hospital of Wales (UHW) 

from patients suffering from rheumatoid arthritis (RA). The purpose of this work is 

to aid clinicians' understanding of rheumatic disease and has already been of clinical 

benefit [Plant95a], listed in Appendix E.

Images of the same subject are taken over time and must be registered so that an 

accurate analysis of the effect of RA on the finger joint can be established. Move­ 

ment during scanning, incorrect positioning for scanning and changes within the finger 

produce a need for registration.

Different weighted images (explained in Section 1.1.1) are acquired of the same 

finger. The weighted images are acquired simultaneously and are, therefore, subject 

to the same movement, if any, during scanning. It is assumed, therefore, that the 

weighted images taken on one occasion are pre-registered to each other.

The proximal interphalangeal finger joint poses a unique registration problem. No 

work on registering MRI finger images has been found in the literature by the author. 

The particular registration problems and complications are summarised here.
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At UHW, the patient's finger is positioned in the MRI scanner with the aid of a 

plastic syringe. Any excess space in the syringe is packed to restrict movement during 

scanning. However, this restriction does not prevent all possible movement. Movement 

can occur in many directions. Forward and backward movements just require a simple 

translational shift to register the images. Rotational movements or bending at the 

articulated joint require a more complicated analysis. The nature of the positioning 

of the finger for scanning also means that on subsequent occasions it is impossible to 

reposition the finger in exactly the same location every time.

Many other researchers are interested in registering head or brain images. A very 

popular registration technique is the use of a stereotactic frame that is screwed rigidly 

to the patient's skull. This type of method is known as extrinsic. However, some 

authors even claim that, for brain images, "the effect of patient movement without 

rigid head fixation during scanning is negligible" [Maurer97]. In any case, extrinsic 

methods have been shown to be of no use to this application (explained in Section 

2.2.2). Finger movement during or between scanning is one of the main reasons why 

registration is so vital.

MRI finger registration, therefore, requires an intrinsic method (explained in Sec­ 

tion 2.2.2). Intrinsic methods are based on the image content only, for example, a set 

of landmarks, segmented structures or directly from the image grey values. Select­ 

ing appropriate anatomical landmarks is a labour-intensive, interactive process, which 

must be conducted by a knowledgeable user. Thresholding to segment the skin surface 

and thereby create a boundary is not a suitable method for MRI finger images due 

to the danger of slippage (explained in Section 1.2.1). Also, MRI finger image grey 

levels cannot be used to segment structures by thresholding or for direct registration 

(explained in Section 4.1.3).
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Choosing appropriate features within MRI finger images is a key factor in the 

success of the registration method. For images taken over time, it must be possible 

to extract similar features from both images being registered. In Section 4.2.3, such 

structural boundaries within the finger image are located and these boundaries are 

used in the registration process.

Rheumatoid arthritis (RA) affects the synovial tissue, a normally thin lining of 

the joint, causing it to swell and destroy the joint. Registering MRI finger images of 

patients with RA will aid clinicians' understanding of the disease. To this end, an 

analysis of synovium, in terms of its size, shape and disease activity may be necessary. 

Therefore, any registration method which distorts an image is not employed in this 

thesis as vital information about synovium may be lost. Consequently, appropriate 

registration methods are taken to be rigid and global (explained in Sections 2.2.3 and 

2.2.4 respectively). The boundaries used in the registration process represent segments 

of the two bones in the joint. However, registration parameters determined for both 

boundaries may not be the same making it impossible to produce a global registration 

without distorting the image.

A set of criteria for drawing region of interest boundaries is discussed in Section 3.1. 

Part of the work of this thesis is the creation of a drawtool (explained in Section 3.2) 

for the user-generation of region of interest (ROI) boundaries. Statistics are calculated 

from the ROIs (explained in Section 3.2.5) giving the size of the ROI, the average 

grey level and the standard deviation. A histogram of the spread of the grey levels is 

also made available by the drawtool. The design of a path structure for storing the 

ROI boundaries is detailed in Section 3.2.6 and RIFF files are shown to be suitable for 

storing the ROI path structure in a file.
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Calculating statistics from MRI finger images shows that different weighted images 

have different means and standard deviations. Even images of the same weight do not 

have identical means and standard deviations. Therefore, standardising the images 

(explained in Section 4.1.2) is a necessary pre-processing technique before features are 

located in the images. Standardisation is performed on a comparative slice for slice 

basis. For example, slice 1 of a T2-weighted image acquired on a second occasion is 

standardised based on slice 1 of the reference image. However, if the chosen slices differ 

too much due to a large change in the positioning of the finger for scanning, then this 

could affect the derived features.

A number of standard image processing techniques have been experimented with 

to locate features in MRI finger images that can be used in the registration process. 

The Ideal Highpass Filter (explained in Section 4.3.3) shows that the sharpest edges in 

MRI finger images are not boundaries between specific tissue types but come from the 

heterogeneity within specific tissue structures. Therefore, a scaling algorithm is applied 

to the standardised images to merge the heterogeneous pixels into smooth regions. A 

sequence of algorithms is then applied to segment the smooth regions and locate their 

boundaries.

The boundaries derived by the processing stage are assumed to approximate seg­ 

ments of the two bones in the joint. These boundaries are consistently derived. Other 

boundaries, assumed to represent various soft tissues, are not consistently derived. The 

bone boundaries are considered to be reliable features for the registration process. The 

soft tissue boundaries are not considered reliable for the registration process and are, 

therefore, removed from the derived images.

A number of registration techniques have been experimented with. The sum of 

absolute values of differences approach to registration (explained in Section 5.1) gives 

local results which are inconsistent with global results. To combine local results would 

mean distorting one image to fit another which will result in the loss of important
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synovium information.

A superimposition algorithm (explained in Section 5.2) has been applied to the 

original MRI finger images. The range of grey levels within the same tissue types 

varies so much that a tolerance level is required. However, the tolerance level has to 

be set to about 400 (out of a total of 4095 levels) to see a registration result. This level 

of tolerance is deemed to be too high. Superimposition can also be applied to derived 

boundary images. The derived images contain only black and white pixels and therefore 

do not require a tolerance level. Superimposing images taken over time produces some 

good registration results, but the registration only determines a translation shift. A 

rotational component is also necessary.

Two Hough Transform methods for registration were applied; these determined the 

required rotation and translation necessary to register two images. The Generalised 

Hough Transform (explained in Section 5.3.4) produces registrations where the number 

of matching pixels between two images of the same finger is, on average, 50%. A very 

high number of matching pixels would give confidence in the registration procedure. 

This relatively poor accuracy of matching reveals a fundamental characteristic nature 

of these boundaries. Although, by eye, two boundaries derived from images of the 

same patient taken on different occasions may appear almost identical, i.e. there is 

a similar characteristic shape, there are many small differences in actual positions of 

pixels along the characteristic shape.

The Hough Transform can also be used to fit an ellipse to a boundary. The bound­ 

aries derived in Section 4.2.3 are not particularly elliptical in general shape. However, 

certain open curves on the boundary are generally elliptic, for example, the head of the 

proximal phalanx and the joint side of the middle phalanx. The Hough Transform can 

be used successfully to find a best-fitting ellipse, at any orientation, to selected open 

curves on the boundary. The discretization of the parameter space yields a particular 

Founding feature of the Hough Transform. However, the displacement of the ellipse



CHAPTER 6. ANALYSIS OF THE PROPOSED SYSTEM 190

parameters between two images can give the relative rotation and translation required 

to register the images.

Results of the Hough Transform fitting of ellipses shows that the derived boundaries 

can sometimes differ considerably across slices. A new technique has been developed 

to try and overcome this problem. The slice boundaries are combined to create the 

largest possible boundary shape across the four slices. The combined slice approach 

(explained in Section 5.4) produces images that contain boundaries that show greater 

similarity across different occasions of the same patient.

For the proximal phalanx (PP), the elliptical segments of boundary produce good 

registrations. The derived registration parameters appear adequate for the entire PP 

boundary. However, for certain subjects, the resulting registrations were misleading. 

The reason for this complication is the approximately circular curvature of the PP 

boundary segment on which the best-fit ellipses are located. Consequently, the best- 

fit ellipse can be located in many places on the boundary. The particular case of a 

circle is even worse as all rotations are identical and no rotation result for registration 

is determined. Thus, a restriction must be incorporated into the system to prevent 

the best-fit ellipse being a circle, i.e. a / b, to ensure that a useful ellipse is fitted. 

Narrowing the open curve on the proximal phalanx to reduce the circular curvature 

greatly improves the results.

Examining the way in which the best-fit ellipse actually fits the proximal phalanx 

(PP) highlights the fact that the combined slice boundaries of a subject over time 

are not the same size and shape. Further, the middle phalanx (MP) and proximal 

phalanx (PP) boundaries differ across the slices. The MP boundaries have the same 

characteristic shape, but the PP boundaries are sometimes completely different. The 

boundaries differ for a number of reasons. Bone is made up of two structures. The 

dense (dark in MRI) cortical bone surrounds the less dense (lighter in MRI) trabecular 

bone. The MRI finger images clearly show both densities for the PP and mostly
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trabecular bone for the MP. The automated sequence of algorithms that derive the 

bone boundaries starts with a scaling function that merges the heterogeneous trabecular 

bone regions. Consequently, the derived boundaries are representative of the lighter 

trabecular bone and omit the dense cortical bone. This condition does not affect the 

characteristic shape and size of the MP boundaries obtained, but does produce some 

very different boundaries for the PP. Combining such boundaries could result in quite 

different combined slice boundaries.

The Hough Transform results for the combined slice boundaries show that, in gen­ 

eral, the MP boundaries are more reliable than the PP boundaries. The Hough 

Transform fitting of a best-fit ellipse is very sensitive to slight changes in the bound­ 

aries being examined.

The variations in the boundaries obtained by combining the individual slice bound­ 

aries also suggest that the finger is not always positioned sufficiently centrally when 

MRI scans are taken.

The application of Fourier Descriptors and Moments to MRI finger images is very 

sensitive to finger positioning prior to scanning. The centroid of an image could be 

useful for translational registration. However, incorrect positioning for scanning, over 

time, can lead to gross mis-registrations. Applying Fourier Descriptors and Moments 

to user-selected open regions of the images is possible, but if the open regions are 

not the same, which is highly likely, then matching based on centroid could lead to a 

mis-registration.

The Hough Transform fitting of ellipses to open curves is by far the most reliable 

method for the registration of MRI finger images. Care must be taken over selecting 

the open region, but differences in the open regions are not as critical for the Hough 

Transform as for centroid matching. This is due to the ellipse being fitted to a fixed 

boundary when using the Hough Transform as opposed to using moments where the 

centroid may move as the open region varies in size.
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The final registration system is composed of three stages. Firstly, the original 

images are processed to determine features to be used in the registration process. The 

derived features are boundaries that are assumed to approximate the two bones in 

the joint. The second stage of the registration system is the application of the Hough 

Transform to locate best-fit ellipses to the derived boundaries. Finally, the relative 

rotations and translations determined from the second stage are applied to the original 

images.

The developed system is semi-automatic and requires a knowledgeable user to con­ 

sider the registration results for accuracy. The number of pixels lying on a best-fit 

ellipse is calculated and sometimes produces a very high percentage of fitting pixels. 

However, the above mentioned problems can produce results which are obviously not 

correct.

The combined slice approach to combining boundary images is an intermediate step 

between 2D methods and stacking the 2D slices.

The author believes that the work of this thesis has proposed a method of MRI 

finger image registration which successfully registers the middle phalanx in most cases 

and the proximal phalanx in some cases. In producing this registration system, many 

features of MRI finger images not previously reported have been discovered. These are 

listed here:

• images acquired simultaneously are pre-registered;

• necessity of using an intrinsic method;

• heterogeneity of grey levels within tissue regions;

• derivation of bone boundaries produces the most reliable structures for 

registration;

• combined slice boundaries represent a four slice volume and produce

better registration results;

• many standard image processing techniques are very sensitive to small changes
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along the bone boundaries.

• the Hough Transform fitting of ellipses to combined slice boundaries is the most

reliable registration method for MRI finger images.

6.5 Future Work

The development of a combined slice image leads to improved registration results. The 

results also suggest that finger positioning needs to be improved. The combined slice 

image provides a mid-way analysis between 2D registration techniques and 3D methods 

based on a stack of 2D slices. Future work should investigate 3D techniques. Suggested 

techniques to investigate are stacking the 2D slices [Bajcsy83, Wang96] or possibly by 

creating a 3D image [Bajcsy89, Hemler94, Hemler95j.

Further testing of the registration system can be done with the use of a phantom 

and/or a finger ex-vivo. Moving such objects by fixed amounts will enable a comparison 

between registration results and known quantities. Such experiments will also give an 

analysis of any geometric distortions in the MRI finger images.

The Hough Transform registration results are very sensitive to changes along the 

boundary. Other goodness-of-match measures can be experimented with to improve 

the results, e.g. least squares fitting of a curve to the finger boundary. It is expected 

that least squares fitting will accommodate the small changes along the characteristic 

boundary shape that cause many problems for the Hough Transform methods reported 

on in this thesis.

The effects of rheumatoid arthritis and osteo arthritis may change the bone surface 

over time, perhaps over durations as short as three to six months with severe disease. 

With the addition of further data it would be possible to re-analyse the performance 

of this system for patients with such severe disease.
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In Chapter 3 a brief overview of the established rules for determining the interior points 

of a polygon is given. This appendix gives a detailed explanation of these rules.

Polygons are drawn around specific regions of interest (ROIs) in MRI finger images. 

The user selects the vertices that make up the polygon. The vertices are stored in a 

vertex list in an anticlockwise cycle. The Visual Basic Line function is used to draw 

the polygon edges. The General Bresenham Algorithm, as explained in Section 3.2.3, 

is used to find the edge co-ordinates for each polygon edge. The edge co-ordinates are 

stored in an edge list and sorted into scan-line order, i.e. y first, then x.

The co-ordinates in the edge list are distinguishable as those which are vertices and 

those which are edge co-ordinates. A simple check that a co-ordinate from the edge list 

is not in the vertex list is sufficient to show that it is an edge co-ordinate. Pairs of edge 

co-ordinates (i.e. not vertices) are extracted from the edge list as bounding pixels to 

scan between to find the interior points along a particular scan-line. Edge co-ordinates 

that are vertices must be treated differently.

The polygon vertices can be grouped as those which:

• are edge equivalent - i.e. they can be treated as non-vertex edge co­ 

ordinates.

• are a peak or a trough - different rules are required depending on whether 

the peak/trough is internal or external to the polygon.

• lie on a horizontal edge - these require a third approach.

Each of these cases are now examined and rules are derived as to how they should 

be treated. Determining the rules for each case requires the direction of the cycle of 

vertices to be specified. In this work, the established rules are based on an anticlockwise 

cycle of vertices. If the obtained vertex list is clockwise, the order of the vertices is 

reversed. It is possible to use a clockwise cycle of vertices, but this would necessitate 

changes to the established rules.
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B.I Edge Equivalent Vertices

Some vertices can be treated as non-vertex edge co-ordinates (illustrated in Fig. B.I). 

Consider scan-line j intersecting with the polygon at vertices A and C in Fig. B.I (a) 

and vertex A and edge co-ordinate p in Fig. B.l(b). At A, scan-line j enters the 

polygon. At C and p respectively, scan-line j exits the polygon.

In Fig. B.I (a), vertices A and C are treated as a pair of non-vertex edge co-ordinates 

and are scanned between to find the interior points along scan-line j. In Fig. B.l(b), 

vertex A and edge co-ordinate p are paired to scan between.

A vertex is classified as edge equivalent, if the vertices either side of it in the vertex 

list also lie either side of it along the y-axis. In Fig. B.I (a) and (b), vertices B and D 

lie either side of vertex A in the anticlockwise cycle of vertices. Vertices B and D also 

lie either side of vertex A along the y axis. Therefore, vertex A is classified as edge 

equivalent. The same result is obtained for vertex C in Fig. B.l(a).

Figure B.I: Edge equivalent vertices (a) vertices A &; C treated as non-vertex edge 
co-ordinates (b) vertex A treated as a non-vertex edge co-ordinate.
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B.2 Peaks / Troughs

Some of the vertices extracted from the edge list could be peaks and some could be 

troughs. Consider the polygon in Fig. B.2. Vertices C, F and H are peaks and vertices 

Z?, D and G are troughs. Further, vertices J5, Z), F and H are considered to be external 

to the polygon and vertices C and G are considered to be internal.

H F

D 

Figure B.2: Vertices as peaks/troughs.

To determine whether a vertex is an external or internal peak or trough requires 

two steps. The first step classifies the vertex as a peak/trough and the second step 

classifies the vertex as external or internal.

A vertex is classified as being a peak/trough if the vertices either side of it in the 

anticlockwise cycle of vertices both lie either above or below it along the t/-axis. For 

example, consider vertex B in Fig. B.2. Vertices A and C lie either side of B in the 

anticlockwise cycle of vertices. Vertices A and C both lie above B along the y-axis. 

Therefore, B is classified as a peak/trough. The same result will follow for vertices C, 

D, F, G and H.

The second step determines whether the peak/trough vertices are external or in­ 

ternal to the polygon, by considering what has already happened along the scan-line. 

For example, vertex B in Fig. B.2, represents the first intersection with the poly­ 

gon along scan-line /. Therefore, this "peak/trough" must be external. An external
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peak/trough represents a single pixel on the polygon boundary and therefore a single 

pixel must be taken rather than scanning between two points. Continuing along scan- 

line /, another intersection with the polygon is found at vertex D. Again, D is classified 

as an external peak/trough and another single pixel is taken. Vertices F and H are 

also classified as external peaks/troughs by the same method.

Now consider the cases of vertices C and G in Fig. B.2. The intersection at point 

p means that scan-line j has entered the polygon at p. Therefore, p has already be 

determined as the start point for scanning. Vertex G, is the next co-ordinate in the 

edge list and must be tested to see if this vertex represents the end of the polygon 

along this scan-line. The fact that scan-line j has already entered the polygon at p 

and that G is a peak/trough, means that G must be internal to the polygon. As G is 

classified as an internal peak/trough, it cannot be the end of the polygon along scan- 

line j. Therefore, G is effectively ignored and the next co-ordinate from the edge list 

(g) is examined. As q is a non-vertex edge co-ordinate it is taken as the true end point 

for scanning between.

B.3 Horizontal edges

The final case of vertices are those which lie on a horizontal edge. As the scan-lines 

are horizontal lines proceeding from left to right, the co-ordinates from vertical edges 

are treated as n on-vertex edge co-ordinates. A scan-line intersecting with these co­ 

ordinates represents entering or exiting the polygon. Difficulties arise when a scan-line 

intersects with a horizontal edge. There are a number of cases of where a horizontal 

edge may occur in a polygon. The different cases are illustrated in Figs. B.3 to B.5.

A horizontal edge may be the only part of the polygon on a particular scan-line, for 

example, BC in Fig. B.3. Similarly, a horizontal edge may be independent to the rest 

of the polygon on a particular scan-line, for example, EF in Fig. B.3. Alternatively, a 

horizontal edge may start (AF in Fig. B.4(a)), end (DE in Fig. B.4(b)) or fall in the
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209

Figure B.3: Edge equivalent vertices on a horizontal edge.

middle of the polygon on a given scan-line (CD in Fig. B.6).

Each of these cases must be treated differently. The established rules are presented 

here and are based on an anticlockwise cycle of vertices for images with the origin at 

the top left corner.

Consider the horizontal edge BC in Fig. B.3. Scan-line j intersects with vertex 

B and is, therefore, entering the polygon. Similarly, at the intersection with vertex C 

scan-line j is exiting the polygon. Therefore, B and C are treated as non-vertex edge 

co-ordinates and are scanned between to find the interior points along scan-line j. The 

independent horizontal edge EF along scan-line i is treated in the same way.

The more difficult cases of horizontal edges are where the edges are not independent 

of the rest of the polygon along the scan-line on which they fall. For example, consider 

the polygon in Fig. B.4(a). The first intersection with the polygon along scan-line j is 

vertex A. Therefore, the scan-line is entering the polygon at A. Vertex F is the next 

co-ordinate in the edge list. As can be seen from the diagram, F is not the end point 

for scanning, along j. This is determined by considering the direction of the previous 

vertex to F in the vertex list, i.e. vertex E.
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If the previous vertex has a lower y co-ordinate then

the intersection with the vertex is not exiting the polygon.

If the previous vertex has a higher y co-ordinate then 

the intersection with the vertex is exiting the polygon.

(This latter case is illustrated in Fig. B.5 vertex F.)

210

(a) (b) 

Figure B.4: Horizontal edges at the (a) start (b) end of a scan-line.

Figure B.5: Horizontal edge in the middle of a scan-line. Scan-line j intersecting at 
vertex F is exiting the polygon.

Now consider the polygon in Fig. B.4(b). Along scan-line j, the intersection with 

vertex A will already have been determined as the start point for scanning. The next 

co-ordinate in the edge list is vertex E, the start of the horizontal edge DE. As there 

must be another co-ordinate in the edge list for the end of this horizontal edge, E is
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effectively ignored and D is tested to see if it is the end point for scanning. As D is 

the last co-ordinate on this scan-line, it is taken as the end point for scanning from A. 

Finally, consider the polygons in Figs. B.6 and B.7. Using the above rules, 

vertex A is the start point for scanning along scan-line j and vertex C has been 

"ignored". Vertex D, at the end of the horizontal edge, is tested to see if the 

scan-line intersecting at this point is exiting the polygon. In these examples, 

the previous vertex to D in the vertex list is the start of the horizontal edge (ver­ 

tex C). Therefore, the next vertex in the vertex list is tested and the rules are inverted:

If the next vertex has a higher y co-ordinate, then

the intersection with the vertex is not exiting the polygon.

If the next vertex has a lower y co-ordinate, then

the intersection with the vertex is exiting the polygon.

Having considered all possible polygons, the above rules are combined into a single 

algorithm for determining the interior points of a polygon. A pseudocode listing of the 

algorithm is given in Appendix C.

H . G

Figure B.6: Horizontal edge in the middle of a scan-line. Scan-line j intersecting at 
vertex D is not exiting the polygon.
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Figure B.7: Horizontal edge in the middle of a scan-line. Scan-line j intersecting at 
vertex D is exiting the polygon.
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Chapter 3 presents an algorithm for determining the interior points of a polygon. A 

full description of the rules for determining these points is given in Appendix B. In 

this section a listing of the algorithm to find the interior points of a polygon is given 

in pseudocode. Firstly, here are some definitions:

• (sx, sy) and (ex, ey) are the start and end edge co-ordinates, respectively, 

between which to scan to find the interior points of the polygon along a 

particular scan-line.

• VERTEX_LIST_X and VERTEX_LIST_Y are two one-dimensional arrays 

which contain the x and y co-ordinates, respectively, for the vertices that 

make up the polygon.

• EDGE_LIST_X and EDGE_LIST_Y are two one-dimensional arrays which 

contain the x and y co-ordinates, respectively, for each edge co-ordinate, 

obtained using the General Bresenham Algorithm, as explained in Section 

3.2.3.

• Function FIND_VERTEX(x, y) determines if point (x, y) is a vertex in 

the vertex list.

• Function TEST_EXEY(x, y) tests if (x, y) is the correct end point for 

scanning to from (sx,sy).

• Function SCAN_LINE(3x, sy, ex, ey) retrieves the interior points from 

(sx : sy) to (ex, ey) for the statistics calculations explained in Section 3.2.5.

• i is an array counter.
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The main algorithm is:

i = 0

loop through all edge coords 

sx = EDGE_LIST_X[t] 

sy = EDGE_LIST_Y[x] 

increment i

FIND_VERTEX(sz, sy) {test if (sx, sy) is in the vertex list} 

If (sx, sy) is a vertex and (sx,sy) is a peak/trough 

ex = sx {(sx,sy) is an external peak/trough} 

ey = sy {:. only take 1 pixel} 

else

loop until correct end point found 

ex = EDGE_LISTJC[»] 

ey = EDGE_LIST_Y[i] 

increment i

{test if (ex, ey) is the true end point for scanning} 

TEST_EXEY(e:r, ey) 

end loop 

end if

{scan from (sx,sy) to (ex, ey) for the interior points} 

SCAN_LINE(sx,5j/,ex,ey) 

end loop
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Function FIND_VERTEX(:r, y) determines whether (:r,y) is a vertex by searching 

for (a;, y) in the vertex list. If (x, y) is a vertex, the function also stores the previous and 

next vertices to (x, y) from the anticlockwise cycle of vertices. Firstly, some definitions:

• j is an array counter.

• (pre-x,prejy) are the co-ordinates of the previous vertex to (x, y), if (x, 

y) is a vertex.

• (post _£, post_y) are the co-ordinates of the next vertex to (x, y), if (x, y) 

is a vertex.

FIND_VERTEX(x, y)
J=0

loop through all vertices

if x = VERTEX_LIST_X[j] and y = VERTEX_LIST_Y[?]

{(x, y) is a vertex, :. set (pre_x,pre_y) and (postjc,post_y)} 

pre-x = VERTEX_LIST_X[j-l] 

pre.y = VERTEX_LIST_Y[j-l] 

post-x = VERTEX_LIST_X[j+l] 

post-y = VERTEX_LIST_Y[7+1] 

exit loop 

end if 

increment j 

end loop
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Function TEST_EXEY(x,y) tests if (:r,y) is the correct end point to scan to from 

(sx, sy) for a particular scan-line.

TEST_EXEY(x, y)

FIND_VERTEX(x, y) {test if (x, y) is in the vertex list} 

if (x,y) is not a vertex

(a;,y) is an edge co-ordinate and is :. the true end point for scanning 

else {find correct end point}

CASE (x, y) is an edge equivalent vertex

(x, y) is the true end point 

CASE (x, y) is a peak/trough {must be an internal peak/trough :. ignore}

(x,y) is not the true end point 

CASE (a;, y) starts a horizontal edge

(a;,y) is not the true end point {there is an end to the horizontal edge} 

CASE (x, y) ends a horizontal edge

if (x, y) is the end of the polygon on this scan-line

(x, y) is the true end point 

else

if (x,y) is exiting the polygon 

(x, y) is the true end point 

else

(x,y) is not the true end point 

end if 

end if 

end CASE 

end if
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The Generalised Hough Transform is explained in Section 5.3.4 and the results sum­ 

marised. In this section, the results of the Generalised Hough Transform are given in 

detail. The Generalised Hough Transform is applied to boundaries derived from MRI 

finger images as explained in Section 4.2.3. The initial stage of the boundary sequence 

requires a scaling factor. With differently-weighted images, the scaling factor required 

for each image will not be the same. The scaling factors used for each image are given 

in each section.

In each case the results (displayed in tables below) show the best number of match­ 

ing pixels against registration position. As a test of the accuracy of the results, each 

image in a data set has the Generalised Hough Transform applied to itself. In each 

case, the results give a perfect match as would be expected.

For every pair of images used with the Generalised Hough Transform, both images 

are used as the reference image to create the R-Table (explained in Section 5.3.4) and 

the results compared.

The results are grouped in data sets. The first data set considers some PD-weighted 

images. The second data set considers Gadolinium-enhanced Tl-weighted images. The 

third data set considers different weighted images. Finally, the last data set considers 

images from different patients.

In each data set, the Generalised Hough Transform has first been applied to the 

entire boundaries of both bones (the proximal phalanx (PP) and the middle phalanx 

(MP) (explained in Section 1.1.2)) in each image. Secondly, the Generalised Hough 

Transform has been applied to part of the boundaries of both bones in each image. 

Results are provided firstly with no orientation and then secondly with orientation.
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D.I PD-Weighted

D.I.I Data set 1

In this section, the results derived from applying the Generalised Hough Transform to 

a pair of PD-weighted images (illustrated in Fig. D.I) are given.

Figure D.I: Bone contours derived from two MRI scans of a PIP joint.

Table D.I gives the Generalised Hough Transform results for the closed bound­ 

aries in Figs. D.l(a) and D.l(b). The scale weights used were 3/4. The results 

in this table indicate that the two images are mis-registered by 1 pixel in the x-direction.

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 164 
D.l(a) PP 189 
D.l(b) MP 168 
D.l(b) PP 191

Fig. D.l(a)
No. % Ref
164 100 (x, y) 
189 100 (x, y) 
87 51.8 (x-1, y) 
86 45.0 (x, y)

Fig. D.l(b)
No. % Ref
87 53.0 (x+1, y) 
86 45.5 (x, y) 
168 100 (x, y) 
191 100 (x, y)

Table D.I: Generalised Hough Transform results for Figs. D.l(a) & D.l(b).
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Table D.2 gives the Generalised Hough Transform results for open boundaries in 

Fig. D.I. The scale weights used were 3/4.

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 80 
D.l(a) PP 95 
D.l(b) MP 80 
D.l(b) PP 95

Fig. D.l(a)
No. % Ref
80 100 (x, y) 
95 100 (x, y) 
43 53.8 (x-1, y) 
40 42.1 (x, y+1)

Fig. D.l(b)
No. % Ref
43 53.8 (x+l,y) 
40 42.1 (x, y-1) 
80 100 (x, y) 
95 100 (x, y)

Table D.2: Generalised Hough Transform results for Fig. D.I.

The results in this table indicate that the two bones are misregistered by different 

amounts. The MP is displaced by 1 pixel in the x-direction and the PP is displaced by 

1 pixel in the y-direction.
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Table D.3 gives the Generalised Hough Transform results for closed boundaries in Fig. 

D.I (rotated by a degrees).

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 164 
D.l(a) PP 189 
D.l(b) MP 166 
D.l(b) PP 191
Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 164 
D.l(a) PP 189 
D.l(b) MP 168 
D.l(b) PP 191

Fig. D.l(a)
No. % Ref
164 100 (x, y) 
189 100 (x, y) 
66 39.8 (x-1, y-1) 
88 46.1 (x, y+1)

Fig. D.l(b) (a = 1°)
No. % Ref
66 40.2 (x+1, y+1) 
88 46.6 (x, y-1) 
166 100 (x, y) 
191 100 (x, y)

Fig. D.l(a) Fig. D.l(b) (a = -1°)
No. % Ref No. % Ref
164 100 (x, y) 70 42.7 (x+1, y-1) 
189 100 (x, y) 54 28.6 (x, y+1) 
70 41.7 (x-1, y+1) 168 100 (x, y) 
54 28.3 (x, y-1) 191 100 (x, y)

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 164 
D.l(a) PP 189 
D.l(b) MP 94 
D.l(b) PP 191

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 164 
D.l(a) PP 189 
D.l(b) MP 168 
D.l(b) PP 191

Fig. D.l(a)
No. % Ref
164 100 (x, y) 
189 100 (x, y) 
47 50.0 (x-1, y) 
80 41.9 (x, y)

Fig. D.l(a)
No. % Ref
164 100 (x, y) 
189 100 (x, y) 
82 48.8 (x-1, y) 
83 43.5 (x, y)

Fig. D.l(b) (a = 1")
No. % Ref
47 28.7 (x+l,y) 
80 42.3 (x, y) 
94 100 (x, y) 
191 100 (x, y)

Fig. D.l(b)(a = -i")
No. % Ref
82 50.0 (x+1, y) 
83 43.9 (x, y) 
168 100 (x, y) 
191 100 (x, y)

Table D.3: Generalised Hough Transform closed curve orientation results for Fig. D.I.
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Table D.4 gives the Generalised Hough Transform results for closed boundaries in Fig. 

D.I (rotated by a degrees).

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 80 
D.l(a) PP 95 
D.l(b) MP 78 
D.l(b) PP 95

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 80 
D.l(a) PP 95 
D.l(b) MP 80 
D.l(b) PP 95
Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 80 
D.l(a) PP 95 
D.l(b) MP 69 
D.l(b) PP 95

Image used in R- Table
Fig. Bone No. Coords
D.l(a) MP 80 
D.l(a) PP 95 
D.l(b) MP 80 
D.l(b) PP 95

Fig. D.l(a)
No. % Ref
80 100 (x, y) 
95 100 (x, y) 
36 46.2 (x-1, y) 
40 42.1 (x, y+1)

Fig. D.l(a)
No. % Ref
80 100 (x, y) 
95 100 (x, y) 
39 48.8 (x-1, y) 
40 42.1 (x, y+1)
Fig. D.l(a)
No. % Ref
80 100 (x, y) 
95 100 (x, y) 
34 49.3 (x-1, y) 
40 42.1 (x, y+1)

Fig. D.l(a)
No. % Ref
80 100 (x, y) 
95 100 (x, y) 
43 53.8 (x-1, y) 
40 42.1 (x, y+1)

Fig. D.l(b) (a - 1°)
No. % Ref
36 45.0 (x+1, y) 
40 42.1 (x, y-1) 
78 100 (x, y) 
95 100 (x, y)

Fig. D.l(b) (a = -1°)
No. % Ref
39 48.8 (x+1, y) 
40 42.1 (x, y-1) 
80 100 (x, y) 
95 100 (x, y)
Fig. D.l(b) (a = I")
No. % Ref
34 42.5 (x+1, y) 
40 42.1 (x, y-1) 
69 100 (x, y) 
95 100 (x, y)

Fig. D.l(b) (a = -I")
No. % Ref
43 53.8 (x+l,y) 
40 42.1 (x, y-1) 
80 100 (x, y) 
95 100 (x, y)

Table D.4: Generalised Hough Transform open curve orientation results for Fig. D.I.
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D.2 Tl-Weighted, Gadolinium Enhanced 

D.2.1 Data set 2

Data set 2 is derived from a consecutive pair of Tl-weighted images (explained in 

Section 1) of the same finger, taken on the same occasion. Between the scans a contrast 

agent, Gadolinium (explained in Section 1), was intravenously injected into the patient.

Closed curves

Table D.5 gives the Generalised Hough Transform results for the boundaries in Fig. 

D.2.

Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 127 
D.2(a) PP 220 
D.2(b) MP 122 
D.2(b) PP 234

Fig. D.2(a)
No. % Ref
127 100 (x, y) 
220 100 (x, y) 
62 50.8 (x+3, y) 
113 48.3 (x+3, y+1)

Fig. D.2(b)
No. % Ref
62 48.8 (x-3, y) 
113 51.7 (x-3, y-1) 
122 100 (x, y) 
234 100 (x, y)

Table D.5: Generalised Hough Transform results for Fig. D.2.

Figure D.2: Bone contours derived from two MRI scan of a PIP joint.
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The results in this table indicate that the two bones in the images are misregistered 

by different amounts. Both bones are displaced by 3 pixels in the x-direction, but the 

proximal phalanx (explained in Section 1) is also displaced by 1 pixel in the y-direction.

Open curves

Table D.6 gives the Generalised Hough Transform results for open boundaries in Fig. 

D.2, The results in this table are the same as in the closed curve case.

Image
Fig.
D.2(a) 
D.2(a) 
D.2(b) 
D.2(b)

used in
Bone
MP 
PP 
MP
PP

R-Table
No.
68 
55 
62 
61

Coords
Fig.
No.
68 
55 
33 
30

D.2(a)
%
100 
100 
53.2 
49.2

Ref
(x,y) 
(x,y)
(x+3, 
(x+3,

y) 
y+i)

Fig.
No.
33 
30
62 
61

D.2(b)
%
48.5 
54.5 
100 
100

Ref
(x-3, y) 
(x-3, y-1) 
(x,y) 
(x,y)

Table D.6: Generalised Hough Transform results for Fig. D.2.
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Orientation Results for Closed Curves

Table D.7 gives the Generalised Hough Transform results for closed boundaries in Fig. 

D.2 (rotated by a degrees).

Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 128 
D.2(a) PP 220 
D.2(b) MP 123 
D.2(b) PP 234
Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 128 
D.2(a) PP 220 
D.2(b) MP 123 
D.2(b) PP 183
Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 128 
D.2(a) PP 220 
D.2(b) MP 122 
D.2(b) PP 220
Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 128 
D.2(a) PP 220 
D.2(b) MP 67 
D.2(b) PP 234

Fig. D.2(a)
No. % Ref
128 100 (x, y) 
220 100 (x, y) 
61 49.6 (x+3, y-1) 
87 37.2 (x+3, y+1)
Fig. D.2(a)
No. % Ref
128 100 (x, y) 
220 100 (x, y) 
61 49.6 (x+3, y+1) 
79 43.2 (x+3, y+1)
Fig. D.2(a)
No. % Ref
128 100 (x, y) 
220 100 (x, y) 
64 52.5 (x+3, y) 
111 50.5 (x+3, y+1)

Fig. D.2(a)
No. % Ref
128 100 (x, y) 
220 100 (x, y) 
33 49.3 (x+3, y) 
111 47.4 (x+3, y+1)

Fig. D.2(b) (a = 1°)
No. % Ref
61 47.7 (x-3, y+1) 
87 39.5 (x-3, y-1)

Fig. D.2(b) (a - -1°)
No. % Ref
61 47.7 (x-3, y-1) 
79 35.9 (x-3, y-1)

Fig. D.2(b) (a = i")
No. % Ref
64 50.0 (x-3, y) 
111 50.5 (x-3, y-1)

Fig. D.2(b) (a = -i")
No. % Ref
31 24.2 (x-3, y) 
30 13.6 (x-3, y-1)

Table D.7: Generalised Hough Transform closed curve orientation results for Fig. D.2.
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Orientation Results for Open Curves

Table D.8 gives the Generalised Hough Transform results for closed boundaries in Fig. 

D.2 (rotated by a degrees).

Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 68 
D.2(a) PP 55 
D.2(b) MP 62 
D.2(b) PP 62
Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 68 
D.2(a) PP 55 
D.2(b) MP 62 
D.2(b) PP 12
Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 68 
D.2(a) PP 55 
D.2(b) MP 62 
D.2(b) PP 61
Image used in R- Table
Fig. Bone No. Coords
D.2(a) MP 68 
D.2(a) PP 55 
D.2(b) MP 49 
D.2(b) PP 61

Fig. D.2(a)
No. % Ref
68 100 (x, y) 
55 100 (x, y) 
33 53.2 (x+3, y-1) 
30 48.4 (x+3, y+1)
Fig. D.2(a)
No. % Ref
68 100 (x, y) 
55 100 (x, y) 
33 53.2 (x+3, y-1) 
7 58.3 (x+2, y+1)
Fig. D.2(a)
No. % Ref
68 100 (x, y) 
55 100 (x, y) 
33 53.2 (x+3, y) 
30 49.2 (x+3, y+1)
Fig. D.2(a)
No. % Ref
68 100 (x, y) 
55 100 (x, y) 
31 63.3 (x+3, y+1) 
30 49.2 (x+3, y+1)

Fig. D.2(b) (a = 1°)
No. % Ref
33 48.5 (x-3, y+1) 
30 54.5 (x-3, y-1)

Fig. D.2(b) (a = -1°)
No. % Ref
33 48.5 (x-3, y+1) 
30 54.5 (x-2, y-1)

Fig. D.2(b) (a = 1")
No. % Ref
33 48.5 (x-3, y) 
30 54.5 (x-3, y-1)

Fig. D.2(b) (a = -I")
No. % Ref
31 45.6 (x-3, y-1) 
30 54.5 (x-3, y-1)

Table D.8: Generalised Hough Transform open curve orientation results for Fig. D.2.
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D.2.2 Data set 3

Data set 3 comes from a pair of Tl-weighted images (explained in Section 1) of the same 

finger, taken on the same occasion. Between the scans a contrast agent, Gadolinium 

(explained in Section 1), was intravenously injected into the patient.

Closed curves

Table D.9 gives the Generalised Hough Transform results for the boundaries in Fig. 

D.3.

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 122 
D.3(a) PP 230 
D.3(b) MP 117 
D.3(b) PP 235

Fig. D.3(a)
No. % Ref
122 100 (x, y) 
230 100 (x, y) 
56 47.9 (x, y) 
81 34.5 (x, y-1)

Fig. D.3(b)
No. % Ref
56 45.9 (x, y) 
81 35.2 (x, y+1) 
117 100 (x, y) 
235 100 (x, y)

Table D.9: Generalised Hough Transform results for Fig. D.3.

The results in this table show that the middle phalanx (explained in Section 1) in both 

images are perfectly registered, while the proximal phalanx (also explained in Section 

1) is displaced by 1 pixel in the y-direction.

Figure D.3: Bone contours derived from an MRI scan of a PIP joint.
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Open curves

Table D.IO gives the Generalised Hough Transform results for open boundaries in Fig. 

D.3.

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 69 
D.3(a) PP 80 
D.3(b) MP 67 
D.3(b) PP 87

Fig. D.3(a)
No. % Ref
69 100 (x, y) 
80 100 (x, y) 
33 49.3 (x, y) 
34 39.1 (x, y-1)

Fig. D.3(b)
No. % Ref
33 47.8 (x, y) 
34 42.5 (x, y+1) 
67 100 (x, y) 
87 100 (x, y)

Table D.IO: Generalised Hough Transform results for Fig. D.3.

The results in this table are the same as in the closed curve case.
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Table D.ll gives the Generalised Hough Transform results for closed boundaries in 

Fig. D.3 (rotated by a degrees).

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 122 
D.3(a) PP 230

D.3(b) MP 117 
D.3(b) PP 235

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 122 
D.3(a) PP 230 
D.3(b) MP 117 
D.3(b) PP 235

Image used in R- Table

Fig. D.3(a)
No. % Ref
122 100 (x, y) 
230 100 (x, y)

56 47.9 (x, y-1) 
90 38.3 (x-1, y)

(x,y)
Fig. D.3(a)
No. % Ref
122 100 (x, y) 
230 100 (x, y) 
56 47.9 (x, y+1) 
69 29.4 (x, y-1)

Fig. Bone No. Coords
D.3(a) MP 122 
D.3(a) PP 230 
D.3(b) MP 68 
D.3(b) PP 234
Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 122 
D.3(a) PP 230 
D.3(b) MP 117 
D.3(b) PP 235

Fig. D.3(a)
No. % Ref
122 100 (x, y) 
230 100 (x, y) 
29 42.6 (x, y-1) 
84 35.9 (x, y)
Fig. D.3(a)
No. % Ref
122 100 (x, y) 
230 100 (x, y) 
52 44.4 (x, y) 
80 34.0 (x, y)

Fig. D.3(b) (a = 1°)
No. % Ref
56 45.9 (x, y+1) 
90 39.1 (x+1, y)

(x,y)

Fig. D.3(b) (a = -1°)
No. % Ref
56 45.9 (x, y-1) 
69 30.0 (x, y+1)

Fig. D.3(b) (a = I")
No. % Ref
29 23.8 (x, y+1) 
84 36.5 (x, y)

Fig. D.3(b)(a=-i")
No. % Ref
52 42.6 (x, y) 
80 34.8 (x, y)

Table D.ll: Generalised Hough Transform closed curve orientation results for Fig. D.3.
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Table D.12 gives the Generalised Hough Transform results for open boundaries in Fig. 

D.3 (rotated by a degrees).

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 69 
D.3(a) PP 80 
D.3(b) MP 67 
D.3(b) PP 87

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 69 
D.3(a) PP 80 
D.3(b) MP 67 
D.3(b) PP 87

Fig. D.3(a)
No. % Ref
69 100 (x, y) 
80 100 (x, y) 
33 49.3 (x, y-1) 
34 39.1 (x, y-1)

Fig. D.3(a)
No. % Ref
69 100 (x, y) 
80 100 (x, y) 
33 49.3 (x, y+1) 
34 39.1 (x, y-1)

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 69 
D.3(a) PP 80 
D.3(b) MP 53 
D.3(b) PP 87

Image used in R- Table
Fig. Bone No. Coords
D.3(a) MP 69 
D.3(a) PP 80 
D.3(b) MP 67 
D.3(b) PP 87

Fig. D.3(a)
No. % Ref
69 100 (x, y) 
80 100 (x, y) 
26 49.1 (x, y-1) 
34 39.1 (x, y-1)

Fig. D.3(a)
No. % Ref
69 100 (x, y) 
80 100 (x, y) 
33 49.3 (x, y) 
34 39.1 (x, y-1)

Fig. D.3(b) (a = 1°)
No. % Ref
33 47.8 (x, y+1) 
34 42.5 (x, y+1)

Fig. D.3(b) (a = -1°)
No. % Ref
33 47.8 (x, y-1) 
34 42.5 (x, y+1)

Fig. D.3(b) (a = f)
No. % Ref
26 37.7 (x, y+1) 
34 42.5 (x, y+1)

Fig. D.3(b) (a = -I")
No. % Ref
33 47.8 (x, y) 
34 42.5 (x, y+1)

Table D.12: Generalised Hough Transform open curve orientation results for Fig. D.3.
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D.2.3 Data set 4

Data set 4 is derived from four Tl-weighted scans (explained in Section 1) of the 

same finger, on the same occasion. After the first scan a contrast agent, Gadolinium 

(explained in Section 1), was intravenously injected into the patient. Fig. D.4 illustrate 

slice 2 and Fig. D.5 illustrate slice 3.

Figure D.4: Slice 2 of a pre- and post-Gadolinium Tl-weighted scan.
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Figure D.5: Slice 3 of a pre- and post-Gadolinium Tl-weighted scan.
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Closed curves

Tables D.13 and D.14 give the Generalised Hough Transform results for slices 2 and 

3 respectively. Fig. D.5(a) required a scale (explained in Section 4.2.3) of 1.5, while 

Figs. D.5(b) and D.5(d) required scales of |.

Image
Fig.
D.4(a)
D.4(a)
D.4(b)
D.4(b)
D.4(c)
D.4(c)
D.4(d)
D.4(d)
Image
Fig.
D.4(a)
D.4(a)
D.4(b)
D.4(b)
D.4(c)
D.4(c)
D.4(d)
D.4(d)

used in
Bone
MP
PP
MP
PP
MP
PP
MP
PP

used in
Bone
MP
PP
MP
PP
MP
PP
MP
PP

R-Table
No. Coords
111
265
112
290
192
294
104
234

R-Table
No. Coords
111
265
112
290
192
294
104
234

Fig.
No.
Ill
265
52
131
56
107
59
87
Fig.
No.
56
107
45
105
192
294
68
101

D.4(a)
%
100
100
46.4
45.2
29.2
36.4
56.7
37.2

D.4(c)
%
50.5
40.4
40.2
36.2
100
100
65.4
43.2

Ref
(x,y)
(x,y)
(x,y)
(x,y)
(x, y+i)
(x,y+l)
(x,y)
(x, y+i)

Ref
(x, y-1)
(x, y-i)
(x,y)
(x-l, y-i)
(x,y)
(x,y)
(x,y)
(x,y)

Fig.
No.
52
131
112
290
45
105
49
77
Fig.
No.
59
87
49
77
68
101
104
234

D.4(b)
%
46.8
49.4
100
100
23.4
35.7
47.1
32.9

D.4(d)
%
53.2
32.8
43.8
26.6
35.4
34.4
100
100

Ref
(x,y)
(x,y)
(x,y)
(x,y)
(x,y)
(x+l,
(x,y)
(x,y)

Ref
(x,y)

y+i)

(x, y-i)
(x,y)
(x,y)
(x,y)
(x,y)
(x,y)
(x,y)

Table D.13: Generalised Hough Transform results for Fig. D.4.

The results in Table D.13 show that, initially, the finger is perfectly registered. After 

the second scan, the finger has started to move and the images are now displaced.

The results in Table D.14 are different to those in Table D.13. This may be due 

to the fact that these images are not as similar, by eye, as those in slice 2. This 

dissimilarity is partly a result of the different scales required to try and get images 

that are similar enough.
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Image used in R- Table
Fig. Bone No. Coords
D.5(a) MP 69

D.5(a) PP 159 
D.5(b) MP 86

D.5(b) PP 224 
D.5(c) MP 67 
D.5(c) PP 213 
D.5(d) MP 89 
D.5(d) PP 226
Image used in R- Table
Fig. Bone No. Coords
D.5(a) MP 69 
D.5(a) PP 159 
D.5(b) MP 86 
D.5(b) PP 224 
D.5(c) MP 67 
D.5(c) PP 213 
D.5(d) MP 89 
D.5(d) PP 226

Fig. D.5(a)
No. % Ref
69 100 (x, y)

159 100 (x, y) 
23 26.7 (x-2, y-3)

57 25.4 (x, y) 
35 52.2 (x, y+1) 
69 32.4 (x, y+1) 
25 28.1 (x, y-1) 
61 27.0 (x, y)
Fig. D.5(c)
No. % Ref
35 50.7 (x, y-1) 
69 43.4 (x, y-1) 
21 24.4 (x-1, y-2) 
94 42.0 (x, y) 
67 100 (x, y) 
213 100 (x, y) 
18 20.2 (x-1, y-1) 
78 34.5 (x, y-1)

Fig. D.5(b)
No. % Ref
23 33.3 (x+1, y+2) 

(x+2, y+3) 
57 35.8 (x, y) 
86 100 (x, y)

(x-1, Y-2) 
224 100 (x, y) 
21 31.3 (x+1, y+2) 
94 44.1 (x, y) 
38 42.7 (x, y+1) 
63 27.9 (x, y)
Fig. D.5(d)
No. % Ref
25 36.2 (x, y+1) 
61 38.4 (x,y) 
38 44.2 (x,y-l) 
63 28.1 (x, y) 
18 26.9 (x+1, y+1) 
78 36.6 (x, y+1) 
89 100 (x, y) 
226 100 (x, y)

Table D.14: Generalised Hough Transform results for Fig. D.5.
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Open curves

Table D.15 gives the Generalised Hough Transform results for open boundaries in Fig. 

D.4.

Image used in R- Table
Fig. Bone No. Coords
D.4(a) MP 71 
D.4(a) PP 71 
D.4(b) MP 76 
D.4(b) PP 76 
D.4(c) MP 80 
D.4(c) PP 78 
D.4(d) MP 80 
D.4(d) PP 78
Image used in R- Table
Fig. Bone No. Coords
D.4(a) MP 71 
D.4(a) PP 71 
D.4(b) MP 76 
D.4(b) PP 76 
D.4(c) MP 80 
D.4(c) PP 78 
D.4(d) MP 80 
D.4(d) PP 78

Fig. D.4(a)
No. % Ref
71 100 (x, y) 
71 100 (x, y) 
49 64.5 (x, y) 
29 38.2 (x, y) 
35 43.8 (x, y) 
38 48.7 (x, y) 
49 61.3 (x, y) 
32 43.0 (x,y)
Fig. D.4(c)
No. % Ref
35 49.3 (x, y) 
38 53.5 (x, y) 
43 56.6 (x, y) 
50 65.8 (x, y) 
80 100 (x, y) 
78 100 (x, y) 
34 42.5 (x+1, y+1) 
43 55.1 (x, y)

Fig. D.4(b)
No. % Ref
49 69.0 (x, y) 
29 40.8 (x, y) 
76 100 (x, y) 
76 100 (x, y) 
43 53.8 (x, y) 
50 64.1 (x, y) 
41 51.3 (x, y+1) 
34 43.6 (x, y+1)
Fig. D.4(d)
No. % Ref
49 69.0 (x, y) 
32 45.1 (x, y) 
41 53.9 (x, y-1) 
34 44.7 (x, y-1) 
34 42.5 (x-1, y-1) 
43 55.1 (x, y) 
80 100 (x, y) 
78 100 (x, y)

Table D.15: Generalised Hough Transform results for Fig. D.4.
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D.3 Different weights 

D.3.1 Data set 5

Data set 5 consists of a set of 3 different-weighted scans (explained in Section 1), Fig. 

D.6(a), (b), (c). The differently-weighted scans produce images with different contrast. 

After some manipulation of different scales, most similar boundaries were obtained by 

scales of |, \ and f for Fig. D.6(a), (b), (c).

Figure D.6: Bone contours derived from a PD-weighted image.
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Closed curves

The Generalised Hough Transform results can be seen in Table D.16.

238

Image used in R-Table
Fig. Bone No. Coords
D.6(a) MP 143 
D.6(a) PP 98 
D.6(b) MP 149 
D.6(b) PP 198 
D.6(c) MP 151 
D.6(c) PP 184

Fig. D.6(a)
No. % Ref
143 100 (x, y) 
98 100 (x, y) 
52 34.9 (x, y-1) 
36 18.2 (x+1, y) 
65 43.0 (x+1, y-1) 
27 14.7 (x,y)

Image used in R-Table
Fig. Bone No. Coords
D.6(a) MP 143 
D.6(a) PP 98 
D.6(b) MP 149 
D.6(b) PP 198 
D.6(c) MP 151 
D.6(c) PP 184

Fig. D.6(b)
No. % Ref
52 36.4 (x, y+1) 
36 36.7 (x-1, y) 
149 100 (x, y) 
198 100 (x, y) 
54 35.8 (x+1, y-1) 
63 34.2 (x+1, y+1)

Fig. D.6(c)
No. % Ref
65 45.5 (x-1, y+1) 
27 27.6 (x, y) 
54 36.2 (x-1, y+1) 
63 31.8 (x-1, y-1) 
151 100 (x, y) 
184 100 (x, y)

Table D.16: Generalised Hough Transform results for Fig. D.6(a), (b), (c).

The results for Fig. D.6(a) are very bad due to the proximal phalanx boundary 

being disconnected. A scale of | (Fig. D.6(d)) improves the results as shown in Table 

D.17.
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Image used in R- Table
Fig. Bone No. Coords
D.6(d) MP 144 
D.6(d) PP 180 
D.6(b) MP 149 
D.6(b) PP 198 
D.6(c) MP 151 
D.6(c) PP 184

Fig. D.6(d)
No. % Ref
144 100 (x, y) 
180 100 (x, y) 
69 46.3 (x, y-1) 
57 28.8 (x, y) 
49 32.5 (x+1, y-2) 
53 28.8 (x+l,y+l)

Image used in R- Table
Fig. Bone No. Coords
D.6(d) MP 144 
D.6(d) PP 180 
D.6(b) MP 149 
D.6(b) PP 198 
D.6(c) MP 151 
D.6(c) PP 184

Fig. D.6(b)
No. % Ref
69 47.9 (x, y+1) 
57 31.7 (x, y) 
149 100 (x, y) 
198 100 (x, y) 
54 35.8 (x+1, y-1) 
63 34.2 (x+1, y+1)

Fig. D.6(c)
No. % Ref
49 34.0 (x-1, y+2) 
53 29.4 (x-1, y-1) 
54 36.2 (x-1, y+1) 
63 31.8 (x-1, y-1) 
151 100 (x, y) 
184 100 (x, y)

Table D.17: Generalised Hough Transform results for Fig. D.6(d), (b), (c).

It has just been shown that images taken from different-weighted scans require 

considerable manipulation of the scaling factor in order to produce boundaries that 

are similar. A different approach would be to use image processing techniques to make 

the original images more similar before boundaries are derived. One such technique is 

standardization (explained in Section 4.1.2). Standardizing an image produces a very 

dark image, as the mean and standard deviation are now 0 and 1 respectively. Contrast 

stretching the standardized image will re-spread the pixel intensities over the available 

grey-level range available.

By standardizing and then contrast stretching the differently-weighted images, it is 

hoped that the resulting images will be similar enough to produce similar boundaries 

for the Generalised Hough Transform. This process has been tried for the original 

images in data set 5. Fig. D.7(a), (b), (c) are the boundaries derived from these 

images. The Generalised Hough Transform results for these boundaries are given in 

Table D.18.



APPENDIX D. GENERALISED HOUGH TRANSFORM RESULTS 240

00 O

Figure D.7: PD-weighted, normalised and contrast stretched.
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Image used in R- Table
Fig. Bone No. Coords
D.7(a) MP 156 
D.7(a) PP 170 
D.7(b) MP 149 
D.7(b) PP 190 
D.7(c) MP 146 
D.7(c) PP 97

Fig. D.7(a)
No. % Ref
156 100 (x, y) 
170 100 (x, y) 
73 49.0 (x, y-1) 
55 28.9 (x+1, y+1) 
47 32.2 (x+2, y) 
26 26.8 (x+1, y)

Image used in R- Table
Fig. Bone No. Coords
D.7(a) MP 156 
D.7(a) PP 170 
D.7(b) MP 149 
D.7(b) PP 190 
D.7(c) MP 146 
D.7(c) PP 97

Fig. D.7(b)
No. % Ref
73 46.8 (x, y+1) 
55 32.4 (x-1, y-1) 
149 100 (x, y) 
190 100 (x, y) 
53 36.3 (x+2, y+1) 
40 41.2 (x+1. y)

Fig. D.7(c)
No. % Ref
47 30.1 (x-2, y) 
26 15.3 (x-1, y) 
53 35.6 (x-2, y-1) 
40 21.1 (x-1, y) 
146 100 (x, y) 
97 100 (x, y)

Table D.18: Generalised Hough Transform results for Fig. D.7.

Open curves

(a) Standardized and contrast stretched

Table D.19 gives the Generalised Hough Transform results for open boundaries in 

Fig. D.7.

(b) Standardized with standard deviation

Table D.20 gives the Generalised Hough Transform results for open boundaries in 

Fig. D.7.
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Image used in R- Table
Fig. Bone No. Coords
D.7(a) MP 76 
D.7(a) PP 96 
D.7(b) MP 69 
D.7(b) PP 112 
D.7(c) MP 67 
D.7(c) PP 97

Table

Image used

Fig. D.7(a)
No. %
76 100 
96 100 
37 53.6 
35 31.3 
25 37.3 
26 26.8

Image used in R-Table
Fig. Bone
D.7(a) MP 
D.7(a) PP 
D.7(b) MP 
D.7(b) PP 
D.7(c) MP 
D.7(c) PP

No. Coords
76 
96 
69 
112 
67 
97

Ref
(x,y) 
(x,y) 
(x, y-l) 
(x,y) 
(x+2, y) 
(x+1, y)

Fig. D.7(b)
No. % Ref
37 48.7 (x, y+1) 
35 36.5 (x, y) 
69 100 (x, y) 
112 100 (x,y) 
28 41.8 (x+2, y) 
40 41.2 (x+l,y)

Fig. D.7(c)
No. % Ref
25 32.9 (x-2, y) 
26 27.1 (x-1, y) 
28 40.6 (x-2, y) 
40 35.7 (x-1, y) 
67 100 (x, y) 
97 100 (x, y)

D.19: Generalised Hough Transform results for Fig. D.7.

in R- Table
Fig. Bone No. Coords
D.7(a) MP 
D.7(a) PP 
D.7(b) MP 
D.7(b) PP 
D.7(c) MP 
D.7(c) PP

68 
109 
69 
107 
66 
97

Fig. D.7(a)
No. %
68 100 
109 100 
34 49.3 
33 30.8 
28 42.4 
34 35.1

Image used in R- Table
Fig. Bone No. Coords
D.7(a) MP 68 
D.7(a) PP 109 
D.7(b) MP 69 
D.7(b) PP 107 
D.7(c) MP 66 
D.7(c) PP 97

Ref
(x,y) 
(x,y) 
(x, y-i) 
(x,y)
(x+2, y) 
(x+i, y)

Fig. D.7(b)
No. % Ref
34 50.0 (x, y+1) 
33 30.3 (x, y) 
69 100 (x, y) 
107 100 (x, y) 
29 43.9 (x+2, y+1) 
35 36.1 (x+1, y)

Fig. D.7(c)
No. %
28 41.2 
34 31.2 
29 42.0 
35 32.7 
66 100 
97 100

Ref
(x-2, y)
(x-i,y)
(x-2, y-l)
(x-i,y) 
(x,y) 
(x,y)

Table D.20: Generalised Hough Transform results for Fig. D.7.



APPENDIX D. GENERALISED HOUGH TRANSFORM RESULTS 243

D.4 Inter Patient Analysis 

D.4.1 Data set 6

Data set 6 has been derived from four Tl-weighted images from different patients. 

Figs. D.4(a) & D.3(a) are considered as containing a similar pair of boundaries and 

Figs. D.8 & D.2(a) are considered as containing dissimilar boundaries.

Figure D.8: Bone contours derived from a 2nd MRI scan of a PIP joint.

Closed curves

The Generalised Hough Transform results for the most similar boundaries are 

displayed in Table D.21, while the Generalised Hough Transform results for the least 

similar boundaries are displayed in Table D.22.

Image used in R-Table
Fig. Bone No. Coords
D.4(a) MP 104 
D.4(a) PP 234 
D.3(a) MP 122 
D.3(a) PP 230

Fig. D.4(a)
No. % Ref
104 100 (x, y) 
234 100 (x, y) 
28 23.0 (x+1, y-14) 
52 22.6 (x+6, y-12)

Fig. D.3(a)
No. % Ref
28 26.9 (x-1, y+14) 
52 22.2 (x-6, y+12) 
122 100 (x, y) 
230 100 (x, y)

Table D.21: Generalised Hough Transform results for Figs. D.4(a) fc D.3(a).
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Image used in R- Table
Fig. Bone No. Coords
D.8 MP 165

D.8 PP 254 
D.2(a) MP 128

D.2(a) PP 220

Fig. D.8
No. % Ref
165 100 (x, y) 

(x+17, y+15) 
254 100 (x, y) 
27 21.1 (x-17, y-15) 

(x-16, y-15) 
31 14.1 (x+35, y-24)

Fig. D.2(a)
No. % Ref
27 16.4 (x+16, y+15)

31 12.2 (x-35, y+24) 
128 100 (x, y)

220 100 (x, y)

Table D.22: Generalised Hough Transform results for Figs. D.8 & D.2(a).

Open curves

Tables D.23 and D.24 give the Generalised Hough Transform results for open bound­ 

aries in Figs. D.4(a) and D.3(a) (considered to be most similar) and Figs D.8 and 

D.2(a) (considered to be least similar).

Image used in R- Table
Fig. Bone No. Coords
D.4(a) MP 74 
D.4(a) PP 73 
D.3(a) MP 66 
D.3(a) PP 83

Fig. D.4(a)
No. % Ref
74 100 (x, y) 
73 100 (x, y) 
24 36.4 (x+1, y-14) 
31 37.3 (x, y-16)

Fig. D.3(a)
No. % Ref
24 32.4 (x-1, y+14) 
31 42.5 (x, y+16) 
66 100 (x, y) 
83 100 (x, y)

Table D.23: Generalised Hough Transform results for Figs. D.4(a) & D.3(a).

Image used in R- Table
Fig. Bone No. Coords
D.8 MP 68 
D.8 PP 110 
D.2(a) MP 71 
D.2(a) PP 80

Fig. D.8
No. % Ref
68 100 (x, y) 
110 100 (x, y) 
22 31.0 (x-6, y-19) 
19 23.8 (x-4, y-12)

Fig. D.2(a)
No. % Ref
22 32.4 (x+6, y+19) 
19 17.3 (x+4, y+12) 
71 100 (x, y) 
80 100 (x, y)

Table D.24: Generalised Hough Transform results for Figs. D.8 & D.2(a).
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J 11) :h=re \v«rc r.o cuTr-:->ccs :n ndic;r«cai fsar^r;

• Larv^i i **rii(".'*
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p-)04

•*r\ji% co-T-mefl for Lar^ca

1 ^~) ''- \^

NC AX is ,ea ie%erc, om ^us i.aiJLir raicicpca: .'eacues to scro?osju\e 
ase ?moaslv rcpor.cd u-na prccrcunaucc is a rjrurai ccrjecucose a'L'ie laa Cui pcr^enu^c 
i irt\Qjv*ncnt -rcrtascs with uTcm*:-g rMJOloeicx jocnr,

=?.OGR£SSiON IN 
HA Cz:s. ^AVE

-tEN ^CVTH =HASE S=5?GNSE AND VZICLOGiCAL 
J\LY ?.HEU.MA:C:3 ARPKRITS DURING DIFr^.IVT D\LARJ>. 

-:-;rr. *'.' 5'^.:=? - H Nur^r '•' A ^an Ler-j^r- '.' H %^_- R !IS -*--K
M'T. 3 "CO S3 C'oningcn, The NIL-.- r-as.

A '.hforeiizai r^r.e.-^;:cil ->cct) ~^s ?em tsasiis.'.s: cefmir.g the ir.c^-uj rtiaticr. 
bei-ACCT ;LT.:-iri:r-2!fc C-:=^ci-".e :-r:e -. -Tl-CXP) '.ZTUS and radicioeici rrcmsion 
;rc5rj in early R_* Lsi~j en: ;;" '_•.: f.rrt i month.j a ;c.-<ianl 'V rerrcsc^. ~z -J-.c tndiv:
•^iaiionsnio brr*rr^ CAJ* ir.c \-r~ r̂ :r_.d tc ca::_.3'.cc. The mocei ir-mrcc 'o irs 
i=ura[C!> tn: etifr.i ci" X-crcrr •-. -I:T-^ ---sat*! v%u- ->c.-ox\cr.Ioroc'jin€ HC^! nc or ^ 
Tre presc-i sfjc> c^a.-iics :i:i -sc^ - ;^e.vj :m::d \vnh sulfasaia^:; iSSZi in
-Tic;fio:rexaic iMT^''

Mrthods. :->car :-a«r«!-*s ;rjc-- ;:" != 3MARO r,ji\e pauenis with RA is^mniorr.s 
year) unh 3 h-cr> n?K 3:' .X-v-s;- ?r =T.:J ^c-s :::a(ec >iin HCQ and. or rr-: !M >4:i cr 
SSZ andcr V.TX -- ' Vor.Lii;. C;l? >*-_s ir.ii &-rr.or:^tv Sharp scores 01 ~^r.^i r-.d frfl \
-letermmed. ~~t «.' .3. -.a ^e-r caJc^.nsJ -£ir.g j^ta ot" 0-6 months ana 12-^- fnonins for 
r:ticni

Resuili: Boi" t~'-:s -;t :r.TCi"ir e - — ~ tc^i 
TRP oiues. :.fc-r \-:r;- ".c :-e :- :..:_=: ';'
r^rwesn i^t t:'-jn '-•• .T c-I- -;rr:-i ~s ~-CR? ^a.uts -p'OCM or. a \-r*rzr 'p^uOf! 
nanifiC3r.il> !c-*er -• :r.s < St.. V.TX IT.: ;c-.rx-r%: :o -..re MCQ joid ::o.r Hawc^cr. •..
••aiLCS did -ot s.r'fr: :r-*?rr •.": i.":.:s

Conclusion- ~-;-? * is -.o -:":urr.:t ;:"'--; DMARIIi siudied on irt i-.C-> J-jal reiJti 
!xi%*«n TI-CR? •• i.jn r:c \-:rcr rrr ,r. ;hc caiCu.^rj V ^aiucs Cur^£ •_-.= :'.rst \e 
RA. There:crc -.i ~^;i i-s=.ss if. -:.- c.a; irierrreuttsn of CR? -.a -« - teuoon -. 
ra:e ol" X-r'crr .-.j:rrrr^=r.i :; L-.S ;?«..:".: SV.ARD vriL-.s-i
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Defining a Registration Algorithm for 
MRI Finger Images

G. P. Williams, P. A. Roach. S. Lloyd

Division of Mathematics and Computing. University of Glamorgan.
Trefforest, Wales

W. R. Stewart

Department of Medical Physics and Clinical Engineering. 
University Hospital of Wales, Cardiff. Wales

Abstract

In many magnetic resonance imaging (MRI) applications, it is neces­ 
sary to compare regions of interest (ROIs) on different images of the same 
patient. This comparison is often made difficult when the scanned tissue 
volume is not in exactly the same three-dimensional location every time. 
Registration, the accurate alignment of the images through the determi­ 
nation of a transformation from one image space to another, is necessarv 
so that ROIs may be compared correctly.

This paper outlines a new application of registration in the monitoring 
of rheumatic disease in the proximal interphalangeal joint 'L conduced 
at the University Hospital of Wales. In particular, registration is required 
for quantitative comparison of monomodal. seriailv-acquired images tx in­ 
crease the precision of treatment monitoring. These images correspond ro 
the tissue content of a slice of given thickness of the joint.

We bring ro light a number of complications which make identifying 
suitable transformations to achieve registration difficult. These complica­ 
tions preclude the straightforward application of a standard registration 
technique and require the development of a bespoke approach. In particu­ 
lar, this paper will show that 2D pixel-based registration is not appropriate 
for this application. It will go on to examine the factors of this problem 
which complicate registration and will suggest how suitable transforma­ 
tions may be determined. Characteristics of such transformations will be 
shown.

1 Introduction

In the Department of Medical Phvsics and Bioengineering at the rniversitv 
Hospital of Wales, a small bore 1.2 tesla Magnetic Resonance Imaging (MRI. 
system is used to acquire 2D cross-sectionai images of patients' ringers. The 
images are multi-sliced producing eight images each of which corresponds ro
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MP Middle Phalanx
MRI Magnetic Resonance Imaging
PD Proton Density
PIP joint Proximal Interphalangeal joint
PP Proximal Phalanx
RA Rheumatoid Arthritis
RIFF Resource Interchange File Format
ROI Region of Interest
SAVD Sum of Absolute Values of Differences
SMIS Surrey Medical Instruments
SSDA Sequential Similarity Detection Algorithm
UHW University Hospital of Wales
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