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Abstract

Feature Extraction and Object Recognition using
Conditional Morphological Operators

Stephen John Rees

This thesis describes the work undertaken on morphological operators for feature
extraction from, and segmentation and recognition of, objects within single 2-D images

under loosely controlled conditions.

The novel aspects of the work include the development of a conditional
morphological operator, the RJ operator, providing a direct measure of the occupancy of
one set by another. This was then applied to the direct extraction of structural features
from the intensity map in greyscale images, and to the recognition of objects within images
using these features. More complex algorithms for feature identification and object
recognition, including a mostly hit, mostly miss transform (MHMMT) and a multiscale
structural analysis were developed, using occupancy as the metric. The performance and
characteristics of these methods were investigated, using a symmetrical probe as the main

tool for analysis and manufactured and natural objects as test pieces.

Structural features were used as local descriptors of objects. These were extracted
by four methods: edge following, chain coding and curvature estimation; direct probing
with the R operator and templates; direct probing with the MHMMT; and a generalised R
analysis, a multiscale intersection of R operator templated results. The selectivity of the
techniques varied, the MHMMT producing the greatest rejection of data. The generalised

R analysis produced the most accurate location of features.

Two methods were adopted to interrelate the extracted features. The first
produced a sequence of perimeter features, by estimation of their relative rotations about a
calculated feature centroid. The second method interrelated the features as a web skeleton,

listing the orientations of each feature relative to the others in the set.

The multivalued function form of the RJ operator was used to identify the specific
object from a model library of poses of various objects. Different combinations of the
techniques for extraction and modelling were compared. All objects were recognised, and

their orientation determined with errors of between 15 and 25 degrees in the worst cases.
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Chapter 1: Introduction and Literature Survey
1.1 Introduction

The computer recognition of objects through image processing and image analysis
is an area of research which has received enormous interest over many years. Yet it is only
in the last few years that the necessary hardware and software has become available at
reasonable cost, opening a whole host of new applications for image analysis. This
diversity of applications has extended the boundaries of algorithm development, and
highlighted the deficiencies of current technology. Vision is probably the strongest of the
five senses, and therefore the most instinctive and natural to people. It is therefore an
unpleasant surprise to users to realise the lack of flexibility of recognition systems,
particularly when object recognition seems such a simple task. The great majority of
recognition systems are task specific and goal orientated, created for the solution of a

specific problem under controlled conditions.

The basic aims of this project were the recognition of objects from single greyscale
images, the extraction of object features for recognition, and the identification of texture in

texture samples.

The method of recognition adopted for this work uses a local feature descriptor
approach, based on structural features. The reasons for selection of this approach are
discussed in chapter 3, and relate to its inherent flexibility. The method requires
appropriate, extractable feature descriptions, and this fact guides the development of the
algorithms for its implementation. The basic problem is that of extracting a good set of
appropriate features for the description of the object, allowing comparison with a stored
reference equivalent model. Structural features are commonty chosen for local descriptors.
They are conceptually easy to understand (for example convex and concave corners,
curves, and straight edges on the perimeter of segmented object images) and have a well-
understood relationship in terms of perceptual significance (Larry S Davis, “Understanding
Shape”[32]).

Structural feature extraction techniques require considerable volumes of
processing, often of a sequential nature (chain coding/curvature estimation, polygonal
approximation [36, 38, 42, 43, 44]). In the case of the relationship based methods, the
benefits of parallel implementation are limited, and the task partitioning is likely to require
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sophisticated reasoning. Although useful and appropriate to many situations, such
methods are difficult where speed is essential to the processing task. For example, the
conversion of a guided missile into a *hitile” has been suggested to require a frame
processing speed of four hundred frames per second with current technology. Any optical
guidance system based on machine vision would need to acquire the image and extract the
object, recognise it and estimate rotation, scaling and translation (position) at a viable
frame rate. Added to the basic processing problem, the object might offer rapid aspect

change as proximity increases, exacerbating the difficulty of using global descriptors.

The extraction of the feature description is, therefore, one of the determinants of
the ability to perform the required task. Any processing algorithm takes time to run, and in
order to minimise image processing time it follows that an absolute minimum of pre-
processing can be used. Some of the basic operations can be pipelined and performed
adaptively (histogram equalisation, binarisation) on the input data stream. These
operations typically precede cleaning and extraction. = The more parallel the
implementation of these processes can be made, the more rapid the overall task operation.

More severe problems arise in optical textural analysis. Textured regions may not
be separable by simple methods - different textures may exhibit the same average intensity,
and overlapping or similar intensity histograms. The algorithms for resolving texture are
essentially dependant on area statistics - and are therefore more processing intensive. It is
not possible to simplify the area processing in its initial stages - the feature vectors must be
generated. Their later use is typically in a matching process, reliant upon multiple feature
aggregation. Common methods include: minimum distance classification; mahalanobis
distance; and various Bayesian statistical approaches which use weighted aggregation of
feature vectors as a decision classifier. The objective is to assign a sample to a particular
class of texture. A variety of feature generation schemes are used, exemplified by the
statistical classifiers. The first order methods, such as mean, variance, kurtosis, skewness
and entropy, are heavily reliant on illumination. The second order methods include co-
variance, and estimates based on co-occurrence matrices. They are based on spatial
interrelationships, directionally, about a point in the image. In general they are floating

point intensive calculations, and, as a result, relatively slow.

In the context of image analysis, the operators of mathematical morphology have
much to recommend them. They are essentially integer in nature; they are relatively

simple to calculate; their composition from simple processing operators lead to an efficient

3



hardware implementation; and they offer versatile tools for a variety of necessary
operations. They produce results based on the relationship between the geometrical shape
of the object to be analysed and a structural probe or structuring element. The structuring
element is chosen for some desirable relationship between its geometry and the proposed
goal in the modification of the image. As we shall discuss later, the morphological
operators lend themselves to a cellular implementation [6], offering the potential for high
parallelism in use. Their application to the various facets of image analysis has been

undertaken, as we shall now describe in the context of the existing literature.

1.2 On Mathematical Morphology

Mathematical morphology in the processing of digital images has found extensive
application in filtering, smoothing, enhancement, representation and recognition. As
might be anticipated from the wide variety of applications, a large body of research exists

into the theory and usage of morphological operators in image processing.

Mathematical morphology is based on the idea of shape as a fundamental principle
of a set or function. The basic principles were expounded by H. Minkowski in 1903 as
applied to set theory. The primary operators of set erosion and dilation are defined little
differently from the Minkowski addition and subtraction operators, from which they are
derived.

Binary set dilation is defined by:

A®@B = {ceE", acA, beB | c = a+b)}

or

A®B = U (A),

beB

Binary set erosion is defined by:

AOB = {xeE" | (x+b)eA VbeB} [1]

or



AGB = ~A), [2]

beB

where a,b are members of A and B respectively, E" refers both to Euclidean N-
space or its discrete equivalent, the set of N-tuples of integers, (A), represents the
translation of set A by element b, and A,B c E". The development of morphology as a tool
for image processing and pattern recognition can be attributed to G Matheron [2] and J
Serra [3]. The definition used here is adopted from the tutorial paper of Haralick et al [4],

as do the simple examples used below.
Binary Set Dilation and Set Erosion Examples

Consider the example below, of a binary 2-D set A dilated by a 2-D structuring
element set B. The set contents refer simply to the co-ordinates of the elements within
them.

Binary Set Dilation Example

A={(0,1),(1,1),(2,1),(2,2),(3,0)}

B={(0,0),(0,1)}

B
|—|. ] rl-T-
A A®RB

A®B={(0,1),(1,1),(2,1),(2,2),(3,0),(0,2),(1,2),(2,2),(2,3),(3,1) }

The physical effect of dilation is to enlarge the initial set, by adding components to
it. A conceptual model might be to place the origin of the structuring element at each

point in the set A, and add any components not already contained within that set.



Binary Set Erosion Example

This is a simple example of binary set erosion of a set A by a structuring element

set B, as shown below.
A={(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(3,1),(4,1),(5, 1)}
B={(0,0),(0,1)}
AGB={(1,0),(1,1),(1,2),(1,3),(1,4)}

[A-] B

AGB

The physical effect is to shrink the original set A. Now define the containment of
one set within another as occurring at a location where all its elements have corresponding
elements. A conceptual model might consist of placing the origin of the structuring
element B at each point in set A, and taking only the points where all the elements of B are

fully contained in A as the result. The result would be the erosion of A by B.

The Work of Matheron
Matheron first studied the concepts of opening and closing, these being secondary
operations defined as the sequential dilation of a set followed by erosion, and erosion

followed by dilation, by the same template set, respectively.

Opening is defined as:



BoK=(BOK)® K
Closing is defined as:
Be K= (B® K)OK

The physical interpretation of these operators is shown below, by the opening and
closing of a 2-D binary set A by a 2-D structuring element B.

Examples of Binary Opening and Closing of a Binary Set

r-| B
A

e AOB 3K A®B
AOGB®B o A®BOB
=A°B T, =AeB

Note that opening tends to sever thin isthmuses and remove small structures,

whereas the closing fills small holes about the boundary (or within) the set.

The iterative sequential applications of dilations and erosions produce idempotent
image transformations: further applications will produce no change in the resuit.
Matheron was primarily concerned with sizes and granularities, and used the opening and

closings to obtain sieves for granulometries.



In the Euclidean case, granulometry size distributions were obtained by finding

areas resulting from granulometries.

us(t) =m[(AotE)]

where ¢ > 0, m = Lebesque measure (area), A = compact set, E =convex compact

set, and 7= scalar multiplier (scaling factor) for E. tE, therefore, is a scaled version of E.

In the digital case, the digital linear geometric size distribution can be generated

using v(k) and h(k) as probes:

vky=|- 1| h(k)=(11---1)

The measures then become:

wi(k) = CARD((S o v(k))]
wa(k) = CARD|(S o h(k))]

where:

S = structure under test;
CARD = cardinality of the resulting set, i.e. how many elements it contains.

The result of application of these methods is a characteristic distribution or

signature, which is used to analyse the structure of the image under test. This is effective

in use with textured data.

Size distributions can be extracted using erosion rather than opening. The method

uses the horizontal and vertical covariance functions. Digitally, these may be represented

as



viky=}- |, h(k)=(1**--*l)

Then

wi(k) = CARD|(S©v(k))]
wa(k) = CARD|(SOh(k))]

The symbol * is here used to represent the background value of the probe
structuring element, chosen so as to give no real values for locations corresponding to the
pixels separating the outliers of the probe structure (often set to -o0). This establishes the

covariance function.

Giardina and Dougherty[5] describe a stochastic approach to size distribution,
based closely on Matheron's methods, in which the signature of the image is extracted
under sequential analysis by paradigm structuring elements. The set of structuring
elements E.E,,... ,E, are predetermined, the collection of which play (quoted from
Matheron) an "a priori constitutive role" in the definition of structure. The geometric

probability for a particular structuring element is defined as:

CARD(SOE, )

PIE < 8) == rn(s)

When applied for a set of elements E,E», .. ,Ey, .. ,En, this generates the probability

vector shown below:

P

P(E,c$)=| |kelm



The distribution of the probabilities Py offers a characteristic signature of the
image under test against the probe elements. The determinant of the success of the
approach is the correct selection of the structuring elements. Their “a priori constitutive
role” should be to offer the maximum separation between the classes of images analysed

with the minimum number of structures and repeated applications.

The Work of Serra

The work of Serra [3] underpins much of the modern application of mathematical
morphology, including the definition of the Hit and Miss Transform and the application of
morphology to binary images using spatial probe sets and functions. Serra was concerned
primarily with shape and connectivity measures. In the area of grey scale morphology
Serra extended the Hit or Miss transformation and the size distribution work from sets to
functions. He describes the use of grey-tone morphology to analyse functions in terms of
topological features, and indicates practical results obtained both by himself and others in

picture enhancement and cleaning.

The Work of Sternberg

S R Sternberg [6,7] introduces the general extension of mathematical morphology
to greyscale images, through the use of localised min and max operations. This approach
uses the idea of the top surface of the umbra of the function as the operable surface,
yielding the following definitions. (The meanings of top surface and umbra are illustrated
in figure (1) overleaf. The concept of the rolling ball transform, the points described by a
rolling ball moving over the surface of the function defining the dilated function, as the

means of calculating dilation by a circular function is due to Sternberg.
The greyscale dilation (2-D) of a function f{x,y) by a function g(i,j) is defined as:
(f®g)(x.y) = TOP[U[f(x)y)] @ Ulg(i.j)]]

(f@g)(x.y) = max { fix-iy-j) + g(i.,j) }
(ij)eglij)

where:
10



TOP = topsurface of the function;

U = umbra of the function (see figure (1) below);

max = maximum operator, used to define the peak value of the equation over the
region (i,j)e g(i,j).

Figure (1): Umbra and Topsurface of Functions

TOP(U[f(x)])
TOP(U[g(z)])

/

Ulfix)] Ulg(z)]

Taken together, TOP[{U[f(x,y}]] = fix.y).
Greyscale erosion is defined as:
(fOg)(x.y) = TOP[U[f(x,y)] © U[g(i.j)]],
and

(fOg)(x,y) = min{ fix+i,y+j) - g(i,j) }
(L)eglij)
where min = minimum operator, used here to generate the least value of the
equation over the given region defined by (i,j)e g(i,j).

The full set of operations and conditions defined by Serra and Matheron are

applicable equally to greyscale processing (see Haralick et al [4]).
H Blum: The Medial Axis Transform

In the search for global descriptors of shape many methods have been used. The
medial axis transform [8] basically requires the placement of a maximally sized disk at

11



points within the shape under test. The point belongs to the result if it is one at which a
locally maximal disk fits. Implementation of this algorithm through closing is an obvious
approach first described by Maragos [9], yielding a robust, rotation invariant 2-D shape
analysis technique. A small structuring element is successively applied to the image under
test. In the limit, the skeleton left is the medial axis transform of the shape under test.
Descriptions of this work include [10] and [11]. It must be noted that pre-processing is
required to obtain successful results, which can form a significant proportion of the

recognition algorithm work under uncontrolled conditions.

The Work of Bronskill and Venetsanopoulos: The Pecstrum

The pecstrum is a means of quantitatively assessing the geometrical structure of
multidimensional signals first defined by Bronskill and Venetsanopoulos [12]. This is
defined, for positive valued multidimensional discrete functions f whose umbra is a subset
of E=Z"" as:

P(n) = [Mes(f ong) - Mes(f o(n+1)g)]/Mes(f), n =0, 1, 2,...., +oo,
where

Mes(f) denotes the measure of f, which is defined to be area, volume, etc under f for

1D, 2D, etc, functions respectively.

f ong denotes the morphological opening of f by the structuring element ng.

ng represents the function g dilated by itself n times

The paper includes some sample data for 2-D binary and 2-D multilevel shapes,
and for 3-D binary object images. The shapes and objects chosen were distinctly different

and, in general, characteristically geometrical.

The Work of Maragos: The Pattern Spectrum

Maragos defined a global descriptor, the pattern spectrum, applicable to 2-D
shapes. The pattern spectrum offers a means of quantifying aspects of the shape-size
content of a signal (image) using successive openings or closings at different scales to
remove information from the image. The difference between successive iterations is used
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as the primary image information, yielding a size spectrum of the pattern content of the
function under test relative to the probe function (see [9], pp706 - 710).

The pattern spectrum of an image function is defined as shown below.

Pattern Spectrum for Discrete Binary Images
The pattern spectrum of X is the non negative function
PS(+n,B)= A[(X onB) - (X o(n+1)B], n>=0
PS,(-n,B)=A[(X e nB)-(X e (n-1)B)], n>=1
These are calculated using the forward area difference.
Pattern Spectrum for Graytone Images (Multilevel Signals)

The pattern spectrum of f{x,y), (x,y)e Z* relative to a discrete graytone pattern g is
given by the non-negative function

PS, (+ng)= Alf ong - f o(n+l)g], O<=n<=N
PS (-ng)= A[f eng-f o(n-1)g], I<=n<=K
where:

A) = X, fxy)

(a-b)(x) = a(x) - b(x)

N=(max nlfong!/=-V(xy)€ fixy))

K=(min n| U(f eng) = lim,,_U(f eng) < CH[U(f)])
CH = Convex hull of the function

Maragos expands these ideas to include orientation by using the idea of a unit
length line segment orientated at an angle to the axes as the probe structure.
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It should be noted that reconstruction from the pattern spectrum is not generally
possible because of the risk (in an uncontrolled world model) of two different images with
similar pattern spectra.

A Comparison of the Pecstrum and the Pattern Spectrum

The pecstrum (Brontskill and Venetsanopoulos) describes a shape in terms of its
decomposition under opening, based on the difference values of some generalised measure
Mes(X), made on each subsequent opened version of the image. The sequential opening
progressively removes larger features from the image. This difference value is normalised

by the same measure applied to the original image.

The pattern spectrum (Maragos) describes shape, again, in the form of a
decomposition. He describes the non-normalised use of both successive opening and
successive closing to generate a characteristic signature of the image. The particular
measure used is the area of the residual image. In the binary case, this is defined as the
residual pixel count following each opening (closing). The differences in this measure
between successive openings (closings) defines the pattern spectrum. The idea of
directionality in the analysis is introduced by Maragos, through the use of orientated line

segments as structuring elements.

Several other researchers have reported on the application of global descriptors to

information extraction using morphological operators, as is briefly summarised below.

Esselman and Verly [13] describe the use of structuring elements for extraction of
appendages and corners from 2-D range images with a modest degree of noise. Additional
results for simulated 3-D data were obtained. Corners were extracted by combining a
rolling ball transform approach to extracting external (silhouette) corers with a hit or miss
transform using an extensive set of bit patterns to indicate in-silhouette "triple” corners
(i.e. corners where three planes join in the object). Appendages are found by subtracting
the original image from the closing of the same image by a hemispherical structuring

element at various scales.

Shih and Mitchell [14] describe the use of greyscale morphological techniques for

the skeletonisation and distance transformation of objects (machine tools are used as the
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examples). Three structuring elements are used, the Euclidean distance, the City-block
distance and the Chessboard distance, each of which can be of any odd number size. The
image under test is successively eroded until no further change is obtained and a result
obtained for each structuring element. Generation of the Medial Axis Transform using

distance transformation is also described.

Heijmans and Ronse [15] describe an algebraic approach to mathematical
morphology based on lattices. Although no practical work is indicated, this paper is of
interest for its theoretical development in a formal mathematical framework.

Pitas and Venetsanopoulos [16] describe an approach to morphological shape
decomposition. The requirement is to decompose a binary shape into a union of simple
binary shapes, obtaining a rotation, translation and scale invariant result with a unique
form for each shape. The problem requires the identification of a set of open sets {X,, . . .
,Xn/ whose union is the original set X:

x={Jx,
i=1

The sets X; are defined as

X, =rB,

or
X, =B®B®B---®B (r, times)

The decomposition algorithm described takes the following form:

X =(X-X, )or,B
x=Ux,

O<j<=i
X', =0

The locus of the centres of the maximal inscribable objects r;B is given by

L =(X-X',)OrB
15



This algorithm has been successfully applied to complex shapes with a significant
compression of information for storage or transmission of the shape in a recognisable
form. The theoretical extension to application of similar methods for 3-D objects is

described, with no practical results.

This brief summary is meant by no means to be an exhaustive list of

skeletonisation applications in recent times.

Schonfeld and Goutsias [17] describe the use of the set-difference distance function
and mean difference function as quantitative measures of the degree of geometrical and
topological distortion introduced by morphological filtering. A minimax estimation
procedure for obtaining an optimal alternating sequential filter for eliminating degradation

noise while preserving geometrical and topological features is proposed.

Morphological Decomposition

The use of morphological filters to decompose an image into its primal parts was
initially proposed by Matheron, in the context of granulometries. More recently, research
has focused on the use of multiresolution image representations, where an iterative
application of morphological filters of increasing size is used to extract geometrical

structure information about the image under analysis.

Toet [18] describes the use of greyscale morphology to decompose the structural
pattern by subtraction of successive layers in the multiresolution representation. The
resulting code elements are tightly located and sized. By increasing the size of the
structuring element successively larger image details are omitted from the result. The
resulting morphological lowpass pyramid is a complete representation of the original
image, provided that flat structuring elements are used (non-flat structuring elements, such
as lozenges and cylinders, maintain the vertical boundaries in the resulting transformed
images). As such, the image can be reconstructed from the description produced, using a

corresponding morphological bandpass filter.

More recently, Wang, Haese-Coat, Bruno and Ronsin [19] have reported the use of
iterative morphological decomposition for texture analysis. Again, the entire texture
image can be reconstructed by the sum of all its component images, through the use of
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plane (i.e. flat) structuring elements. Successful classification of textures, and of texture
boundaries where textures abut, were reported with the use of relatively few texture
features. The basic process relies on classifying a window of a given size as belonging to a

particular texture region, based on a Bayesian conditional approach.

The decomposition procedure is described using the iterative formulation shown

below. The series of component images, s;(x,y), is the decomposed result.

fo(x,)’)=f(x,}’)
s;(x,y)=(f; o B,_)x,y), i=0,1,...n
fi+1(x,}’)=f,-(x0’)"s,-(x,)’)

This is summarised as a multisize or multiscale morphological decomposition
MMDI(], where:

s, (x,y)= MMDi[f(x,y),B].Ij =0,1,...,n),i€0,n

It is clear that limiting the sizes of structuring elements applied to a necessary
minimum set will improve the computational efficiency of the method. They report good
classification results based on the use of five vertical and five horizontal line structuring
elements, classifying up to 99 percent correctly samples from a chosen set of nine textures,

with a window size of sixteen by sixteen pixels.
Morphological Clustering for Pattern Classification

Postaire, Zhang and Lecocq-Botte [23] describe an approach to unsupervised
pattern classification based on the use of binary morphology. They suggest the use of a
3x3x..x3 n-dimensional hyper cube structuring element (as appropriate to the
dimensionality of the variate data) and opening/closing sequences to segment the cluster
data. Practical evaluations against the Isodata and K-Means methods are included, showing

an at least comparable performance for the data sets chosen.
Novel Filter Design Approaches

Harvey and Marshall [24] describe the use of artificial neural networks (ANNS) to
automate the design process for morphological filters for particular tasks, including soft
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and rank order filters. Matsopoulos and Marshall [25] describe the use of morphological

processing techniques for biological measurements from ultrasound images

The Problems with Mathematical Morphology

Several problems of using the morphological operators are evident in the work
described above. These relate primarily to the precision of the structural relationships
required between the structuring element and the data in the set under test. These are
summarised as follows:

(i) The erosion operator requires that the set or function under erosion must have a
complete containment of the structuring element for a point to belong to the result (binary),
or to belong to the result unmodified (greyscale);

(i1) the filters are therefore highly sensitive to noise and defects in the image;
(ii1) the filtered results tend to exhibit the geometry of the structuring element about the
perimeter of significant objects - notably a “blockiness” where area filling is an objective

(typically achieved using closing);

(iv) useful perimeter data may be eradicated by the use of morphological cleaning (as also

occurs with median and other rank order filters);
(v) the perimeter of the area of interest is moved by filtering;

(vi) pre-filtering may be used to limit the likelihood of defects and noise in the image,

resulting in further moving of object boundaries;

(vii) salt and pepper (impulsive) noise can cause difficulties with erosion/dilation

couplets.

It is to these problems that the work in this thesis addresses itself, in the context of

the object recognition and feature extraction problems.

Several methods have been developed recently to alleviate, or at least to minimise,
these problems.
18



Fuzzy Morphology: The Work of Sinha and Dougherty

The raising of morphology to a fuzzy definition is a relatively recent development.
It has obvious implications for the inclusion of a relatively large body of modern fuzzy set
theory into the application of morphology for image analysis. Sinha and Dougherty [20]
derive a fuzzy morphology based on a fuzzy index function, permitting the definition of
the various morphological operators and the corresponding Minkowski algebra in fuzzy

terms. The fuzzy index function / is defined as:

I(AB)=infu (x)
xell © A°AB

This measures the belief in the proposition “A is a subset of B”, with A and B fuzzy
sets. Using the prefix form operator(setl, set2), the fuzzy erosion, E(A,B), and dilation,
D(A,B), operators are defined as:

ﬂE(A,B;(x)=I(T(B,‘x),A)

and

:uD(A,B)(x)=»u(E(A ,-B)" X(x)

where:

T(B;x) = translation of B by x;

I(T(B;x),A) = index function measure of fuzzified set inclusion,

H(x) = membership function of the fuzzy set;

A = bold union of two sets;

U = Euclidean plane or Cartesian grid (universe of discourse).

Using the notation adopted in this document,

,'l(AGB)(x) =I[(B), N Al

where I = index function for fuzzified set inclusion,

and U 405, (x) = H so-n) (x), derived from the erosion-dilation duality theorem.
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Practical application of this work, in the form of fuzzy morphological filters is
given in [21] with practical results for object detection and enhancement in a limited set of

constrained conditions.

Koskinen, Astola and Neuvo [22] describe a rank order approach to evaluating
erosion and dilation, based on the idea of using some other function than the max and min
for obtaining a greyscale erosion (dilation) result. This is found to have improved the
performance of the morphological filters in the presence of noise to some extent. As is
noted in [20], this approach results in an opening and closing that are neither idempotent
nor anti-extensive and extensive, respectively. This work is described in more detail in

Chapter 2, in comparison with the methods derived in this project.

We ourselves (Rees, Jones [26, 27]) describe a conditional approach to
morphology, essentially loosening the erosion process by allowing known levels of
uncertainty (defined in pixel count) in the determination of the erosion marker. This work
forms the basis of Chapter (2) of this thesis.

Aims of the Project

The aims of the project may be summarised thus:

(1) To investigate the use of modified morphological operators as appropriate markers of
position of structural features, as tools for feature extraction, in the context of the problems

previously described;

(2) To characterise the operators, in terms of the requirements for initial processing (if
any) to permit successful application, and in terms of accuracy with respect to established

techniques;

(3) To devise a scheme for the use of the same, or similar, operators for the recognition of

objects from stored library feature sets;

(4) To develop an algorithmic architecture capable of the recognition task, suitable for

hardware implementation;

(5) To characterise the developed scheme with respect to established techniques.
20



Chapter 2: Theory 1 - The RJ Operator

Overview

In this chapter, we shall discuss the need for a modified form of set erosion, loosening
the conditions on membership of the result, and then describe one approach to development of
a possible solution. This forms one of the novel aspects of the research undertaken. We shall
compare the resulting filters with those created under another modified form of set erosion,
the soft morphological filters, clarifying the relationship between the two and the practical
differences that result. The range of morphological chain operations (opening, closing) and
direct applications (hit and miss transform, scale analysis) used in the later experimental work

will be stated, and illustrated with simple examples.
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2.1 Introduction

The morphological erosion operation is a direct measure of the occupancy of one set

by another. Binary set erosion is defined by:

AOB={xec E™"l(x+b)e AVb e B} [1]

or

A®GB= A (A)_, [2]
beB

where a,b are members of A and B respectively, E” refers both to Euclidean N-space

or its discrete equivalent, the set of N-tuples of integers, and A,B € E™.

The set erosion operation result is the set of points at which the eroding set, often
called the structuring element, is wholly contained. Such an operation offers a means of
locating one set within another, and therefore may offer a means of recognising an object from
extracted data. The problem lies in its precision - all elements of the eroding probe set must

exist within the set under test.

S R Sternberg [6,7] introduced the general extension of mathematical morphology to
greyscale images, through the use of localised min and max operations. This approach uses
the idea of the top surface of the umbra of the function as the operable surface, yielding the
following definitions. The concept of the rolling ball transform, the points described by a
rolling ball moving over the surface of the function defining the dilated function, as the means

of calculating dilation by a circular function is due to Sternberg.

Grey scale dilation of a function f{x) by a function g(z) is defined as:
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(f © g)(x) = TOP[U[f(x)] & Ulg(z)]]

f ©g)lx) = mmax {fix-z) + g(2) } [3]

Greyscale erosion is defined as:

(f0g)(x) = TOP[U[f(x)] © Ulg(z)]]

(fOg)(x) = min {fix+2) - g(2) } 4]

The full set of operations and conditions defined by Serra and Matheron are applicable

equally to grey scale processing (see Haralick et al [4]).

Consider the set erosion example of figure 2 below. The function g(z) is defined as

{position relative to its own origin, value at that position}.

Figure 2: 1-D Example of Grey Scale Erosion Principle

ﬂx) g(Z)={('210):('110))(0)0)’(]’0)’(210)}

% fix+z)

(f©g)(x)=min(f(x+z)-g(z)) where ze8(2)

For this very simple example, the effect is one of a spatial shift in the ramp function

fix). The value at each point in the result is calculated as the minimum of a localised set of
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results corresponding to the points in the structuring set g(z). In effect, this is a zero order

rank filter over the structuring element area.

Now consider the more complex situation shown below in figure 3. The erosion is
shown to reduce the size of the bright areas (assuming the vertical axis to be intensity). The
areas which survive unchanged are those at which the probe set is fully contained in the image
surface - in this case, only in the areas preceding the ramp edge of the function. As a
corollary, the grey scale dilation increases the size of bright areas. After dilation, the profile
of the intensity takes on the shape of the dilating structure. The practical effect is that of
sliding the origin of the template over the surface of the image function, and taking the

maximum value over the template region (area in 2-D functions).

Figure 3: The effect of Grey Scale Erosion and Dilation on Bright Areas in an Image

8(2)={('2, 0): ('1:0)1 (0) 0)’ (1,0), (2r 0)}

fix)
highest position at which g(z) fits
. \ wholly under f(x)
fx)+g(z)
h I /\ (feg)(x)=min(fix+z)-g(z)) where zc g(z)

(f® g)(x)=max(fix-z)+g(z)) where z€ g(z)
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Note that height h is the highest level at which g(z) is totally contained in f{x). Now
consider the function of figure 4 below, illustrating the effect of erosion on dark transitions in

an image. Here the dark areas are grown by the application of erosion.

Figure 4: Effect of Erosion on Dark Area Boundaries

- 4 . 8(2)={(-2,0)(-1,0).(0,0).(1,0)(2,0)}

fix)
f(x,""Z)
fix)+g(z)
e . —— (fOg)x)=min(fix+z)-g(z)) where zc 8(z)
X

2.1.1 The Justification of a Less Perfect Set Erosion

The requirement for full containment of the probe set renders formal set erosion
unwieldy for recognition purposes. It implies a need for a “perfect” set of extracted data if a
stored reference set is to be used as the probe, or an extensive reference set if the extracted
data is used. Given that feature extraction is not a trivial exercise, due, for example, to noise
or overlapping, then the likelihood of spurious inclusion or rejection of a potential feature will

result in an incorrect “miss” in the morphological comparison by set erosion.

This problem has been observed in picture enhancement applications using

morphological filtering. The filters, although achieving the required cleansing of the image by
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elimination of structures smaller than the probe (structuring element) set, also remove any part
of the information in the image smaller than it. This is undesirable, in that elements useful for
later processing operations may be eliminated. Consider the example below, using an erosion
for a modified slope density function contour signature for a simple shape with reference

models.

Example 2.1.1: Contour Following for Square and Trapezium Shapes, Separately and

Overlapped

Consider the overlapped trapezium and square of figure (5) below. One simple means

of modelling such shapes would be:

Shape Model = {length of side i, orientation of side i relative to some arbitrary axes,

position number}

Figure (5): Square, Trapezium and Overlapped Image

100 100
Side Lengths
141
100
200
5 .
Sequence of Extraction
4
0 degrees
3
>

+ve rotation
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For the example, sides aligned with the vertical grid of the image (increasing y 1),
surface normals directed in the negative horizontal grid direction («) are regarded as being at

zero degrees. The sequence of extraction is in the anticlockwise direction. Thus the model

databases for the two shapes would be:

Trapezium Model:  Set A = {(200,90,0),(100,180,1),(100,270,2),(141,315,3)}

Square Model: Set B = {(100,0,0),(100,90,1),(100,180,2),(100,270,3)}

The overlapped image data yields:

Overlapped Shape: ~ Set C = {(100,0,0),(100,90,1),(25,180,2),(150,90,3),(100,180,4),
(100,270,5),(71,315,6),(25,180,7),(100,270,8) }

As can be seen from the representational data sets in Table 1 for the two shapes and
the combined picture, the straightforward application of set erosion to identifying the shapes

will fail, because of the data diminution caused by the overlap.

Table 1: Set Erosion as a Marker of Position

COA = {T}
COB = {J}

The question, therefore, is one of the reduction of the requirement of complete
occupancy without overly degrading the useful performance of the filters. The degree of
acceptable degradation of performance is specific to the operations to be performed by the

filters.
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2.2 Development of the RJ Operator

The obvious approach is to loosen the rejection of the filter in some controlled
manner. One means of achieving this objective would be to permit acceptance of a point as
part of the eroded result in an unaltered state if some degree of partial containment of the

probe function is achieved. We have defined an operator for this purpose.

The RJ operator applies a probe set to a data set, and generates two results. The R set
indicates the degree of coverage of the probe set at a particular point in the image. The set of
sets J contains a J set corresponding to each element of R, indicating the required additions to
the set for full coverage of the probe set to be obtained. A J set is, therefore, generated for
each point in the set under test. Whilst this seems unwieldy, and is not used as part of the
conditional filter process which follows, it offers benefits in the analysis of the feature sets

extracted from the image for recognition purposes.

Consider the diagrams of figure (6) overleaf. The R set is a count of how many
elements of the probe structuring element B are contained at each position in set A. In this
example, set B is fully contained within set A at various positions. If we now apply a
threshold to the R set, requiring a value to be equal to the complete number of elements in set
B for its position to survive in the result, we can generate an equivalent to set erosion based on

the degree of occupancy observed. The operator is represented by the @, as A@B.

The diagram of figure (7) takes the concept one stage further. Here set C is not fully
contained within set A, at any of the points belonging to set A. The application of formal set
erosion to this situation would produce the empty set as its result. We could, however,
produce a “best fit” equivalent by considering those points where containment is most
complete. In the example two points (figure 7(d)) are nearest to full containment (i.e. the R

set value is highest, as found by taking the maximum over the R set region), the result being
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designated the R set. The elements missing at each of the loci in R are contained in the J sets,

Joo and Jy o, the subscripts defining the R element to which they are relevant.

Figure 6: Measurement of the Containment of Set B at the Various Points in Set A

(a) Set A (b) Set B
r- eje e r- o |e
(c) R = r values for A@B (d) Values of A@B corresponding

to full containment

£ 1 R: 3(3 J: D

] —] DD
[ry
W
W

N | WWw

(e) D=A®B = A©B:{r=3}

D: e As the definition of erosion used
o earlier implies, it is equivalent to
the positions where set B is fully
contained within set A

This work is more formally defined in section (2.2.2).

R=A@B={ac Alr=),(n), n=1where (b) €A}, [5]

beB
J={Js}Vae A, and J, = {jlj =1 where (b), ¢ A} [6]
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Figure (7): Measurement of the Containment of Set C at the Various Points in Set A

(a) Set A (b) Set C
r- ejoje r [ ] o je e

(c) R = rvalues for A@C

before max operation

f413[2] 1 Note that C is not fully
4[312]1 contained at any point
211 .
AN in set A

(d) R=max (A@C)

R: [4 Joo T :
4
The J sets hold the elements Jio |C
needed to complete the *
containment of set C within A

(e) E=AOC:{r=4}
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It is a plausible use of this approach to define a locus/loci of maximum likelihood of
containment of a feature set within a reference model, with the J sets allowing further analysis
of each locus. This would allow the determination of whether the point is a viable candidate
under any other constraints that may be applied to assist in identification of a good match. We
could also apply any other constraint to R to obtain the equivalent of a set erosion by some
portion of the probe structuring element, and thus generate different physical properties in the

result.

The grey scale morphological operators affect the shape of the processed function. If
the function were regarded as the top of a solid surface, they would affect the profile of its
ridges and valleys. This is the basis of Sternberg’s [7] lifting of binary to grey scale erosion,
and therefore the basis for the R set generation and the conditional operators defined later in
this chapter.

2.2.1 Grey Scale Discrete Functions

Consider the top surface form of greyscale erosion of a function f by a structuring

function k (see Haralick et al [4], or section (2.1) above):
JOk(x) = TOPIU[f10U[k]]
This may be interpreted as the minimum over the structuring function template:

JOk(x) = min{f(x+2)-k(z)}

Now, for any point (x;) € f(x)l(x; +2) € domain of f ,

if ULf(x; +2]12ULf(x)+k(2]DVz€k(2)
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then (fOk)(x,) = f(x,).

To clarify this, if (f(x; +2)—k(2)) 2(f(x,)—k(0)),Vz € k(z)then f(x,)—k(0)is
the result of the erosion over the template area. Any value at the origin of an eroding probe

structure other than zero results in a general darkening of the image.

In other words, any point in the original image belongs to the eroded result provided it
meets this criterion, subject to the general intensity offset implied by a value at the origin of
the structuring element. We can constrain the origin of the probe set to be of zero intensity
value with no loss of generality in the intensity profile of the probe sets. In order to relax the
criterion, we must allow the point value f{x;) to belong to the solution if components fail to

meet the criterion for formal erosion, ie. if (U[f(x; +2)]=2U[f(x;)+k(z)]) for some

proportion of zek(z) rather than for its whole. If the test is to be general, rather than
directional or for a specific fragment of the probe, then the metric for assessing coverage

should simply be the count of how many components of the probe set are contained.

In effect our measure becomes:
(f@k)(x)=R(x),J [7]
where

R(x)={r(x):N,x € f(x),(x+z € domain of )|
r= Em, m=1 where (f(x+2z) 2 (k(2)+ f(x));

zek(z)

m = 0 otherwise}

and J(x) = {J:}Vr e R(x)
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={j:Nlj=k(z) where f(x+2)=0,
J=k(2)—- f(r+z) where f(r+z) <k(2),
Vzek(2)}VreR(x)

A J(x) set may be generated for each locus in f{x) (and hence R(x)), and will contain a
number of elements up to the number of elements in k(z). It is primarily of use in recognition

model evaluation from set occupancy.

R(x) is, therefore, a measure of the rank of the difference of the origin of the probe
template and the current point in the image against the differences between the other points in
the template and their corresponding points in the image. Figure 8 below illustrates the
situation of a flat template k(z) passed over a dark area in the image function f{x). The effect
can be conceptually evaluated by placing the origin of k(z) at each point of f{x) and

considering the degree of containment.

Figure 8: R Operator Qutput over a Boundary Area

-« 4. - K2)={(-2,0).(-1,0),(0,0),(1,0),(2,0)}

MAx)

543333454333345 ———— R(x) = (f@k)(x)

The R value becomes a goodness of fit measure, closely resembling a fuzzy
intersection but constrained in that only fully contained elements count towards the generation
of an overall measure. This analogy becomes more obvious if we scale the value obtained by
dividing by the number of elements in the k(z) set.

i.e.R__(x)=R(x)/ N,R__(x)€ (0,1), where N = no of elements in k(z), or Card k(z).

norm norm
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This number might be regarded as an elementary measure of fuzzy erosion, in that

only wholly contained elements contribute to the value.

The R set result can now be used to generate a conditional erosion. Consider a partial
RJ operation generating only the R set. This set is then used as a template to mask the
original function. A point in f(x) is part of the result if R(x) meets some predetermined
condition. We might indicate the inclusion of a point unaltered by use of a template T(x), as a

binary mask showing which points meet the chosen conditions.

Let us denote this result as(f©k)(x):T(x), where, for some predefined condition,

condl:

T(x) = {tlt =1 where R(x) € cond1,t =0 where R(x) ¢ cond1,Vx € R(x)} [8]

Then g(x) = (f@k)}x):T(x)

and

(fOk)x):T(x)=

{glg = minf (x+2) —k(2)Vz € k(2),
where =0,
g=f(x)wheret =1, Vx e f(x)}

[9]

or, to state a more direct approach,

(fO©k)(x):condl =
{glg = minf (x +2) - k(2)Vz € k(2),
where R(x) & cond1,
g = f(x) where R(x) € cond], Vx € f(x)}
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The example of figure 9 illustrates the conditional erosion of the same function used in
figure 4, with the same probe structuring element. This is applied with the condition re {4,5},
as shown. The formal erosion is included for clarity. Note that several points survive

unchanged in the conditionally eroded version which do not occur in the formal erosion result.

Figure 9: Conditional and Formal Erosions of a Grey Scale Function

- o - - K2)={(-2,0),(-1,0),(0,0),(1,0).(2,0)}

fix)
543333454333345 —— R(x)=(f@k)(x)
..... } { . foklx)re{4s}

(fOk)(x)=min(f(x+2z)-k(z)) where z < 8(z)

We may also use the R set to generate a conditional dilation in a similar form, with
properties useful for enhancement and forming within clear limits a dual to the conditional

erosion already specified.
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It is consistent with the loosening of the conditions of erosion implied within the
conditional erosion that the conditional dilation will effectively increase the conditions
needing to be met to permit dilation to occur. We here require that a number of elements of
the dilating structure greater than a set threshold is part of the umbra of the function under
dilation, rather than a point simply being part of the top surface of the umbra under dilation, as

the condition that dilation is permitted.

Let us denote this result as ®.

Then:

(f®kYx):T(x)=

{glg =max f(x—2)+k(2)Vze€k(z)
where =0,
g= f(x) where tr=1,Vxe f(x)}

(10]

or

(f®k)(x):T(x) =
{glg =maxf(x—z)+k(z)Vz€k(2)
where R(x) e cond],
g = f(x) where R(x)¢&condl,Vxe f(x)}

When the condition is established as a threshold set to zero (i.e. full containment is
required), both conditional erosion and dilation forms collapse back to the formal set erosion
and dilation definitions. The examples of figure 10 overleaf illustrate the perceptual
differences between the formal erosion and dilation and the conditional equivalents generated
using the above approach. The probe structure applied is a three by three block of zero height.
The conditions applied are that R(x,y) exceeds the given threshold, i.e. that not less than the

given threshold number of components are not contained at the point in question. Note the
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A closer look at the iris of the eyes in the figures, and the levels of detail retained in
the feather train from the hat, illustrate the increase in residual information after the use of the
filters. The conditional filters allow significantly more detail to remain, and, in particular,
produce less growth in the dark areas within the image. This is best exemplified by an
examination of the iris and pupil areas of the images as the conditions on erosion are loosened

(as defined by increased containment values).

2.2.2 Multivalued Functions

Grey scale functions have the problem of a real value background. Every point in the
function will belong to the result, and the meaningful data is the degree of occupancy the

probe achieves at each point.

Once feature data are extracted from an image as a set, the background of such data
can be disregarded, or, as Dougherty discusses in [5], effectively set to -oo. For this sort of
data, the R operator can be calculated using a shift and intersect methodology, as is used for
formal binary morphological operations. In the conventional terminology adopted in
morphology, each element of a probe set is regarded as generating a shifted version of the test
data, the result being generated by intersecting these partial results. The strict intersection of
these partials will only yield a result where the formal erosion condition is met. We need
therefore to define a maximal intersection, being the loci at which the largest number of the
partials have a component. The R result is then the count of the number of partials in the

maximal intersection.

There is a further consideration. The possibility of partial overlap of an object exists,
yielding a description data set which is incomplete. Parts of the required information may be
wholly missing, or their values may be changed. To allow for this eventuality, and extract the

maximum information from the data obtained, we will need to include not only the completely
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covered components but also those which are partly contained as contributing to the R

evaluation.

The reformation below includes partially covered elements of the test set as
contributing to the R value. The R set now yields both the degree of containment of the probe
function at each location within the original data, and the corresponding J sets would, for each
point, indicate the additions needed to make containment complete. The loci of best fit are, of
course, the points of obvious interest. By obtaining the maximum values of R, we are
extracting the points of closest fit. The J; set(s) corresponding to the maximum R values

indicate the missing data required to complete the containment of the probe at each location.

Assume the multivalued domain has a background value of zero (this is simply done

for clarity in the equations below - and reflects a commonly used condition). Then:

(FEK)x)={xe F(x)Ir(x) = Z(n), n=1where F(x+2)#0,
z€K(2) [1 1]
n =0 elsewhere}

J={J }VreR,and

J, ={xe F(x), jlj = K(z) where F(x+z) =0,
j=k(z) - F(x+z) where F(x+2) < K(z2)}

We can also calculate the R result by a shift and intersect method:

R(x) = {rlr = no of partials in the intersection
of (F(x))_ Vzek(z),Vxe f(x)l(x+2)e Dr}

39



Z(n) , n=1 where [F(xi)]_Z N[F], #2,
R(x) ={x; € F(x);z, € K(2);r(x) =| k@ : |
n = 0 otherwise

and, as before,

J(x)}={J}Vr e R(x),

J, ={xe F(x),jlj= K(z) where F(x+z) =0,
J=k(z)= F(x+z) where F(x+2) < K(2)}

To extract the maxima of the function we simply require R(x) = max R(x), or, to restate

the above in a similar manner,

R(x) = {rlr = no of partials in maximal intersection

of (F(x))_,Vzek(z),Vxe f(x)I(x+2z)e€ Dr} [12]

Z(n) , n=1where [F(xi)]_ . h[F(x)]_Z 20,
R(x) = {x; € F(x);z, € K(z);r(x) = max| k) z }
n = 0 otherwise

and, calculated as before,
J(x)={J}Vr e R(x)

J, ={x e F(x), jlj = K(z) where F(x+2) =0,
Jj=k(z) - F(x+z) where F(x+2) < K(z)}

Given that this formulation minimises the unnecessary calculation of J(x) sets whilst

yielding the relevant information, it is the one used in the practical work later in this thesis.
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The binary case is simply a two valued case of this multivalued situation. We can

state it as an equivalent form:

R=A@B={ac Alr= (n), n=1where (b) € A},

beB
and
J={Js}Vae A,
where
J, ={jlj=1where (b), ¢ A}

Application of this approach to the erosion based shape recognition problem of

example 2.1.1 now yields a different solution:
Example 2.2.2: A Simple Monoscale Example for Multivalued Set Analysis

Once again the shape databases for the two shapes would be (see figure 5, page 26 )

{(side length, orientation, position in sequence of extraction),(...),....,(...))}

Trapezium Model {(200,90,0),(100,180,1),(100,270,2),(141,315,3)} =SetA
Square Model {(100,0,0),(100,90,1),(100,180,2),(100,270,3) } =Set B

The extracted image data yields:

Overlapped Shape  {(100,0,0),(100,90,1),(25,180,2),(150,90,3),(100,180,4),
(100,270,5),(71,315,6),(25,180,7),(100,270,8) } =Set C
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Table (2) below shows the results of the R-J operator on the image data for both
shapes. The R set elements are arranged as {0;, position number, r}. Here 6; represents the
orientation of the component of maximal fit, the position number confirms its position in the
sequence of sides of the extracted overlapped shape data, and r is the number of components
in the maximal fit. The J, sets for each R element are arranged as {(missing component
needed for full containment of element, 9;, position number)}. The partial shift and

intersection is shown explicitly in Appendix A.1 for further clarity.

Although a direct inspection of the overlapped figure shows that the square shape
would fit completely within the trapezium, the edge length/orientation model does not offer
the position corresponding to this as a most significant locus. This is simply because of the

absence of the fourth side information at that position.

Table (2):

C@A :R={(03,4)}
2 Jo3 = {(50,90,3),(71,315,6)}

C@B :R={(0,0,3),(90,3,3),(-90,-1,3),(0,2,3)}
:J= {Joos Jo03, J90-1, Jo2}

J={{(75,180,2),(100,270,3) },{(100,360,6)},{(100,-90,-1),(75,180,2) },
{(100,0,2)} }

The trapezium has only a single position of maximum likelihood, and a
correspondingly simple J set. Therefore locate the trapezium data at the indicated position (ie
starting at the 3rd element in C) and subtract the data from the scene image. Negative lengths
have no meaning in this operation, simply implying that a side has been fully covered. They

are therefore dropped from the resulting set { C-A} and the elements of {C-A} renumbered. If,
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following subtraction, two adjacent sides in the set are at the same angle, it is consistent with a
logical physical interpretation to assume that they may be the continuation of the same side

and may therefore be consolidated into a single value.

(C-A) = {(100,0,0),(100,90,1),(50,180,2),(100,270,4) }

Re-applying the operator yields:

(C-A)@B R = {(0,0,4)}
2Joo= {(50,180,2)}

Now consider the J sets from C@A and (C-A)@B. The shape in the accumulated J
sets from the accepted orientation estimations indicates the area of overlap. The fact that this
forms a closed polygon (sum of components in orthogonal directions is zero) increases

confidence in the solution.

Where all elements of a scene are included in the model database this technique might

be used recursively to identify each shape or object.

The hypothesis and subtraction technique using the J sets thus offers a means of
increasing confidence in the apparent results. Such simple shape, monoscale images are
unrepresentative of the general class of recognition problems. The technique is applicable to

more COl’IlplCX scences.

2.3 Soft Erosion Compared with the RJ Conditional Approach

An alternative approach to loosening the constraints of formal erosion is that of the
soft morphological filters. The soft erosion of a function f{x) by a pair of structuring element

sets A and B is defined by Koskinen, Astola and Neuvo [22] as:
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fO[B, A.k](x) = k™ smallest value of the multiset {k0f (a):a € A, } U {f(b):be (B - A),)
A ={x+a:a e A} ie A translated by x

kOx = x,x,x,...,x ktimes

The output of the filter at a point is the minimum of the set {f(a):a € A, }if that value
is smaller than the &™ smallest value of the set { f(b):be(B— A),}; otherwise it is the K®

smallest value of {f(b):be(B—-A), }.

The set A forms the hard core of the erosion, set B forming a soft umbra about it. In
the umbra area the min and max operators are replaced with other rank order statistics, defined
by the parameter k. This work includes the important idea of using some rank other than the
max or min as the determinant of the result with morphological processing. A simple
comparison example between the soft erosion of a function, the rank conditioned erosion and

the formal erosion of it by an equivalent probe set is shown in figure 11 overleaf.
Now let A= (empty set)
then fO[B,d,k](x) = k™ smallest value of {f (b):b € B, }
In other words, the “hard” core A is no longer relevant, and we are using the “soft”

umbra B alone to define the solution. This is a straightforward rank filter implementation over

the chosen area. The shape of the area is the morphological contribution to the outcome.
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Figure 11: Soft Erosion, Conditional Erosion and Formal Erosion of a Function

Soft Erosion - B={(-2,0)(2,0)}

Used for l: -4+ - A={(-1,0),(0,0),(1,0)}
+
[ -+ - - 8(=&)=((-2.0)(-1,0),(0,0),(1,0),(2,0)}

8(z)=AuUB

fx)

Soft Erosion

..... f { e o ———fOIBA2](x)

R Conditioned Erosion
e ; e e e (fOB)(x):re{4,5}

Formal Erosion
(fOg)(x)=min(fix+z)-g(z)) where zc §(2)

(The soft erosion with k=1
Teer e gives the same result.)

As an example, if
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then the median filter (3x3) = 5" smallest value of {f(b):be B },Vxe f(x),
equivalent to fO[B,J,5](x).

Now let B=@, then fO[D,A,k](x) =min{f(a):ae€ A }, which is the practical

statement of set erosion of a function f{x) by a flat set A.
If A is flat, for all elements a of A, A(a)=0, and
fOA(x) = min{f(x+a)— A(a)} = min{f (x +a):a € A}

In order to make an adequate comparison between the soft morphological erosion and
the rank conditioned erosion we propose, it is necessary to lift the soft operator to the grey
scale function by function form. To do this, we will follow the basic ideas of Sternberg’s
original lifting of set by set erosion to function by function using the umbra and top surface
operators. The soft erosion of a function f{x) by a core function g(y) with a soft umbra

function A(z) becomes:

f0lh,g.k|(x) = TOP(UL £ 1O[U[R), Ul gl k) =
k" smallest value of the multiset {kOQ(TOP(U[f (y)]) — TOP(U[g(y—-x)D)):y € (g(y),}v
{TOP(U[f(2)]) = TOP(WU[h(z—x)]):z € (W(2)) .z € (§(¥),}

But TOP(U[f]) = f , giving rise to the pragmatic greyscale discrete equivalent

fOh, g,k](x) = k™ smallest value of the multiset
kO(f ()= g(y=x)):y € (g} V{f (@) -h(z=x):z€ (W(2) .22 (&(¥),}
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An example of soft erosion, formal erosion and R conditioned erosion is shown in

figure 12 below. The calculation of the point values shown is given in Appendix A.2.

Figure 12: Example of Soft Erosion, Formal Erosion and Conditional Erosion for a

Non-Flat Structuring Function

i(y)={(-1,-1),(0,0)(1,1)}, h(z)={(-2,-2)(2,2)},
8(2)={(-2,-2).(-1,-1),(0,0),(1,1),(2,2)}

Soft Erosion

yAs fix)
ST N—— folhi2](x)

Formal Erosion

fix)
(feg)x)

R Conditioned Erosion

fix)
Jog(x):re{5,4}
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The R conditioned erosion does not use a hard core to the function, so let us replace

g(y) with the null function &. Then

fO1.D,k](x) = k™ smallest value of { f(z) - h(z - x):z € (h(2)), }

The difference now is in the use of the rank as information. The R erosion as it has
been defined allows a point to belong to the result unchanged if it meets the rank conditions
applied, the min operator being applied over the difference of functions in the region of the
probe function if the conditions are not met. The equivalent operation could then be defined
by varying the value of k, in effect defining it as a function with different values according to

position in the image function. This could be stated as:

f©h(x):condl = fOLh,D,kl(x), k = r(x) where r(x) € condl,k =0 otherwise .

2.4 R] Operator Applied to Standard Morphological Operations

The most standard and widely used of morphological operations for image processing
are opening and closing. Opening consists of an erosion followed by a dilation with the same
set. Closing is defined as a dilation followed by an erosion with the same set. In this work,
the RJ operator conditioned erosion and dilation will be substituted for the formal operators in
both opening and closing. The practical implementation of such an approach requires some

thought.

Consider firstly the conditional closing. If the dilation is conditional, and the erosion
unconditional, the result will be closed to the probe function, as would the result of any formal
erosion having a non-empty set value. By setting the conditions on the dilation (usually as a

straight forward greater than the particular threshold), the closing can be made to produce less
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of an increase in the size of the probed set. In effect, it is a less complete closing of the
surface, but still closed to the particular probe set. If the erosion is also made conditional, the
result is neither idempotent nor necessarily closed to the probe set. It is, however, increasing

with repeated iteration of the operation.

With opening, if the dilation is made conditional and the erosion unconditional, the
result is decreasing with iteration of the operation, but not idempotent. The application
produces fewer components in the result than the formal opening. With conditional erosion,

the result is neither necessarily decreasing nor idempotent.

In effect we are binarising the R set, choosing the threshold value at which the R locus
is set to a 1 or O condition, and logically ANDing the result with the function under test. The

probe set for the operation would be chosen for specific spatial attributes.

The conditional erosion and dilation have been described previously and denoted by ©

and ® respectively.

2.4.1 Perceptual Effect of Greyscale Operators

Greyscale opening and closing operators modify the intensity profile of features within
the image under test. The opening operation is used to remove small light details while
leaving the overall grey levels undisturbed. The closing is used to remove small dark details
while leaving overall grey levels relatively unaltered. Large structures are not significantly

modified.

The reason for applying the conditional erosion and/or dilation in place of the formal
equivalent is to improve the perceptual quality of the result. By a judicious choice of
structuring function, specific structural details can be removed with less effect on the

perimeter of larger features than can be achieved with formal opening or closing.
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2.4.2 Greyscale Opening

The greyscale opening, as in the binary case, can be defined according to the four
combinations of operation: formal erosion, formal dilation; conditional erosion, formal
dilation; formal erosion, conditional dilation; conditional erosion, conditional dilation.

Using the shorthand form for the definitions:

fo k=(fGk)®k

Substituting the conditional erosion for the formal erosion:

fok=(fOkicond)Dk

Note that the condition applies to the conditional part of the operation. An alternative
operation would substitute the conditional dilation for the formal dilation. In this case, the
format of the conditional opening would be:

f ok =(fOk)®k:condl

A third option, combining conditional erosion and conditional dilation, exists. The

conditional opening then yields:

fok=(fOk:cond)®k:condl

2.4.3 Greyscale Closing

The greyscale closing of a function f'by a function & is defined as:
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fek=(fDk)Ok

The conditional variants are then:

(i) Formal dilation / conditional erosion

fek=(fDPk)Ok subjectto condition condl

or

feok:icondl=(f ®k)Ok:condl

(i) Conditional dilation / full erosion

feok=(f®k:condl)Ok

(i11) Conditional dilation / conditional erosion

The full conditional approach will then give:

fekicondl=(f®k:cond)©k:condl [13]

Consider now the closing of an image subject to noise. With 10% pepper noise only,
using formal closing and a three pixel square block template is effective in the elimination of
the contamination, but at the cost of blockiness in the result. The use of a cross template

reduces this effect. In the presence of salt and pepper noise, the formal closing produces far

less desirable results: the growth of the bright areas is a severe distortion, which is not
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compensated by the subsequent erosion where the dilations of the salt noise pixels overlap

each other. This is shown in figure 13(g) below.

The conditional openings using symmetrical and asymmetrical conditions and the
same block template are shown in figures 13(a) - 13(h) for the same three by three flat block
template. The lower residual noise results from the higher requirement for dilation to occur,

reducing the likelihood of overlap of bright pixel dilated areas.

This set of images illustrates the use of symmetrical and non-symmetrical conditions
on the conditional dilations and erosions forming the conditional closing. The effects of
increasing the conditions for permitting dilation to occur are clear. The lower residual noise
in the images where this has occurred results from the reduced likelihood of overlap of the
bright pixel dilated areas.

The significant differences brought about by the use of the conditional erosion are best
exemplified by figures 13 (b) and figure 13(g). Figure 13(g) is the formal closing of the noise
contaminated image. The dilation products of the first stage of the closing overlap to form
structures which are then of sufficient size to remain as noise objects (although, inevitably,

pruned) following the subsequent erosion.

The case of figure 13(b) represents the limiting case for least information addition
through conditional closing. The only points certain to meet the dilation condition of full
containment of the block structuring element are the pepper noise impulses. The salt noise
impulses, the area of which is not increased because of the dilation condition, are highly likely
to miss the formal erosion condition of full containment. They are, therefore, removed from

the conditional closing result.

The other figures show a range of intermediate conditions between these limits,
illustrating the increased retention of noise as the dilation condition is brought nearer to its

formal equivalent containment requirement.
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2.5 Greyscale Mostly Hit, Mostly Miss Transform

The binary hit and miss transform accepts points as part of the solution where shape
compatibility occurs. It was created to give a marker of position, useful in the identification
of particular spatial structures in the given image or data set. Moving this idea to greyscale
functions requires that the profile of the probe functions be used, rather than the basic shape.

This fits with the definition of greyscale erosion based on the idea of umbras of functions.

In addition, the complement of the set must be considered. This is considered to be

the complement of the function within the domain of the function.

ie.

fc(x’y)z (Imax —f(x?y))

where f° is the complement of the function f, and I__ is the limit of the domain of

X

the function (i.e. its maximum value).

The binary hit and miss transform is defined as:

HMT = (A®B) N (A°OD)

where A is the set under test, A is its complement, and B and D are the structuring

elements applied to them respectively.

The question now arises as to the use of a greyscale version of such an algorithm -and
therefore the final form assumed by the greyscale variant equations. In the purest sense, the
greyscale version collapses to a binary solution, and the overall effect is simply to test for

function gradients within the set under test. In effect:



Greyscale HMT = (f (x,y)©g(&,m) N (f (x,y)Oh(i, v))

and the result is a set of points meeting the requirement set by g(x,y) and h(x,y). The problem
here is that the formal erosion does not produce a binary output. The intersection is then
ill-defined: it might be a fuzzy intersection; it might be subject to some condition for degree

of intersection to determine the acceptability of a candidate point in (x,y).

Using the conditional erosion does not remove the problem: the result remains only
definable in fuzzy terms. We can, however, use the R operator with conditions to produce a
directly interpretable result.

The RJ operator as we have defined it previously implicitly provides a solution to this
difficulty, in that the conditional acceptance of a point as part of the solution can be
determined through the setting of a threshold. The T(x,y) sets provide a direct means of
obtaining a non-fuzzy intersection.

The greyscale MHMMT can therefore be established as:

MHMMT = T,(x,y) A T, (x, ) [14]

where:

T, (x,y) = {tlt =1 where R, (x,y) € cond]l,
t = 0 elsewhere}

T,(x,y) = {tlt = 1 where R, (x,y) € cond?2,

t = 0 elsewhere}
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Rl(x’y) = f(x,}’)@g(&n)

R,(x,y)= f(x,y)@h(u,v)

In the trivial case, if the conditions condl, cond?2 are set to be equal to the total number
of components in g(x,y) and h(x,y) respectively, the result is a form of greyscale hit and miss

transform.

This mostly hit, mostly miss greyscale transform has obvious applications in direct
identification of features within a greyscale image. The result is a binarised found / not found
set. Where a symmetrical feature probe set can be established, a quasi non-directional feature
analysis can be undertaken, removing one of the major problems of using morphological
filters in general case recognition applications (ie freedom in rotation, translation, and, where

the feature probe is relatively small, scale).

Chosen structural feature types within an image may be enhanced in the presence of
noise and texture using an extension of the MHMMT. By using increasing sizes of a
template, features below a predetermined size may be eliminated. Combinations of templates
with specific spatial components enable the removal of noise and texture effects within the
bounds set by the template. We can therefore define a spatial structure identification scheme

based on the results of multiple R analyses as is shown below:

Locus = N7 (x,y) [15]

where:

T (x,y)={tlt =1 where R, (x,y) € cond n,
t =0 elsewhere, Vx,y € R, (x,y)}
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R =f(x,y)@Fk, (g,1n)
k, = specific probe structure, the n" from the set of N to be applied

The set of probe structures is chosen for the appropriate elimination of particular shape

and gradient combinations in the original image.

We might further define an analysis with respect to a particular set of increasing sizes
of a particular structuring element. This will be used in conjunction with broadly isotropic

probe functions to extract features at multiple scales. In this case,
kn=((...0ko® S) D S)D... DS) ntimes.
A conventional texture feature analysis can be generated from this methodology

Locus = NT,(x,y)

where:

T (x,y)={tlt =1 where R, (x,y) e cond C ,
t =0 elsewhere, Vx,y € R (x,y)}

R, = f(x, )@k, (g,1)
k, = specific probe structure, the n'™ from the set of N to be applied

C, = specific conditions applicable to set n

The set of probe structures is chosen for appropriate properties, to eliminate particular
shape and gradient combinations in the original image. We could, therefore, hunt for specific

structures in the texture, characteristic of the texture under analysis.
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We might further define an analysis with respect to a particular set of increasing sizes
of a particular structuring element. Toet [18] and Verhoees [41] have discussed the
decomposition of image structures using sequential applications of openings. Progressively
larger dilations of a flat probe structuring element are applied. The objective is to produce a
signature characteristic of the texture under test. The particular benefit of using a flat
structuring element is the resultant ability to reconstruct the original image from the data
eliminated in each sequential application (non-flat structuring elements preserve
discontinuities in the original). The equivalent process might be of interest, particularly if the
probe structuring element were chosen for the identification of a small set of spatial
components. The increased size would then correspond to a different small set of spatial
components. This is approaching a form of spatial domain component analysis, similar in

concept to a frequency domain spectrum analysis.

The main difference is in the generation of the structuring element. Other researchers
[12, 18, 19] have discussed the use of dilation to generate increasing sizes of templates, and
this is appropriate for the use of block type structures. The basic method would involve the
use of a point function for k,, with the structuring element for dilation, S, possessing the
spatial attributes required by the analysis. This preserves the required attributes as the

increasing sizes of structuring elements are created:

k,=((...(ko® S) D@ §)D...BS) ntimes

where S is the (greyscale) dilating function, and ko is the base template, usually a point

function.

For the sparse templates used later in this thesis, the base template, g, possesses the
basic spatial attributes needed for the analysis, and the dilating function capable of the linear

increase in size of the basic shape (unfilled) is used for S.

59



That is, the dilating function capable of transforming

e o o mto e ° .

e + o

e o o . + °
. ° °

Such a template is an imaginary function, chosen for notational compatibility.

The texture features could now be defined in terms of the histogram (probability
density function) of occurrence of each rank of the template in the image, for each size of

template applied. The elements, h;, of the histogram H, for each size of probe function k,

applied are defined as:

H,={ie CARDk, b, = Y m(x,y), m=1where r(x,y) =i, m=0 otherwise}

x,YeR,

[16]
R, = f(x,y)@k, (€M)

kn=((..(ko® S)D S)D...DS) ntimes for particular size n.

We arrive at a characteristic histogram at size n, H, = {H,,i € CARD k,} . The overall
feature descriptor will be the set of sets H, where H={H,}, where n € (0, N), the set of N

probe functions &, applied to undertake the analysis. The use of this work will be discussed in

Chapter (5), section (5.7).
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2.6 Summary

The loosening of the conditions on formal erosion has been achieved, offering a
potential solution to several problems including the use of erosion as a marker of structure
position in a less than perfect environment. This is based on the rank of the point under
consideration in the difference domain over the structuring set or function area. As has
already been shown, certain advantages accrue in terms of noise rejection in opening and
closing, with conditional closing completely removing 30% full range salt and pepper noise,
using asymmetric conditions. The ability to grow dark areas in images without the blocky
visual effect which results from formal erosion is shown to occur with the use of the

conditional erosion.

A simple example of the use of the RJ operator for set occupancy analysis has been
demonstrated with incomplete data sets, successfully identifying two overlapped shapes from

their orientation spectra.

Three options are available for occupancy measurement of an image function by a
probe function, in the form of the direct R operator result, the mostly hit, mostly miss
transform, and the intersected R analysis. In addition, an erosion form suited for assessing set
occupancy with multivalued and binary data (such as might arise from the feature extraction
stage of a recognition system) has been demonstrated to offer benefits with damaged data
from overlapping shapes in an image. The use of these operators in feature extraction,
recognition from extracted feature data, and texture description will form the basis of the

majority of the practical work described in later parts of this work.
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Chapter 3:
Theoretical Development of Algorithms 2: Recognition Algorithms
3.1 Introduction

In discussing recognition, it will be helpful to first define the axes and field of

view used. Consider figure (14) below:

Figure (14): Axes and Field of View

pitch

In dealing with the recognition of objects with freedom of rotation, translation and
scale, the problem of interpretation requires some means of limiting the data used by any
algorithm. Speed makes the use of the full richness of the relationships between pixels in
even relatively low resolution CCD arrays untenable. We are left with a need to generate
some simpler description of the picture under test, and the objects which may (or may

not) be in it.

Such a description should be as full as is practicable, and amenable to processing
using current computer technology. Ideally, it should be invariant under rotation,
translation and scale, and preferably easy to generate from pictures or by direct data
extraction from design files. The description should be flexible enough to permit
recognition from poor quality data, and from damaged data due to partial overlap and

obscuration.

These generic specifications indicate the use of a feature based approach as the
probable solution. A feature based approach will allow a sliding scale of description.
Provided features are selected correctly, certain faces of the feature model will be visible
at any rotation and translation within the field of view. Normalisation of scaling is also
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possible. The feature based approach can permit definition of the model in the form of a
data set, and thereby permits the use of set theory to minimise the computational

complexity inherent in dealing with this type of data.

In conjunction with appropriate algorithms, recognition of incomplete data will be
possible by using a "best fit" approximation. An objective measure of the degree of
confidence in the recognition result will be generated by assessing the degree of

occupancy of the model set by the data under test.

A feature based approach used with library models to identify objects belonging to
the (necessarily) limited world of the system will be used. This does require additional
work to extract appropriate features for use in the recognition process, but the reduction
in later processing should compensate for this. It is not unusual to disregard the low level
feature extraction work when estimating the computational cost of a recognition
algorithm [28].

3.1.1 Features: Local or Global Descriptors?

This is a classic area of consideration for recognition algorithms. The benefits of
global features are well established, and are best characterised by two approaches, the
method of moments [29], and Fourier descriptors [30]. Both rely on the whole shape
being present, and are consequently affected when partial obscuration occurs. A set of
shape descriptors for each orientation of the object i1s calculated relative to the viewer,
and a given view is matched against a library or database to evaluate the object. Such
descriptors are usually robust and rotation invariant, but many of them may be required to

guarantee the uniqueness of the stored descriptions for a particular object.

Global descriptors, in general, are susceptible to noise [31]. Partial obscuration or
overlap of objects within an image will degrade the identification ability of these
methods. Their use is relatively simple, in that a descriptor set is calculated and evaluated
against the stored library of models. A minimum distance approach is used to calculate

the best fit object.

Local descriptor methods use the aggregation of multiple small area descriptors to
generate a recognition match. These methods are inherently more robust in the presence
of overlap and obscuration. They rely on the ability to identify key features (usually areas
of high curvature [32]), and are therefore susceptible to the ability of the extraction

64



algorithm to identify and correctly locate features. This can be particularly important for
orientation estimation [33]. Various classifiers may be used to evaluate the best fit

object, including the minimum distance approach and clustering techniques.

Local descriptors offer greater flexibility in recognition for real world conditions,
but impose complications of interpretation. For this reason, and for the possibility of
effective direct feature extraction using morphological technigues simplifying the
underlying algorithmic architecture of a recognition system, the majority of the work in
this project has concentrated on local descriptor features.

3.2 The Problem of Freedom of RST in 3-Dimensions

The degree of constraint on the objects and the domain of the objects considered
within the world model of the recognition system determines the difficulty of obtaining
recognition. Rotation, translation and scaling, if constrained, will offer the possibility of
using one single non-ambiguous view of the object under test for comparison purposes.
The features to be used could be searched out in their exact locations. Unfortunately such
constraints are by no means acceptable for the broad sweep of recognition applications:
they are typically only found in certain industrial inspection applications.

The problems imposed on a recognition system by rotation, translation and scale
will be considered separately, and used to suggest the attributes needed to compensate for
each. From this discussion a general outline for a recognition approach allowing for

compensation for RST will be drawn.
3.2.1 Rotation

The effects of rotation are explicable in geometric terms. A rotation matrix may
be defined as [45]:

Rotation by 6 about the X axis:
1 0 0 O
0 cos6 -sinf O

0 sin@ cosb6 O
0 0 0 1

about the Y axis:
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cos® 0 sin@ O

0 1 0 0
-sin@ 0 cos® O
0 0 0 1

about the Z axis:

cosB-sind@ 0 O
sinf cos6 0 O
0O 0 1 O
0O 0 0 1

The basic effect of rotation is to shield features from the plane of view. Under

rotation, the basic rules of geometry apply:

(i) points map to points;

(11) lines map to lines;

(iii) planes map to planes; _

(iv) ratios of measures of angle and length are not preserved in point views.

Any problems with apparent changes of features is a result only of the constrained
plane of view. Defined features will map to corresponding positions, all moving through

the same change of orientation.
The problems caused by rotation remain twofold.
Features such as the intersection points of three planes can, in the worst case

while still visible, map to apparent intersections of two planes (see figure (15) below).

This will necessitate some form of consistency test for features to verify that the views

are feasible.

Figure (15): Rotation of Intersection of Three Planes
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The second problem is that of features obscured in the view by the body of the
object. The most obvious case is shown below in figure (16). This problem is
fundamental, physical, and not capable of solution without constraining the model world
to objects unique in every view. Such an approach will not meet the requirements of

many simple everyday situations.

Figure (16): Solid Pyramid and Its Rotation Through 90 Degrees about Z-Axis

An ‘"intelligent" approach could be simply to guess (with obviously low
confidence) the most likely object based on previous populations. Others might be to
target a constrained search where other features exist within the view amenable to
classification, or to wait and probe for another view of the object under test.

The result of this discussion is to suggest that any feature based algorithm should
contain an object centred model of the objects, either in each discrete feature pose or as a

self-contained set capable of generating each feature pose from limited data.

In addition, because length and angle are not preserved in the plane of view,
except in so far as acute, obtuse and reflex angles remain in their separate domains,
selection of features should not rely on single measures to obtain a recognition. Single
simple distinctive features (the meeting of two planes at a distinctive angle, a particular

gradient of curve) are not guaranteed to be visible in their useful form.
3.2.2 Translation
(i) Far Field

The effect of translation of the object within the plane of the object may be
defined using orthographic projection. Perspective effects are implicitly of such a small

order as to be ignored.
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Where the point of view is constrained in the acquisition rig (for example by a
fixed camera location), the effect of orthographic projection may be likened to a
combination of a rotation and a linear translation. This is a far field approach where

perspective variation is not a significant factor.

(i1) Near field

Under near field translation, the rules of perspective geometry apply. The
techniques engendered for rotation will offer solutions. A perspective shift can be viewed

as a rotation combined with a non-linear translation.

Perspective distortion matrix:

1 0 0 O where f is the equivalent focal
0 1t 0 O length (separation of viewpoint
0O 0 1 -1f and object plane).

0 0 0 O

3.2.3 Scaling
(1) Linear Scaling in Three Dimensions

Scale invariants include relative positions of features, sequences of features,
relative lengths of edges, orientations of edges and types of corners. The usual
compensation method is to normalise scaling between model and object. The

normalisation factor then gives a direct measure of the scaling in the image under test.

A relatively intractable problem occurs where partial obscuration and overlap are
permitted. To engender the greatest accuracy in scale estimation it is obviously necessary
to use the longest edge (the greatest separation of features). It will also be necessary to
normalise the scaling to permit recognition from a library model. Where partial overlap
occurs, any attempt at normalisation based on maximally separated features will
immediately invalidate any feature information based on relative positions of edges,

corners, etc.

The sequence of features and neighbour separations remain invariant. Scale
estimation based on adjacent feature pairs will not offer the highest possible accuracy
(within the limits of the picture digitisation) but will enable recognition to occur on a trial

and error basis.
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(11) Independent Scaling in Each Axis
This further exacerbates the problems. The only reliable information will be the
sequence of features. This will have to be used to obtain a recognition, from which the

relative scalings in each axis can be back-calculated.

The general scaling matrix would be:

e

where Sx, Sy and Sz are scaling
factors in X, Y and Z directions.

X 0
y O

N
Coco

S
0
0
0

S O Wn

S
0
3.2.4 Conclusion

The effect of freedom of rotation, translation and scaling is to increase the
complexity of the recognition problem. Only the most fundamental of information can be

used as model features due to the variance of most forms of data under RST.
The problem is amenable to decomposition.

Freedom of rotation will allow the shielding of important features from a single
viewpoint (camera). We may therefore use an intersecting combination of viewpoints
giving a complete coverage of the object under test, but this will only be possible under
tightly controlled conditions. The alternative is to store multiple views of the object in
the library. For many objects the three views of design drawing (six views for
asymmetrical coverage) will be sufficient if correctly chosen and orthogonal.
Unfortunately this does not cover the general set of objects, and in many cases more

views will be needed.

There are significant benefits gained from using multiple stored views of the
object. The degree of rotation to align the matching view and the picture under test will
be relatively small, allowing the use of the popular inverse affine transform as a means of
identifying the rotation of the object from the stored view (see Appendix A.3). This will

also prevent the problems of matching reflected views to separate visual isomers.

Scaling necessitates normalisation. For normalisation before analysis, an a priori

knowledge of the scaling factors is necessary. This allows for correction of scale changes

69



and greatly eases the recognition problem by allowing matching of feature loci as well as
feature types.

Where scaling is not known, it must be inferred after object identification. This
will introduce intractable problems, particularly with simple objects (try differentiating
between a non-uniformly scaled square block and a similar rectangular object). If the set
of features displayed matches only one object in the library as opposed to a class of

objects then the scaling can be extracted by normalisation against the library model.

For each view of an object, then, we will require a feature model which includes
feature location data as well as feature types (needed also to extract rotation) but which
can be used without any location data other than relative position to other features if we
intend to compensate for, or to measure, scale variations. The collapsed model would

simply indicate nearest neighbours or "up-down-left-right" relative position in the view.

Translation in the far field is the most tractable of object recognition problems,
assessed by indicating the location of a key feature and amenable to any system capable
of handling rotation problems.

As with scaling, correction for perspective distortion is desirable before matching.
If such an approach is not possible and the separation of viewpoint and object plane is
unknown then the rotation collapsed model may offer a solution. Combinations of
scaling, rotation and perspective offer a particularly severe test for any recognition

algorithm claiming the ability to also extract rotation and scaling.

The model generated for each view of the object must include absolute spatial
information as to the relative positions of features, types of features, and some simpler

logical indication of their positional relationships.
3.3 Structural Features

The benefits of a feature based approach relate primarily to handling limited
object information. An attempt can be made to classify the usefulness of various types of

data situation at this point.

The previous discussion illustrates that invariance under RST is not characteristic
of the majority of what are usually intuitively obvious features. Of more use than the
absolute measure of an object feature is its relationship to other (hopefully defined)
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features. We shall therefore place more reliance on local clusters of features than on the

single "unique" feature where high reliability of identification is a necessity.

The ability to map a best fit solution between a model and a test data set is
therefore of primary importance. Where imperfect data is used, as is typically the case
with real images, the closest match between acquired data and a library model will be
taken as the identification of the object. This should be conditioned by a goodness factor

for the recognition or a confidence factor in the match.

Structural features can be extracted from design drawings for mechanical parts
and manufactured items. They can also be directly extracted from acquired data, offering
the possibility of supervised learning for model derivation. Unsupervised learning would
require a high quality training set of images, low in noise and complete in degrees of
view, for the optimal performance, but is by no means precluded as an option for creating
library models.

The choice of object perimeter structures of high curvature (or low curvature)
follows the apparent logic of perceptual reasoning (see Davis [32]). The utility of their

use in recognition is well documented.
3.3.1 Selection of Features for Models

In defining the model features used for library data, the effects of RST determine
to a large extent those chosen. It is not difficult to see why the great majority of work in
the object recognition field has concentrated on geometric objects which are relatively
rich in well defined and usable intersections of planes, and characterisable corners. These
same features are of primary importance where available, but are exceptional rather than
normal in the general set of objects. Table (3) below offers some suggestions for
structural feature types to be included in models and searched for in acquired data. It
should be noted that the chosen features will need to be extracted from the image, which

is (in this work) an intensity mapped view of the scene.
Table (3): Structural Features offering Invariance under RST
Geometric objects:
intersections of 3 planes (colloquially known as corners), concave and convex

intersections of 2 planes (edges), concave and convex

plane surfaces

71



Non-geometrical objects:
points of high curvature (points), concave and convex
points of low curvature (lines)

points of inflexion of curvature (saddles and colls), concave and convex

Cain and Bolles [34] have reported on the use of small local features such as holes
to extend the richness of the feature set. The well-known Clowes algorithm [35]

interprets the intersections of line edges as features for recognition.

The actual choice of features is made on a pragmatic basis - those that we can
extract from the image reliably and repeatably. In practice this means examining the
intensity map for particular structures, which are interpreted to indicate the presence of a
particular feature. It is natural to look for particularly high or low rates of change in the

intensity map as a first basis for evaluation.

Extraction of these features is an entire and major area of work in itself. The
approach adopted for this work is detailed in Chapter 4. It should be noted that the
success of feature identification controls to a large extent the effectiveness of any
recognition system of this type and the confidence level in any results obtained must be

conditioned accordingly.

Three approaches were considered for modelling objects: feature aggregation, use
of silhouette features only (i.e. those features appearing on the silhouette of the object in

the given view); and combining sithouette and in-object features.

For the most part the work concentrated on structural features, but the inclusion of
(for example) colour parameters, or textural descriptors, is by no means precluded by the
technique developed. Such descriptors would add to the richness of the model and its
general utility, but at the cost of higher dimensionality both in the feature listings and in

the processing requirements.

The model database was created by storing the set of features (the exact form of
the feature description is shown in the following four sections 3.3.1.1-3.3.1.4). A feature
set was stored for each pose of the model. In analysis, the feature set for each pose of the
model is compared with the acquired feature set extracted from the object in the image

under test.
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The selection of model poses was made on an intuitive basis, additional models
being added where significant differences appeared in the feature set for that particular
view. Changes in the feature set occur as the rotation causes particular features to be
obscured by the body of the object, or as other additional features appear in the field of
view. Where the changes accumulate to the point of requiring the addition of another
pose to the library, the pose is added. This decision is made on the basis of the
requirement that each pose remain a unique identity within the library, and sufficiently
separated from the existing poses to allow discrimination on the basis of the extracted

features.

The number of views required varied according to the nature of the object. The
cube, offering the simplest example, required three pose models for adequate
identification. The hawk trainer (IS6) required a set of twenty four poses for definition
within the model world used.

The number of poses stored has implications for the performance of a recognition
system in both orientation resolution and identification under occlusion. A close
relationship between the orientation of a stored pose and an acquired view allows a high
correlation between the stored and extracted feature sets. This can simplify the
calculation of orientation. In particular, where features are missed due to extraction
problems or occlusion, the matching of the remaining features to the library pose is more
likely to be successful, and will offer a higher confidence in the result. The cost resulting
from an increased resolution of poses is paid in speed terms: the number of comparisons

between object and database is increased.

3.3.1.1 Modelling by Feature Aggregation

When dealing with a feature based approach, the simplest modelling method is to
regard each feature as independent and to model the object view as a list of features by
type. Recognition is obtained by comparison of the extracted features set from the image
under test with the library views. No information about relative positions of features is
included: a feature is either present or absent in the view. A match is accepted if enough

coverage of a library model occurs in the acquired image.

This method is intuitive, and offers low complexity in algorithm development

(ordering lists of feature types by sorting, followed by comparison). It will allow simple

73



modelling and a high probability of recognition where single objects of distinctive
features appear within the image.

In the presence of a rich set of objects within the system world, unique models are
not guaranteed. This is primarily because such a method ignores the sequence or relative
positions of features, and therefore omits a significant facet of information about the
object.

Feature aggregation is prone to aliasing and will be inefficient in a noisy
environment where pseudo-features may appear. In particular, where multiple objects are
present in the image, this method will give false results.

An example feature data set for a simple aircraft model is shown in figure (17)
below. Gross structural features were used, including points of high and low curvature,
long straight lines and line ends. These would be extracted from sharp gradient changes,
or ideally discontinuities, in the intensity map. They would, therefore, naturally include
the perimeter features, which tend to dominate for this simple aircraft.

Figure (17): Simple Aircraft Model

(a) Plan View

[LL]]

(b) Side View

1
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Feature Aggregation Set Models

(a) Plan View (b) Side View
Convex high 7 5
Concave high 6 3
Long straight 7 6
Line ends 1 1

For a feature extraction technique using high curvature on the perimeter of an
object as the means of location, the model becomes:

model = {no. of concave high curvature areas, no. of convex high curvature areas}

3.3.1.2 Modelling by Silhouette

The silhouette of an object is rich in feature information, and is easily extracted
where a reasonable contrast has occurred. It therefore offers a usable modelling method,
the features for comparison being efficiently extractable from the acquired image. In the
biological world the silhouette is a key recognition parameter - consider the variety of
camouflage used by organisms to disrupt their apparent outline to avoid predators.

The features are extracted by segmentation of the object or objects within the
image followed by edge following to extract significant information. Silhouette models
give a list of edge features in the order they were acquired, thereby preserving feature

sequence information around the perimeter of the object view.

In order to minimise the computational effort required in comparison, the model
may simply list the sequence of features. This will yield family type information on the
first pass (will not separate simple objects like rectangles and squares). Where higher
confidence is required, a second pass including relative co-ordinates of edge features (in
X,y) can be used. This will yield the ability to extract rotation and scaling information and
will resolve between dissimilar objects with the same sequence of edge features.

The model then becomes:

model = { feature,,type }Vfeatures i € (0,1) on the perimeter
extracted in a clockwise or anti — clockwise direction

75






Table (4): Perimeter Feature Set from Partially Obscured Aircraft

Extracted Feature Set: Original Feature Sequence Data

(Note no locus information is included):

X Y Type Type Key:

339 293 1 1 1 = high curvature convex
227 341 O 0 0 = high curvature concave
155 349 1 1

235 363 O 0

259 369 1 1

395 366 1 0

397 359 1 1

359 339 0O 0

348 290 1 1

The major problem with the artificial sequencing of features is the
disproportionate effect of missed outlying features (such as the nose, or wing tips of the
aircraft of figure 17) - the sequence will change is the centroid moves far enough from its
proper locus. Note that the orientation about the centroid could be used could be used to

offer rotation information for a particular object pose.

The silhouette approach is widely used, and has been reported extensively (e.g.
Wallace and Wintz [36]). The problems of feature extraction for this approach have also
received much attention.

On a practical note, where the objects or background in an intensity-mapped
image are textured, it may only be possible to delineate the outline of the particular
regions. After the regions are separated and assigned particular values, the boundaries
formed between them may still be used to form a silhouette from which features could be

extracted for recognition purposes..
3.3.1.3 Feature Modelling including In-object Features

This method includes as a subset of its features the outline information used in
silhouette based methods, and therefore has the benefits of edge sequence information

built into the approach. Edge following cannot, however, be relied upon to produce the
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feature set needed for recognition purposes, and direct methods have been used (see
Chapter (5), Sections 5.3.2 - 5.3.4).

A full formal model includes both feature types and locations. Feature locations
may be defined in only x,y and need not include z-plane information where multiple
views of the object are to be used from the library (z-plane information can be generated
after the recognition process is complete if required). This will be used to extract rotation

and scaling information from the image acquired.

A collapsed model is needed in order to minimise processing effort. Several
approaches might be adopted. Initial testing using silhouette only is an obvious choice.
One method would be to retain perimeter sequence information (the method as for the
silhouette collapsed model) and aggregate features within the object. An alternative
would be to collapse the full feature model onto a point radius circle, yielding simply the
adjacencies of features and not full pixel-relative position information. Note that this
partially ignores the z-plane position, only including it as relevant to the particular view,

but retains the relative positions of features in a non-linear way.
3.3.1.4 Feature Modelling using Position of Features and Local Web Skeletons

In this approach, the features used would be points of high curvature. The object
is modelled as the points of high curvature interconnected by a nearest neighbour web.
The model therefore contains both the points of high curvature on the surface of the
object and a local nearest neighbour description. Such an approach would enable
recognition from partial views of the object and might prove more robust under noisy
conditions, in that local clusters could be aggregated to give a higher degree of confidence
in the overall recognition. Models could be extracted from design drawings for

mechanical items, or directly from image data for comparative recognition.

The model is generated by producing a list of the orientations of all the other
features within the acquired set from each feature in turn. Although this may seem
exhaustive, given the high likelihood of missed features, such an approach maximised the

probability of a correct recognition.

The model then becomes:

Model = {(type,.0,,)},Vme F,VneF,
where F = set of extracted features;m,n € F.
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This is illustrated in figures 19 and 20 below.

Figure (19): Points of High Convex and Concave Curvature on the Perimeter of the
Aircraft of Figure (17)

o Convex High Curvature

+ Concave High Curvature

Figure (20): Web of Points of High Convex Curvature on the Aircraft Perimeter

P o Convex High Curvature

Model = {(type,.0,,)},Vme F,VneF,
where F = set of extracted features;m,n e F.

Note that the full extracted model used for rotation and scale estimation includes
the separations of the features /,,, as well as the type of feature and the orientation of /
relative to the grid. The use of this information allows estimation of the foreshortening

caused by the rotation of the object relative to the pose of the model. This approach is
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close in structure and intent to the local-feature-focus of Bolles and Cain [34], but relying

on vertices rather than pre-identified small structures such as holes.

Figure 20 illustrates the web of interrelationships between one point of high
curvature and the others extracted as a feature description of the object. This is a simple
example showing the relationships of one particular feature. An approach based on one
focus feature (the example used here is a wing tip) would be highly vulnerable to the
absence of that specific feature. It is therefore necessary to replicate the web description
for each extracted feature. This approach offers the highest resistance to missed features
in the matching process. The full web resulting from such an approach is omitted for
reasons of clarity.

Thus the relationships of each feature in the extracted set to the other features
belonging to the object forms the basis of the full description used for comparison.
3.4 The Recognition Algorithm

All of the feature based methods of modelling objects described above have a
common strategy for recognition. The process consists of extracting features from the
acquired data and comparing it with the library models. The crux of such an approach is
the ability to determine the best fit of the data onto the library model and then evaluate
the information as to recognition (usually according to some sort of minimum match
threshold) and later to scale and rotation estimation. The recognition process usually

consists of matching pairs of features between the library model and the acquired data.

For comparison of feature sets the RJ operator will be used. The overall

algorithmic approach will now become:

The Algorithm - Overview

Image Acquisition

Low level pre-processing (if necessary)

Feature extraction

Matching features with model library
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In keeping with the overall aims of this work, a morphological means was
developed for achieving a model match. The extracted data set was compared with the
pre-stored library models using set erosion. This produced results as shown in sections
6.2 and 6.3.2. The precision of set erosion resulted in problems with damaged and sparse
data. The application of the conditional erosion method yielded an improved tolerance to

such problems.
The Morphological Algorithm - Overview
Acquire image (standard camera/frame grabber approach)
Feature extraction (using greyscale RJ operator and templates, as section 4.6)
Match features with model library (using binary RJ operator, as section 3.4.3.2)
Extraction of RST from identified object (using standard techniques)

3.4.1 The Classifier Strategy

Many classification strategies are in current use (for an excellent description of a
wide variety, see Schalkoff [1]). A simple method of counting paired structural features
between the acquired data and the library model was initially adopted. A recognition
match was taken to be the highest correlation between library model and acquired set. An
elementary degree of confidence was established by simply taking the percentage of
model features correctly located. Although simplistic, such an approach has yielded
surprisingly good results as has been demonstrated with set erosion as the marker (see
Rees, Jones [37]]).

Each of the modelling techniques described previously in sections 3.3.1.1 - 3.3.1.4
were implemented and tested for a variety of objects and conditions. The model library
was considered in two forms, as a single complete model for the object, and as separate
views of the object with each view being independent of the others. The models were
evaluated against the acquired data using the RJ operator. The R set yielded the most
appropriate rotation of the model view against the features extracted for closest matching.
The J, sets yield (as is discussed later) the missing features, which can be used to enhance

the confidence in the recognition result through simple consistency checks.
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3.4.1.1 Extraction of Retation, Translation and Scaling

The subset of the structural features of a 3-D object visible to the camera changes
with rotation of the object. Whilst the selected features may be broadly invariant, the
rotation of the object always obscures part of the set. In the case of a manufactured object
the design drawing set will include feature information adequate to the manufacture, and

therefore the recognition, of the object.

In the general case, two choices are obvious: to model the entire object and accept
the features in the view as a subset of the total object feature set, or to use several partial
views of the object. The former option has the benefits of reducing the numbers of
models to be tested against the acquired data set, but at the price of more complex
modelling. The number of features included in any view is also likely to be a low
proportion of the overall model features, increasing the susceptibility to false
classification. The latter option requires increased numbers of models (partial models)
but will allow calculation of orientation relatively easily through affine transformation. It
should offer a more robust approach because of reliance on relatively higher proportions

of features present.

The practical difficulties in modelling the whole object (the points of high
curvature must have a “shield” area between them and the centroid of the object, and
elsewhere, indicating the directions from which they are obscured as the model rotates)
rendered this approach untenable. A solid modelling for a manufactured object, a
technique supported by current CAD software packages, might offer a suitable means of
achieving the goal of a single model, but at very high computational cost.

The estimation of rotation and scaling follow the recognition process. Once the
particular object has been (roughly) identified, the features are then rotated using the
affine transform to assume the same relative positions as the model set. The positional
data is then scaled to bring them into the closest alignment with the model set. The
inability to produce a reasonable alignment between model and acquired data will be used
as a means of determining a failed test. As part of these transformations the orientation

and scaling relative to the model set are generated.
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Figure 21: Extraction of RST from Recognised Object

A

Rotation was extracted after recognition by using the separations of three widely
dispersed, identified features within the view and simple geometry, as in figure (21)
above.

Scaling was calculated from the two most separated features in the view, allowing

for rotation.

Translation was generated simply as a pixel position in the image for a chosen

feature.
3.4.2 The Use of Set Erosion for Recognition

The binary set erosion process allows identification of all points within an image
under test at which a probe set is fully contained. It may therefore be used for

identification purposes.
3.4.2.1 With Orientation Spectra

The set erosion technique described by Rees and Jones [36] required a reasonably
complete extracted data set for quality results. The reasons behind this are
straightforward. The modelling method used is very similar in practise to the normal
contour distance described by Vernon [38] and in Chapter 4, section 4.2. The erosion
method locates the probe set at its best position relative to the acquired data. It is a purely
spatial arrangement, and intolerant to extraction difficulties moving the apparent
orientations of the sides plotted as length / against orientation 8. Missing data is simply
described by aligning the orientation of the acquired data with the reference model and
subtracting. The major problem encountered was the high sensitivity to small changes in
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the acquired data. Alignment with the grid produced orientation differences of significant
order, requiring the orientation accuracy of the algorithm to be degraded in order to get a
result.

This was a direct use of set erosion. Initially the binary set erosion was used,
presence of a shape being determined by erosion of the model library against the
extracted perimeter normal orientation set. This simply determined the presence of a
particular orientation within the acquired data. It was unable to separate squares and

rectangles, and would agree any shape against a circular model.

In order to improve the result, the 1-D binary set erosion was replaced with a 2-D
binary erosion and the model enhanced to include both the orientation of the perimeter
normals and the length at that orientation (effectively producing a close equivalent to the

normal contour distance). The model now became for each side n:

{ (orientation 6,,, length 1,;)}

Consider the example given in figure (22) of the orientation spectra for a square
(library model) and its acquired, scaled, rotated analogue.

Figure (22): Orientation Spectra for Library and Acquired Data

0 90 180 270 0x 90+x 180+x 270+x

A = {(0,2),(90,2),(180,a),(270,a)}

B = {(x,b),(90+x,b),(180+x,b),(270+x,b)}

We obtain:

AOB = {(-x, b-2)}
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This confirms the shape is actually a square, rotated through x degrees and with a
scaling difference of (b-a)/b. Scaling and rotation are extracted as the offset of the probe
set needed to achieve complete containment, i.e. as the result AOB.

Again, the susceptibility of this approach to small errors in estimation of side
orientation is obvious. One method of alleviating the problem is to degrade the shape
resolution and the orientation precision of the estimation by allowing bands (e.g. 90
degrees +/- 2) for the acceptance of the presence of the particular normal. This approach
is very similar to that adopted by Grimson [39] for recognition of rigid curved objects
from 2-D data. An alternative is to modify the set erosion to permit a degree of
uncertainty in the result. A third method would be to change the modelling method for a
more appropriate approach.

The method of reducing the precision of orientation was adopted in practise and
permitted the successful use of this set erosion method for 2-D images of 3-D objects
with some limited amendments to the technique. Due to the line splitting and deviation
in extracted orientation caused by the quantisation of the edges of the object the
aggregation of weights over local orientation bounds was necessary. The reasoning
behind this can be easily understood - in order to get a 1 degree accuracy in orientation of
a straight line sequence on a square grid, basic trigonometry indicates that a minimum of
57 pixels in the line is necessary. Dorst and Smeulders [40] includes an interesting
discussion of representing quantised straight edges and the corresponding quantisation

CITOIS.

The "bucket” regioning of orientation limits the precision of shape identification

and orientation estimation.

3.4.2.2 With Feature Sets

The application of the set erosion method with feature sets was prone to the
problems already discussed. Where a complete set of features for the model view was
obtained, successful recognition was found to occur. The requirement for full feature
data within the extracted information was a major limitation, particularly where the
quality of image (due to lighting or noise problems) was imperfect. The susceptibility to
a single missing feature required either the selection of gross features alone or the
inclusion of all apparent features in the extracted feature data. The former leads to poor
resolution; the latter to aliasing. Where positional data was included in the feature sets
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(rather than just sequence) the problems of localisation were found to be as severe as for

orientation spectrum analysis.
3.4.3 The Use of the RJ Operator for Recognition

The inclusion of boundaries in set erosion is essentially an unwieldy exercise,
having poor properties for multiscale applications. Having introduced the possibility of
controlled uncertainty into the erosion process with the RJ operator, its application to
recognition is obvious. As has been described, the R set is generated as the number of
contained components of the probe set within the set under test, in the local area defined
by the probe set. This enables the extraction of the best fit locus (loci) R, at which point

the probe set need not be fully contained.

In the situation where structural features are used for recognition, this approach
offers its maximum benefits, in that recognition may be achieved in the presence of
partial data with known confidence levels. The absence of features does not preclude
identification, as would be the case with set erosion. The real problem lies in obtaining
adequate sophistication in the modelling process to avoid aliasing by textural detail and

noise.

In the presence of fixed rotation, scale, and translation, the RJ operator allows the
identification of the best fit locus R, and any features omitted from the feature set as J,.
Uncertainty about exact locations, possibly caused by sampling problems, could be
catered for by including multiple points in the reference model for each real feature. This

1s, of course, the trivial case.
3.4.3.1 Use with Orientation Spectra

The RJ operator does not provide a complete solution to the problems with
orientation spectrum approach. The fundamental problem of accuracy in the extraction of
the orientation spectrum still exists: where the side orientations cannot be obtained with
the requisite precision, components which are actually present will not be accepted unless
some gross division of the orientation space is applied. Some alleviation is achieved, in
that the absence of components within pre-determined limits is obviously permitted, and
therefore an initial attempt at a "best" fit followed by a constrained search for the missing

components can be used.
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3.4.3.2 Use with Structural Feature Sets

Modelling using structural features is one method of reducing the dependence on
ability to extract accurate orientations of lines in the image. Instead the problem becomes
(usually) one of identifying points of high curvature in the image. The process is equally
valid for 2-D shapes and 3-D objects, is probably more intuitive in its application, and

may produce models relatively simply for complex objects.

The RJ operator is used to identify the best correlated probe set and the missing
components necessary to complete the fit. The same basic technique is used for

aggregated features, silhouette features, and silhouette plus in-object features models.

For each of the N models M,, in the library, with extracted feature set A, the best
fit model and loci are defined as:

Best fit = max(BH/Bn)
where
R, J, =A@M,,

R, = max Ry,

B,, = No of components in probe set M,,, or CARD (M),

Jr = Components of My, not fully contained in A at best fit.

With simple feature aggregation, the missing components are not particularly

beneficial to interpretation of the result.

With the inclusion of feature location, the j sets offer valuable further information
about the image scene. Tests for consistency and likelihood can be developed. For a pair
of overlapped objects, formation of a closed 2-D shape projection by the missing features,
or a consistent block, would add confidence to the resulting recognition of both objects.
Where only a few features are found, the missing features forming a contiguous block

might indicate obscuration.
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Silhouette features are relatively simple to extract (see Chapter 5, section 5.3), and
allow the use of a very effective recognition model in a variety of situations. The
sequence information implicitly contained in a silhouette description gives high
confidence in obtained results with the use of relatively few extracted features. This
comes from the added significance if the features found form a contiguous segment of the
silhouette perimeter. It is particularly useful where partial obscuration or overlap may
occur. The contiguity of features allows chains of pairs of features to be matched, the
best fit location usually offering a coarse indication of the difference in orientation
between the acquired and reference data. The R set and corresponding J sets are used
together to generate the result. The quality of the extracted data determines the efficacy
of the operation.

With the use of in-object features, the problems are broadly the same. There is an
increased likelihood of the absence of features, due to the greater difficulty in their
extraction in this situation. The portion of the object set covered completely should give
a higher degree of confidence in a positive result than a similar portion of the silhouette.
The silhouette data is a subset of this model. If scaling can be pre-arranged, the inclusion

of feature loci provides further information about the scene.

The webbed features approach, the RJ operator offers a means of identifying the
best fit rotation between the extracted features and the reference model. Such an
approach is tolerant of missed features - they are effectively point to point matched, rather
than sequenced - and relatively tolerant of sampling errors. The sampling problem is
reduced where widely separated features are available for consideration, and can be

allowed for at any level by reducing the orientation measure precision.
3.5 Texture Classification

Texture is an important characteristic of many types of image, and is can be a
major problem to the analysis of the information they contain. Texture is often an
organised relationship based on a particular area or size of the image. It may contain
structural grey level primitives, their structure being a characteristic of the texture
perception, and may also be determined by the positions of these primitive structures
relative to one another (consider wall paper manufacture, the repetitive sequencing of
small structures to make an overall impression, as an example). The basic unit of texture
is sometimes referred to as a texel. Note that this idea is not always valuable - many
structures have random or changing textures, and defining a texel for such a texture is

either trivial (each pixel) or inclusive (the whole image).
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An objective might be, therefore, to define some characteristics of the texture
based on its grey level structure, and the location and frequency of the primitives it might
contain. The uses of such a description include the identification of a particular texture
(as is typical in surface inspection, weave inspection in textiles, and certain medical
classifications of tissues) or the actual segmentation of a test image into regions of
differing textures for scene analysis.

Several standard texture measures are used, particularly those based on the grey
level co-occurrence matrix, which attempt to classify the texture based on features (mean,
variance, and a set of fourteen other parameters) extracted from the co-occurrence matrix
itself. The co-occurrence matrix is a measure of the frequency of occurrence of pairs of
grey levels in a given direction at a given separation. It is formed as a count of co-
occurrence, plotted as a 2-D matrix with the grey levels as the axes. It is often used over
short distance relationships (pairs of pixels one pixel, or two pixels apart) and is specified
in terms of its direction relative to the sampling grid. Note that a texture aligned with the
x or y direction of the sampling grid with have different spatial component placements if
sampled at (say) forty five degrees to the grid. This causes problems with rotated, and
sometimes with displaced, samples.

Haralick et al [60] have discussed the utility of this approach, their work having
been developed and extended by later authors.

'The method of application of the R operator is quite similar to that of Sun and
Wee[61]. They report accuracies of 85% in classifying three textures of geological
terrain types in LANDSAT images, based of use of various features such as entropy,
energy, etc. They fix a distance d and a contrast threshold c, and determine the number of
pixels each having a grey level g and each having »n neighbours within distance d and
within contrast ¢. The resulting distribution for an intensity mapped image I(x,y) might

be represented as:

P(g,n)={g= D1, I=1where I(i,j) = g, and

ij

n= Zm, m = 1 where [distance (i, j) to (k,l) <d).[1I(i, j)— I(k,DIS c]

ij

One might consider the R operator method described below as a measure of how
many pixels at a fixed distance r, where r is the radius of a circular template, exceed a
threshold contract a above the current I(ij) value. The principal difference is the
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retention of spatial data as to pixel locus in the R method. This allows the retention of
spatial shape relationships. It does, however, have implications in the consideration of

illumination changes in the source data.

The extraction of explicit features from the source texture is not the only
approach. Vickers and Modestino [62] report a 95% accuracy in classifying twelve
textures from the Brodatz set. This is based on a maximal likelihood classifier using the

co-occurrence matrix directly.

The weakness of the co-occurrence matrix techniques is their inability to capture
shape relations in grey level primitives. They do not work well for large area primitive
based textures.

Other standard measures of texture include the use of surface vector displacement
techniques, as well as Fourier spectra and discrete cosine transform measures. As has
discussed (section 1.1), morphological methods have been applied (Matheron [2], Toet
[18], Wang et al [19], Peleg [74]). These in general rely on the changes in the image
caused by opening and closing to differentiate between texture samples.

The R operator was used to generate a histogram of the R values for a sample of
texture with a particular structuring element, as is described in chapter 2 section 2.5.

The analysis is formed as a histogram, H, where, over a sample window size
MxNEe f(x,y), with probe structure k(& 1) the individual histogram values are:

H={hh = D p,p=1where r(x,y) =i,i € CARD(k(E,1))

x,yeM N

The set of characteristic histograms for a particular sample window, H, is the

feature classifier, which, for a set of N probe structures would be defined as:

H , ={{H},},n = no of the probe structuring
element applied, ne N

Note that although the sample window applied is square, the resulting shape of
area analysed depends, additionally, on the shape of the probe structuring elements and
does overlap the perimeter of the window area in its analysis. The texture feature vectors

are specified as the histograms themselves. Classification is based on minimum distance
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measure between the histograms. Where multiple feature vectors are used, the distances
are aggregated to obtain an overall result. In the practical work of section 5.7, no attempt
to use only the significant parts of the vectors, or to apply a principal components analysis
has been undertaken. This work is included to show the utility of the R operator approach
for the general class of grey level structures which form the intensity map.
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3.6 Summary

The problems of determining an appropriate strategy for recognition were
considered in this chapter. The need for appropriate modelling strategies, and their
reliance on extracted features, were outlined, and a justification of a local feature model
based on structural features was made. In essence this results from the desire to use a
completely morphological algorithm structure: the feature sets obtained are amenable to
pairwise matching with a library model; they can be extracted into a set based description;

and their sequence has meaning in the context of the object model.

The use of both set erosion and the RJ operator as the agents for the solution of
the recognition task was outlined, with some immediate concerns about their practical
use. The effectiveness of the extraction mechanism, its reliability and immunity to noise

are seen to have a significant bearing on the given solution.

The extraction of rotation, translation and scaling was considered. In the
suggested method, these important items of data would be extracted after recognition had
occurred, so greatly simplifying the task. The suggested method used the distances
between prominent, well-separated features as the medium for the generation of the

information.

The utility of silhouette loci of high and low curvature for recognition was
introduced, and its use as a subset of a more complete model including in-object features.
The ability to generate a silhouette for separate regions defining textured objects in an
image (or a textured background) was discussed as a vehicle for recognition under this

scenario.

In consideration of texture analysis and classification, we have defined an analysis
based on an aggregate signature relating both to the size and to the gradient of the texture
in the intensity map as part of the feature vector generator. Conventional measures such

as the grey level co-occurrence matrix cannot include the shape of the texture as part of

their result.

The adherence to a fully morphological approach will offer a number of benefits
in the speed of operation. As discussed in section 1, the operation of the morphological
operators is based on isolated areas, at each point in the data set concerned only with the
region corresponding to the structuring element. The processing is usually implemented
using purely integer arithmetic. The operators are therefore highly suited to hardware
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implementation. The small physical size of the hardware implementation, estimated at
around a thousand gates, offers the ability to replicate many of them on a single semi-
custom device. The small physical size and source data isolation are desirable features
for a highly parallel solution.

The method used for identifying the closest match between the acquired feature
set and a library reference model is very similar to that used to isolate the features. These
are computationally expensive parts of the conventional recognition process. The
similarity in the algorithms used offers the ability to use the same hardware for their

implementations, offering dual benefits of greatly accelerating both processes.

Any conventional processing stages introduced before the extraction of features has
occurred will greatly slow the overall speed achieved. The model matching process uses
extracted features, and hence far less data, and additional processing before this stage is
therefore unlikely to produce the same effects on performance. The interpretation of the
model matching results remains a broadly serial task.
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Chapter 4: Feature Extraction using Morphological Methods
4.1 Introduction

As has been shown earlier (see section 3.3.1.2) silhouette features have been
widely regarded as useful local descriptors for recognition purposes, and a variety of
methods have been used to identify points of high curvature on the silhouette of an object
in an image. The methods employed follow basically two paths (as Davis [32] suggests):
either the consideration of points of high curvature and attempting to isolate such points,
or the consideration of lines of low curvature and the isolation of points of intersection of
such lines.

In-object features are essentially extracted by similar means, and some method
such as the Euler number is used to demonstrate the containment of the feature within the
object.

Well defined problems exist when feature extraction is considered. The problem
of additive noise caused by the image sensors is well known, and low level processing
techniques typically based around linear and non-linear filtering have been developed to
reduce its effects. Improved sensors have also contributed to the reduction of noise

problems in many applications.

Texture is a characteristic of many objects. For anyone attempting to extract a
feature set using intensity mapped images, it a particularly intractable problem requiring
careful consideration. Its successful characterisation is likely to lead to its inclusion as a
feature in future recognition algorithms. Voorhees and Poggio [41] give a practical

example of textural segmentation and its possible use for boundary extraction.

This chapter will summarise a selection of the non-morphological local descriptor
techniques, describe a number of morphological approaches, and detail the conditional
morphological methodology developed in this project.

4.2 Non-Morphological Local Descriptor Extraction Methods:  Extracting

Curvature of Digital Curves
Points of high curvature on digital curves have been the focus of much

consideration. Rosenberg [42] described an approach to identifying the points of high
curvature on the silhouette of a convex blob based on the degree of "curvedness" of the
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domain at a point relative to the chord connecting the end points of the domain. The
domains have sizes which are used as significance measures, in that a significant point
within the larger domain of another significant point is disregarded. This is an attempt to

mimic perceptual reasoning. Rosenberg referred to such points as "dom points".

Rosenfeld and Johnston [43] defined a model for points of high curvature on a
digital curve based on smoothed k-cosines. The brief description given below is taken
verbatim from Davis [32].

Let the sequence of points{(x;y;)};=1 n describe a closed curve so that

1.y 1)=0nyn)-

Define
i = (Xj - Xjy ko Vi - Yi+k)
bik = (x; - Xi-k Yi - Yi-k)
Cik = (@jk-bi)Najlibg!

Here cj is the cosine of the angle between the vectors a;j and bjg, so that
-l1<=cjp<=1, and cj = -1 for a straight line (180°), and +1 for the sharpest angle (0°).

At each point (x;y;), compute c;},¢;2,...,Cjy for some fixed m. Assign size & to
point (x;y;), and value c;p, for the largest h such that ¢; ;< ¢jm_J< ... <¢jp<cip-].
Finally retain points (xj,y;) where ¢; pi2ck py for all k such that |j-kI<h;/2.

Chien and Aggarwal [44] applied this method to 3-D object recognition. They
describe a means of segmenting vertices into concave and convex types using a vector

cross product.

A simple curvature measure based on edge following is described by Ballard and
Brown [45] based on local curvature estimation through differentiation, corresponding to

difference equations on digital curves.

lk(s)1? = [d2x/ds?)? + [d?y/ds?)? where s = distance along contour.

96



Vernon [38] has described the use of the normal contour distance to record a
signature from the silhouette of an object. For any point, a;, on a contour the direction of
the tangent to the contour is calculated. A point bj on the opposite side of the contour is
identified such that the line a bj is perpendicular to the tangent to the contour at aj. The
length of the line ajb; is the normal contour distance. The value of the normal contour

distance for every point on the contour forms the signature.
4.2.1 Contour Description: Chain Code Description of Edges

The use of chain codes for the description of the perimeters of shapes and of lines
is widely used. Chain codes consist of line segments that lie on a fixed grid with a fixed
set of possible orientations [46]. The introduced loss of accuracy due to digitising
continuous straight lines has been described by Rosenfeld [47], and further defined by
Dorst and Smeulders [40]. These methods have been used for shape description and
character description for recognition applications. Wilson and Batchelor [48] describe a
method of defining the convex hull of a chain-coded blob as a means of generating

concavity trees for shape description.
4.3 Grey Scale Corner Detectors

The requirement for pre-processing of an image to segment the object of interest
within it is, itself, a major area of work. The perimeter following high curvature
extraction methods, and the various binary techniques, require the successful completion
of such segmentation before they have any possibility of success. Grey scale corner
detectors are not dependent on the same level of prior processing (see Kitchen and

Rosenfeld [63] for a more complete discussion).

Kitchen and Rosenfeld employ a measure of “cornerness” based on the product of
the intensity gradient magnitude and the instantaneous rate of change of gradient
direction. This is evaluated at all points in the image. The calculation is based on a

quadratic polynomial grey level surface fit.

The facet model-based detector of Zuniga and Haralick [64] finds corners based
on two requirements, the presence of an edge and a significant change in the direction of
the edge at, or near, the point under test. This uses information extracted from a local
polynomial grey level surface fit at each pixel. Its validity is based on the principle of the
image as a piecewise continuous grey level intensity surface, and the extraction of facet

parameters from it.
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Dreschler and Nagel [65] use a Gaussian curvature based corner location
technique, formed from a local quadratic polynomial surface fit in the intensity map.
Conditions are placed on the Gaussian curvature about the area to determine the presence
of a corner.

Some results based on these techniques are shown later in this chapter (p. 113).

Smith [66] describes the use of the SUSAN principle for the detection of corner in
grey scale images. This is based on the idea that an approximately univalue segment
exists where a solid circular template is placed around the pixel in question, which is the
nucleus or point at which the centre of the template is placed. The number of pixels
which have a brightness (intensity) approximately equal to the centre point of the
template is estimated, and a geometric threshold used to assign the class of corner. In
order to reduce false hits, the univalue area about the nucleus is required to be contiguous.
Other than the use of a solid circle rather than an annulus, the requirement for contiguity,
and the calculation method, conceptually this is the closest method described in the
literature to the procedure adopted for detection in this project (see page 100).

4.4 Detection of Edges

The problem of edge detection has been approached in a variety of ways. The
obvious method is to look for discontinuities (rapid changes) in the intensity map, which
may well delineate a boundary. The differential approaches look for maxima in the first
differential of the intensity map (e.g. Sobel operator, Roberts operator [49]), and share the
common problem that differentiation amplifies noise in the image. Various approaches
have been applied to reduce this effect (Marr and Hildreth [50], Canny [51], Deriche

[52]), with some success.

The edge is effectively a shape in the intensity map. The approach adopted by
Haralick [53] concentrates on this idea, as do more recent works on robust methods
derived from statistical methods for hypothesis testing (Kundu [54], Petrou and Kittler
[55]). As is described in sections 4.6.4 and 4.6.5 of this chapter, we have used a shape
based method of direct probing, interpreting the results of the R operator applied at
various scales of a template as a means of isolating structures on the perimeter of an
object. The method adopted the use of various sizes of the template to minimise the
effect of noise, intersection of the results providing a reduction of the spreading of the
edge caused by larger templates. The closer the gradient of the template becomes to the
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gradient of the edge (assuming its absolute level does not exceed the edge height), the

more localised the determination of the position of it.
4.5 Morphological Methods

Morphological methods have been applied to feature extraction. Serra [3]
describes methods for identification of shapes, edge detection, thinning, and identification
of specific types of in-object local features using morphological methods. We shall
concentrate on local feature extraction. Pitas [16] and Maragos [9] describe global
feature extraction methods based on successive applications of increasing sizes of
structuring elements. Signatures based on the morphological operations are derived for
the images under test.

4.5.1 Hit and Miss Transform

Let B; and B, be two structuring elements. The hit and miss transform is defined
as:

A®(Bl,Bz) = (A@B])G(AceBz)

Directly useful for binary situations, this result is not immediately applicable to
the greyscale case. Serra defines the Hit and Miss Transform in the greyscale case in
terms of umbras ([3], p450):

U(fdg) = UU(HOU( 1))N(U()BU(g2))]

Note that the use of this result is completely dependent on selection of the correct

probe functions gl and g2.

The hit and miss transform defines the location of structures by the intersection of
the erosion of the set under test by one structuring element with the intersection of the
erosion of its complement by another. The pair of structuring elements are chosen so that
only the loci of structures of interest survive in the result. It is often used to isolate points
that have geometric properties, such as corners and border points on shapes, or the

significant points such as the locus of a template match.

Consider the example below, where we attempt to find the top left hand corner of

a square in a binary image.
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Thinning algorithms are used in conjunction with edge detection to produce
digital line maps of objects under test. The efficiency and accuracy of the located edge
depends on both parts of the location operation.

4.5.3 Rolling Ball Transform

Proposed by Sternberg [57], the rolling ball transform is defined by the difference
f—fo, wherefy = (f02)® g

The rolling ball transform defines a boundary of a shape as the difference between
the original image function f and its opening by a structuring function g. It will tend to
retain areas of high rate of change of intensity while lowering the overall grey level of the
image.

4.5.4 Skeletonisation Methods

Various skeletonisation methods are used for shape and object description (see
Blum [8] and Maragos[9]). It should be noted that these methods offer a means of
extracting structural features. As an example, the medial axis transform picks out

significant concave features on the perimeter of the view of the object, but does not

necessarily locate them to the precision of a single pixel locality.
4.5.5 Practical Examples

There are a variety of examples of the use of morphological methods to extract
features. This section illustrates several of the major approaches and relevant
applications. Serra [3] describes the use of morphological filters to extract the summits
and sinks of a digitised function (M; and M ;¥ respectively) as:

M) = Xi(N | [Xj+ ]S {H}:X{(f)] -oo<i<too

and

M{(D = X; €O 1 [X;. JCOB{HLXE(f)] -eo<i<itoo

where:
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XOH X = (X®H)NX,
H = compact binary filled hexagon in Golay alphabet [74] for sequential analysis.

D P Casasent and R Schaefer [58] describe the use of morphological filters to
extract significant features in simulated infra-red (IR) images. The method applies a
combination of morphological binary hit and miss transforms to four derived thresholded
versions of the same input image. The thresholds chosen are T{_4 = u +/- & and u+/- 0.3,
where u and e are the mean and standard deviation of a predetermined region of the
image. The four binary HMT results are UNIONed (ORed) to provide the result. The
output is compared with the equivalent result generated using a gray-scale HMT, reaching
the conclusion that the non-linear intersection implied in the intersected binary HMT
results is more useful for feature extraction.

4.6 Structural Feature Extraction using the R Operator

The R greyscale operator, as indicated in equations (16) and (17), has obvious
applications to directly extracting structural features from greyscale images. The methods
developed must meet several criteria. In order to ensure correct identification, a wide
range of features should be locatable; to minimise the work required of the recognition
stage, the features should be appropriate to the identification task; aliasing problems
caused by normal noise in the image, usually in the form of small spurious perimeter
features, should be minimised; to allow the highest quality estimation of rotation and
scaling, features should be located as accurately as possible; aliasing caused by textural
differences should be minimised. These constraints have guided the choice of structural

features for the recognition process.

Now consider the problems of extracting structural features from an intensity
mapped, quantised image. To be capable of extraction an object must have some
difference in intensity from the background. The case of textural differences with the
same average intensity is noted, but at the edges where the two textures meet there tend to

be local changes in directional average intensities.
4.6.1 Low Textured Objects, Directional Edges

Intensity differences (contrast) between the object and the background will affect
the accuracy of location of features. Consider the diagram of figure (23) below. Here a
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single pixel step change is being used to identify the location of x-directed edges in the
image under test. The presence of the edge is assessed by estimation of how many pixels
of the probe function are contained within the object function, at each point in the image.
As can be clearly seen, the closer the step intensity gradient change is to the actual

gradient of the edge of the object, the more localised the result will become. Noise
immunity will, however, reduce.

Figure (23): X-directed Edge Extraction using a Simple Structuring Element

(a) Binary Images

(=R e i wn]
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(b) Grey Scale

probe function step edge in intensity map
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before edge f low containment of probe

at edge / high containment

/

after edge low containment

Features can, however, occur at any orientation to the sampling grid.

4.6.2 Principle of Feature Detection

The basic principle is shown below. Assume the structure to be analysed is a two
dimensional bright square on a dark background. Both bright and dark areas are smooth
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(i.e. univalue in intensity). A probe structuring element, or template, is placed at each
point within the image under test. Outside the boundaries of an object, if the probe has
zero intensity values, it will be fully contained in the surface of the background. It the
probe points have an intensity value, none of the probe pixels will be contained in the
surface. Both these statements are true for the situation where the pixel at which the

probe template is placed cause the template to be fully within the boundaries of the
object.

About the perimeter an object, partial containment of a template will occur
provided that the intensity gradient of the feature is greater than that of the template. The
degree of containment might be used as an indicator of a particular structure on the
perimeter of the shape. Consider the diagram of figure (24) below:

Figure 24: Principle of Feature Detection

Donut Template
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Pixel at radius r is contained if h(r)>a(r)

Let us assume that a condition of three or four elements of the template contained

is indicative of a particular class of convex corner. Certain information is clear:

(1) multiple responses occur at a corner;

(ii) equivalent hits may result from approaching a straight or curved edge for
certain classes of corner;

(iii) these multiple responses must be resolved, either by clustering or some other
means of assessing a good hit;

(iv) equivalent containment could appear due to noise.

Aside

A much larger, dense template could be used, with all pixels utilised. The
requirement that the nucleus of the template be contained is included, and the area of a
“hit” judged on the number of contained pixels as an area. The contiguity of the “miss”
area could be assessed by a conditional erosion of it by a template of appropriate size.
Such an approach would lead to an implementation of a variant of the SUSAN approach
(Smith et al [66]), which has been demonstrated to have good noise and isolation

characteristics. This would, however, imply a considerable additional processing load,

and consequent cost in speed.

4.6.2.1 Template Intensity Gradient

The choice of intensity threshold by selection of probe structure profile, and
therefore detection gradient, is an important parameter in the localisation of features.
With a high contrast between object and background, low noise, and well-defined internal
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features, the gradient chosen should be of the order of 90% to 95% of the minimum
gradient of a required feature. Based on the conventional assumption that the best locus
of an edge or feature is the locus of highest rate of change of intensity or gradient (which
the differential methods tend to use), this would offer better localisation and probable
accuracy of the feature locus. In the presence of noise, blurring, or lower contrast,
selection is less obvious.

4.6.3 Noise Analysis

Consider, as a probe structuring function, the donut annulus of intensity height a
at its radius, and its approach to an edge of a feature, height H.

As the annulus reaches the edge of the feature, the noise height, n, required
to give a false value at a particular point on the radius r in (h@a)(0), must carry the

annulus height at radius r above the feature surface at r.
i.e. n2(h(r)—(h(0)+a(r))

Probability of a change in value = pr(n = (h(r) — (h(0) + a(r))), pr(n occurs at r)
evaluated over the radius of the annulus. This is, however, only part of the problem.
Noise at the origin of the annulus will have an equivalent effect. Either event will cause a

change in the R value for this position. The events are drawn separately from a random

distribution, and can be treated as independent events. Thus

Probability of a change in value = pr(change occurs at r) + pr(change occurs at 0)
— pr(change occurs at r). pr(change occurs at 0)
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It can be seen that this is a symmetrical - either positive noise or negative noise

will produce the effect.

The number of pixel changes required to achieve a false measurement depends on
the geometric thresholds chosen for the areas corresponding to concave, convex and low
curvature feature regions. On this basis, the probability of a false result is equivalent to
the probability that m pixels change their state as far as the R analysis is concerned.

Probability of a false result = [ pr(pixel change at r)]™ + pr(pixel change at 0)
—[pr(pixel change at r)1”. pr( pixel change at 0)

With the annulus template used, and subject to the broad feature type chosen as
appropriate for the recognition algorithm, the features produce multiple responses. As a
consequence, it is necessary for noise to corrupt the entire response over the feature for it
to be removed. The probability of a missed feature is equal to the probability of a false

result over the area of grouping corresponding to the feature, say x pixels, and

[ pr(pixel change at r)I" + pr(pixel change at 0)\"
Probability of missed feature = . )
—[ pr(pixel change at r)]". pr( pixel change at 0)

Assume the geometric boundary limits are set such that only one pixel is required

to change to change the state of the response. Then

pr(pixel change at r)+ pr(pixel change at O)JX

pr(missed feature) = (_ pr(pixel change at r). pr(pixel change at 0)

which, for a random noise distribution becomes simply
pr(missed feature) = (2 x pr(pixel change at r) — pr(pixel change at r)* )x
This offers some simple conclusions:

(i) the greater the noise level, the higher the probability of failure;

(ii) the larger the template, the more likely the recovery of features;

(iii) if more than fifty percent of the image area is corrupted with significant noise, the

larger the template is, the more likely missed features become;
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(iv) the greater the difference between the gradient of the feature in the intensity map and
the probe function, the higher the noise immunity;

(v) the noise immunity is governed by the number of pixel changes needed to change
state - the use of more pixels and a greater geometric tolerance separation will
improve noise immunity;

(vi) the greater the image contrast, the less effect noise will produce

(vii) to some extent, a trade off between localisation and feature accuracy of description

against noise performance is possible.

4.6.3.1 Salt and Pepper Noise
The distribution of salt and pepper noise follows the following rules:

Value at (x,y) = N(x,y) with probability p;
Value at (x,y) = f{x,y) with probability 1-p

where N(x,y) is the noise distribution.

If the noise is full range (i.e. N(x,y) = either maximum or minimum of image
range, the presence of noise will guarantee n 2 (h(r)—(h(0)+a(r)). As has been

discussed above, the probability of a missed feature now becomes:

pr(missed feature) = (2 x pr( pixel change at r)— pr(pixel change at r)? )X
=@2p-p)

It is usual to use regard p as a figure for the noise percentage in the image. The
number of pixels corresponding to a feature is crucial to the resulting value. Some
practical use of containment estimation in the two forms described in the following
sections 4.6.4 and 4.6.5 with the donut template (see appendix A.3) in the presence of salt
and pepper noise is shown in Table 6, p112. Due to the rotation of the shapes in this
image, and the consequent effect of alignment with the sampling grid (image grid), the
positive response to a feature rests in some cases on a single pixel. Given that the feature
must be detected by three different templates to survive in the result, as the practical
evidence shows, the likelihood of features being missed increases rapidly over the 20%

noise mark.
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of uniform intensity in the presence of noise. Its sensitivity will allow interpretation of
any noise as a relevant structure (as estimated by pix&l containment count in the probe
set). The measure of r immunity to change in pixel value over this type of region is given
by:

diff =h(r)—[h(0)+a(r)]

=~a(r)

If a(r) = 0, then sensitivity to noise is a maximum over the areas of the image not
abutting an object boundary or dark/light transition. Noise immunity is, however, at its
highest over the high gradient areas.

One of the design goals is the selection of an appropriate gradient to just exceed
the image noise threshold. However, if the noise occurrence in the image is low
compared to the template pixel count, or of low likelihood over the template, then the
zero value (i.e. flat) template is chosen. Its 2-D shape, or footprint, then defines the sole
contribution to the geometric probe.

Geometric Sensitivity

Assuming a broadly circular footprint for the probe structuring element, the

geometric threshold of resolution is given below:

. 1 :
Geometric threshold = —rads for a circulartemplate
n

where n = no of (equally spaced) probe elements

Figure (25) below illustrates the situation where two elements of the probe are
required to be contained to indicate a particular shape of corner. As can be seen, the
geometric precision of the corner detector is not particularly tightly toleranced. The
processing problem is more likely to be one of finding the general classes of perimeter
structure (high curvature concave, convex, low curvature, etc.) than of the isolation of a
particular single special curvature feature. The solution of this less common problem

simply requires a different probe structuring function.
As the template approaches a boundary, several hits are likely to occur. This may

result in the inclusion of straight boundary sections in high curvature estimates, and also
the generation of hit clusters (depending on the laxity of the condition). Further work

110



will then be required to isolate the required points. The reduction of clusters will increase

the degree of uncertainty in the precision of estimation of corner position.

Figure (25): Corner Geometry Resolution with the Donut Template

The geometry of the situation

indicates a variation of angle

of between 0 and ¢ for any
detected sharp corner

The requirement for identification of a possible feature locus is two-fold: the
shape of the feature in the intensity space must match the geometric requirements for
membership of the feature group, and the intensity profile must exceed the profile of the

applied probe.
4.6.4 Single Template Analysis - Mostly Hit, Mostly Miss Transform

Consider the approach of an annulus template, height at its radius a(r)
approaching the perimeter of an intensity map structure or object in an image, h(x).
Assume a noise component occurs at the radius point shown below in figure (26), where
the origin of the probe template is at some point h(0), on the surface of the function on

the rising edge of the object intensity map.

The actual image function, h(x), can be regarded as the sum of two images, the
perfect (noise free) image function hp(x), and the noise image n(x). The actual image is
then h(x)=hp(x)+n(x).

If the complement of the image function is taken, the same probe structure used,
and appropriate conditions applied, it can be seen in figure (26) that the effect of the noise
component does not produce a similar false hit (miss) in the complemented image. This
is subject to selection of appropriate conditions on the “hit” and the “miss” structuring
elements. It is reasonable to assume that using the complement of the conditions will
produce the required result - but incorrect. If any offset of the apparent position of the
feature is present, the hit and miss approach will miss the feature under these conditions,
unless noise is present in sufficient quantities to produce a false hit in the region of the

complementary acceptance.
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Figure (26): R Operation on a Noisy Corner Function and its Complement
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Conclusion

A “hit and miss” strategy will allow the elimination of false hits, but fails to
remove false misses. It will tend to over limit the data contained in the result. To
compensate for this, a wider geometric tolerance might be adopted. It will achieve the

removal of false inclusion as the probes approach the perimeter of the object in the image.

The level of spurious results, mostly missed features, is likely to be in excess of
those generated by direct application of the conditioned R operator for equivalent

conditions.
4.6.5 Multiple Template Intersections

The larger the applied template, the larger the area of response to it. The noise
rejected responses of larger templates can be used to reduce the apparent area of response.

In effect, by using a looser geometric tolerance, coupled with several equivalent templates
of similar shapes but different sizes the area of clusters produced can be minimised, and
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the false hits approaching straight edges removed. This is illustrated for a simple noise
condition in figure (27) below.

Figure(27): Multiple Probe Templates Approaching a Corner

h(x)

/ |~ noise limit at R
‘L noise limit at r
a(r)=a(R)
=
R

The effect on accuracy of location of features is generally beneficial. Based on a

h(0)

reasonable selection of probe structure gradient, the maximum noise rejection lies in the
area of peak rate of change of gradient; therefore the most likely response lies in the area
of best feature location (or, depending on the type of probe and feature assessed, at a

determined distance from it).
The removal of false side hit inclusion is illustrated overleaf in figure (28).

As has been stated in equation (15) p. 57, this is usually used with multiple probe
templates, often three, which can be increasing sizes of the same basic shape and gradient

probe.
Inference Rules

Basic rules of containment apply. If we start with the donut template and produce
symmetrical dilations of it, perimeter features are inferred using conditions as shown in
Table (5) overleaf. The selection of limits is obvious: if more than 60% of pixels in the
template are contained, the point under test is likely to be close to a concave perimeter
structure; if less than 40% of pixels in the template are contained, the pixel under test is
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Figure (28): False Hit Rejection with Multiple Templates

o At corner, containment = 3 and 3 (small and large probe)

¢ At side, containment = 3 (small) and 5 (large probe)

Perimeter of

- - large template
—— small template

Table (5): Containment Thresholds for Determining Perimeter Curvature with the

R Operator

CURVATURE R VALUE LIMITS | % EQUIVALENTS
High, Convex (14,11)* 88 - 69

Low, Convex (10,9) 63 - 56

Low (9,7) 56 -44

High Concave @4, 25-7

Low Concave (7,5) 44 - 31

General, Convex (13,10),0r (14,11)

General, Concave | (6,1)

General, Low 9,7

*Containment values where more than 14 out of 16 pixels miss the template are not
practical due to noise effects - a single pixel noise element will trigger a response in the

background region.
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probably close to a convex feature. The problem of noise is significant where low

containment values are used to infer the presence of a feature.

The data planes are generated, each corresponding to a particular size of the probe
template. The presence of a particular type of feature, at a particular scale, is inferred
from meeting the given probe containment requirements across adjacent sequences of
planes. A single plane is not sufficient to meet the inference limits, as figure (27) earlier
showed. The presence of noise and textural detail makes this inevitable, and it is the
averaging effect of multiple sizes that offers the possibility of inference. A minimum of

three consecutive planes were used at any one level.
4.7 Feature Detection Testing
4.7.1 Corner Detection

A standard image was used for the tests, as suggested by Haralick et al [64]. Nine
squares of brightness one hundred and seventy five grey levels and size twenty by twenty
pixels are placed on a background of brightness seventy five grey levels. The squares are
shifted in orientation by ten degree increments between zero and eighty degrees.

Square comers, as can be seen from figure (24) earlier, can be found as
corresponding to a containment of four pixels for the donut template used. Note that this
should lead to a double hit (i.e. two loci for each corner), each of which is offset from the
corner by one pixel for the zero orientation case. This does presuppose the alignment of

the square corner and the sampling grid (pixel grid).

The donut set of three templates d.par (see Appendix A.3) was applied with the
limits set for a strict containment of four elements only. The results are shown in figure
[29]. Appendix A.4.1 shows the actual corner loci, along with some explanation as to
missed features. The average error in corner position was found to be 1.6 pixels from the

actual locus for the clean image.

In addition, the effect of added random noise was investigated. Salt and pepper
noise contamination of ten, twenty and thirty percent of pixels was added. The number of
missed corners and false hits increased with the noise level, as did the degree of multiple
responses for features. Choosing the intensity threshold so as to eliminate the majority
of the noise, rather than relying on a “best nominal” improved the results. No pre-
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Table (6): Corner Detection in Salt and Pepper Noise

Noise | Templates % Corners % Corners at | % Corners % Corners % Missed
% at actual +/- 1 pixel at +/- 2 pixels | at +/- >=3 =N/36
locus from locus from locus pixels from
locus
No. % No. % No. % No. % No. %o
0 d,par{12:12} 1 1.7 22 37.9 20 34.5 15 259 2 5.5
10 d,par{12:12} 0 14 28.0 |22 44.0 14 28.0 5 13.9
20* d,par{12:12}) 1 3.8 2 7.7 5 19.2 18 69.2 21 583
30 d.par{12:12} failed'
10 d50.par 1 22 16 35.6 16 35.6 12 26.7 6 167
{12:12}
20 d50.par 0 0.0 9 250 10 277 17 47.2 10 278
{12:12}

*Plus 11 false hits 'Too many responses to adequately classify

Gaussian noise of standard deviation ten grey levels was then added to the original
image. This corresponds to the test image used by Haralick [67] for the Kitchen-
Rosenfeld and Dreschler-Nagel corner detectors, along with Zuniga and Haralick’s best
Smith [68] applied the SUSAN method and the Plessey

corner detector (or Harris detector) to the same data.

facet model-based detector.

On the given image, shown here as figure (30) with the identified corner loci
added as white dots, the error represents a significant deviation from the corner position
when considered in terms of the apparent percentage length change in the side separating
the corners. However, further trials have shown that the same degree of absolute error in
pixel position occurs on larger sizes of the shape. The sample used was a square of 300
pixels per side with the same object and background intensity levels and added noise.
This constancy of error is useful, inferring as it does that the error in relative terms
decreases geometrically with the increasing size of the object, or with decreasing size of

sampling grid.

The algorithm has an in-built error of one pixel from the locus of the square

corner. A table of results for a variety of detectors is shown in Table [7] below.
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Table[7]: Corner Detection Results for Various Algorithms

d=0 d=1 d=2

PACITC) | (TCIAC) | PACITC) | P(TCIAC) | P(ACITC) | P(TCIAC)

Multiple

Intersection

d50.par 0.083 0.077 0.72 0.74 0.83 0.92
{9:9,12:12,
12:12)

d50hug.par 0.083 0.052 0.72 0.45 0.97 0.86
{12:12}all

Mostly Hit, Mostly
Miss

Rjhma5 with 0.167 0.12 0.61 0.59 0.72 0.76
donut20.dat
{6:1,6:1}

Other Grey Scale
Methods

Facet* model detector 0.361 0.361 0.97 0.97

Kitchen-Rosenfeld* 0.055 0.021 0.36 0.36
detector, no gradient

threshold

Kitchen-Rosenfeld* 0.055 0.05 0.83 0.84
detector, gradient

threshold=20

Dreschler-Nagel* 0.055 0.059 0.33 0.35
detector, gradient

threshold = 20

d = distance between actual and assigned corner

P(ACITC) = pr(assign corner and corner exists within specified distance)=(corners within
distance/no of corners); note this does not include multiple hits.

P(TCIAC) = pr(true corner within specified distance if corner assigned)=corners within

distance/no of corners assigned); this does include multiple hits on the same corner

*These results are taken from “Computer and Robot Vision, Volume 17, R M Haralick, L
G Shapiro, Addison Wesley, 1992, pp 418.
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Discussion

Whilst this undoubtedly offers a valid comparison of the capability of identifying
the exact loci of corners, it is less than generous in its treatment of the conditional
morphological methods described. For these algorithms, the correct identification of
pixel locus is outside of the boundary of the object, by one pixel, with a high probability
of a dual response. Nevertheless, it does illustrate the facility of the methods applied in
detection of corner loci. The best response came from the intersected R sets approach
with three sizes of template (d50hug.par as defined in AppendixA.3), with a relatively
high intensity threshold of 50 grey levels. Given that the mostly hit, mostly miss
transform results are, in effect, a form of profile fitting, the intensity threshold of 20 was
chosen to give closer comparison with the other grey level detectors used, all of which

rely on some form of surface fitting within the models they adopt.

The results are favourably accurate in comparison with the Kitchen-Rosenfeld and
the Dreschler-Nagel detectors, but not as accurate as those achieved with the best
performance of the Zuniga and Haralick facet model detector. When considered in the
context of the expected response, the figures rival, but do not equal, those of the best
facet detector (expected response is 1 pixel from the corner, corresponding to d = 2 from

the corner for a +/- 1 pixel distance from the expected locus).

The qualitative data given in Smith [68] would indicate a superior performance
for both the SUSAN and Plessey detectors. Both these systems use contiguity constraints
to limit the response windows. In this case, this would correspond to the assertion that
not only the geometric threshold is exceeded as measured by pixel count, but that the
block of pixels causing the response form a contiguous area within the image. As was
mentioned in section 4.6.2 earlier, the SUSAN detector uses a solid disk template to
identify features, offering better spatial resolution of geometry at a cost of more

processing.
4.7.2 Other Geometric Features

For a wider variety of corner shapes, the synthetic test image of figure (31) was
used. This was generated as a feature test image, generated by doubling the size
(256x256 to 512x512) of an image obtained from Mr S Smith, Department of Clinical
Neurology, Oxford University via the robotics research group web site

www.robots.ox.ac.uk. It contains useful characteristics, including a variety of abutting
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4.8 Blurring Noise

In the context of the actual system noise for the optical missile guidance problem,
the high speed of data acquisition required will necessarily limit the motion smearing of
the target object image. However, the motion of the missile itself, and the levels of high
frequency vibration present due to engine and flight effects, will produce blurring in the
acquired data. The blurring produced is unlikely to be unidirectional, being caused by a
combination of relatively random effects acting on the support of the system acquisition
camera.

In order to evaluate the problems this introduces to the recognition system
performance, the blurring noise was introduced as volume distortion of the binarised
aircraft perimeter. This is an attempt to simulate the effects of random blurring on the
image, followed by the signal conditioning and continuous binarisation which are often
used in in-line processing systems appropriate for high speed use. The results of this
approach are discussed in Chapter 5, section 5.6

4.9 Summary

A feature detector for identifying structures in the intensity map has been
developed, using the R operator to evaluate intensity structure geometry as the parameter
for classification. This classification is undertaken by creating a probe structure of the
required geometry (not necessarily that of the feature sought) and evaluating its presence
at each point of the surface of the intensity map by the generation of a containment value
indicating how many of the components of the probe are contained at any point.
Inference is drawn from the containment value as to the structure of the intensity map at

that point.

Two methods were developed to limit the likelihood of false inference being
drawn due to noise and structure proximity, based on the intersected R method and the
mostly hit, mostly miss transform. The former uses multiple templates to identify the
features; the latter relies on a closer definition of the surface profile achieved by

evaluating both a normal and a complemented image about each point.

These methods were evaluated against standard techniques for the isolation of
particular feature types using standard images. The results show a relatively good
performance in comparison with the Kitchen-Rosenfeld detector and the Dreschler-Nagel
detector, but being bettered in terms of feature location by the facet model detector of
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Zuniga and Haralick, and apparently in completeness of discovery by the Smith’s SUSAN
detector. Corners were reliably detected in noise conditions of up to 20% salt and pepper

noise within 3 pixels of their actual loci. The R intersected algorithm found features more
reliably, the MHMMT more accurately for the given data.
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Chapter 5: Feature Extraction Results from Real
Images
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Chapter 5: Feature Extraction Results from Real Images
5.1 Introduction

In acquiring results, the problems of general purpose practical systems become
apparent. Whilst no difficulty occurred in generating high quality examples through
operator intervention, it proved considerably more difficult to produce generic, automatic
algorithms capable of operating over a variety of lighting and object background
situations. It is no coincidence that the majority of industrial imaging applications require
carefully controlled lighting and known orientation and scale. As has already been stated,
the reduction of degrees of freedom, and the elimination of unwanted reflections and
shadows, allows the imaging system to work within the tight constraints necessary for
reducing processing effort. The real difficulty in handling general data comes from its
variability.

5.1.1 Equipment

A relatively modest equipment base was used for this project. For image
acquisition an Imaging Technologies PC Vision Plus frame grabber was used with a
Pulnix CCD camera. For later images a Truevision Targa+ frame grabber was used. Both
yielded 512x512, 8 bit deep grey level images. For illumination three angle-poise lamps
were used, offering a limited control over intensity and direction of illumination. Such an
approach was regarded as adequate given the aim of the project to allow direct feature

extraction from loosely controlled environment images.

Control over orientation of objects under test required the use of a fixed camera
position relative to the object platform. The object platform allowed limited roll and

pitch positioning, and full yaw rotation.

A block diagram of the rig is shown in figure (32) below:

All algorithms were written in the C programming language, and variously
compiled using Microsoft C version 5.1, Borland C++ version 3.1, and Microsoft Visual

C version 2, initially on a Viglen 286-16 PC AT compatible under MS-DOS and later on
a Viglen 486DX66 PC AT compatible under MS-Windows.
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Figure (32): Image Acquisition Rig
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5.1.2 Test objects

The selection of test objects was made on the basis of obtaining a wide selection
of object feature types. The objects were then used with a variety of background and
lighting combinations to yield a set of test images. The resulting images include: high
and low contrast examples; noisy images; and textured objects with a variety of textured
and non-textured backgrounds. The set of test images are shown in Appendix (B), with
specific examples reproduced in the following sections where appropriate. The template
co-ordinates and values, and the sets of templates use for the intersected analysis, are also
listed in Appendix (B). Natural objects were used to demonstrate the enhancement and

delineation capabilities of the algorithms.

The generation of a stable, reproducible, noise source was made through the use
of synthetic noise, added to the image under test. This is in addition to any existing noise

within the image, generated as part of the acquisition process.
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5.1.3 Conventions for Notation
(i) Use of the R Operator (r)

The name of the image under analysis is followed by the applied algorithm and
the name of the template in brackets ( ), with the conditions used given as a pixel count in
braces { } where appropriate. The name of the result file follows.

For example:

islb.img (r,donut{13,1}) islbd131.per

would indicate the application of the r operator with donut template with
conditions of between 13 and 1 pixel containment to file islb.img, the result stored as
istbd131.per.

(ii) Use of the MHMM Transform (rjhma)

The convention here is essentially as described in (i) above, but the two sets of
conditions inside the braces, hit set conditions first, are separated by a colon where the
same probe is used both for hit and miss:

is1b.img(rjhma, donut{6,1:6,1})

(iii) Use of Intersected R Analysis (rin)

The name of the analysed image is followed by the applied algorithm and the
name of the template set in brackets, with the sets in square braces [ ] and their respective

conditions in braces { } separated by commas:

booze.img(rin,dset.par[smalldo{11,1},donut{13,1},rest{13,1}])bozlo.rin

5.2 Feature Extraction

The feature extraction methods described in Chapter 4 Section 4.6 were applied to
a variety of test objects, and the results shown and listed below were obtained. The
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question as to which features are pertinent to the perceptual reasoning about an object in
an image, and how the loci of such features are to be obtained, is an important one. As
has already been discussed (see section 3.3, or Davis [32]), the structural features used
for recognition are likely to mimic those used for human perception. However, the exact
loci of the features’ perceptual point of action is a matter of the viewer’s interaction with
the scene.

In order to obtain a valid estimate of the loci of perceptually important features for
the test object images used, a group of five people were instructed to assign points of
importance in terms of high concave and convex curvature by locating control points on
the image perimeter. The process was repeated by each person weekly over a period of
ten weeks, to remove training errors. The results were then averaged to obtain a best
locus for each feature. The data obtained is used for comparison with that extracted from
the images using the various feature identification algorithms applied later in this chapter.
This should offer a better measure of the actual locus of the perceptually important
perimeter changes than a single person estimation. The variation in locus assignment
rarely exceeded three pixel positions for the common set of features; consequently, this
limit was applied to the set of features used for the evaluation of practical results.

The set of features identified by the test subjects included some that were
relatively small, and disappeared for low levels of rotation from the pose evaluated.
Others were of relatively low curvature, but perceptually significant for appearing
between two perimeter runs of lower curvature. Given that the method adopted requires a
specified level of curvature for the geometry to meet the identification criteria, several of
the features identified for each object are unlikely to be found by the algorithm applied.
On this basis, a second pass was made through the features to identify a control group of
features, usually structurally gross and likely to remain of importance through reasonable
levels of rotation of a particular pose of the object. A further criterion, that of relatively
high curvature, was added. The features identified are those likely to be automatically
selected by a perimeter following or line fitting algorithm as the vertices of the object.

In the quantitative data presented in section 5.4 later in this chapter, data for
extraction efficiency is presented for the control group features, in addition to the full set
of perceptually important features. This is justified on the basis of the method of feature
extraction - it is not entirely appropriate to judge the efficiency of the algorithm against
criteria it is not intended to meet. An example of the control group features, and the
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The curvature was calculated relative to the perimeter itself by difference
equations as:

curvature =d6/dS

The orientation of the perimeter, 0, was calculated piecewise as:

0 =Ay/Ax
=(yn _yn—l)/(xn —xn—l)

where yp, Xy are points on the perimeter. A separation of around ten pixels

between successive points was arbitrarily chosen as giving reasonable results for objects
of adequate size within the field of view. Using this curvature measure, points of high
and low convexity and concavity on the perimeter were isolated and used for recognition
purposes.
Figure (34): Algorithm for the Extraction of Perimeter Features using Chain Codes

Acquire Image

Histogram Equalisation (if necessary)

Lowpass Filtering

Binarisation by Thresholding

Median Filtering

8-Connected Chain Code Generation

Extraction of Features using Curvature Estimation

This method again proved useful for objects of high and low contrast (subject to
the pre-processing requirements), and with partial obscuration and overlapping. Lowpass
filtering improved the quality of the perimeter delineation after binarisation, at the
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Is12b.img (eye extracted) is12b.img (gab, diffre extracted)

X y type X y type
295 315 1 296 326 1
296 408 1 300 414 1
310 442 ] 316 440 1
392 431 1 392 425 1
393 332 1 -

372 308 1 361 310 1

In the example overleaf, figure 35(b), the problem is one of difficulty in
delineation. To improve the situation, the following procedure was adopted: a low pass
filter was applied, to smooth the perimeter; the image was binarised by thresholding; and
a median filter applied to tidy up the ragged edges of the boundary. This necessarily
introduces perimeter distortion, but allows the gross description of the boundary to be
used to extract structural features. The extracted feature set exhibit problems with
misplaced positive responses. Reducing the binarisation threshold caused inclusion of
islands of noise and texture in the result.

The increasing of the run length over which the perimeter orientation is calculated
offers a means of reducing the problems by averaging. It does, however, produce gross
distortion of the position of features, beyond that reasonably worthy of consideration for a

feature extractor for a recognition algorithm.

Given the over-inclusion of features in the resultant data set, including false
features which are generated as a result of poor extraction at positions widely at variance
from the actual nearest perceptually significant point, some further processing to improve

the situation is required

The problem now becomes one of the isolation of the appropriate features for the
object description. With a fixed scaling and orientation, the method will work
adequately. The required features may then be matched point by point, eliminating

consideration of the bulk of spurious features.

133






easily separable, perimeter features are clearly isolated. The categories of gross structural
features are usually identified, along with a limited range of spurious effects.

This method relies on the spatial averaging implicit in the template area to
minimise the aliasing caused by random noise effects. Inevitably, this limits the
usefulness of the technique in its simple form under noisy environments. The intensity
gradient of the template is an important parameter. As the gradient of the template comes
closer to that of the object/background boundary, the extracted features become more
localised and the spurious effects more limited. The establishment of the optimum
gradient would require either more control of the environment or prior processing to
select it (via some method such as selection from the Rayleigh distribution of the intensity
map of the image). Given that this is not usually possible, the use of a lower gradient and

acceptance of a higher number of spurious features offers an alternative.

Where the noise effects are truly random, using multiple sizes (scales) of the same
template should reduce the level of interference by evaluating on the basis of a different
set of points. If the feature required is of substantial size, several different scales should
be evaluated and the presence of the feature deduced from the multiple results. It is true
to say that a larger scale will necessarily reduce the localisation of the feature. This
multiscale approach is described in section 4.6.1, and has been used to produce the

images of section 5.3.4.

In practice, it was found that attempts to completely localise a feature were more
likely to lead to its disappearance. A better result was achieved by accepting a localised
cluster about the feature locus, and improving the targeting by shrinking the resulting
cluster rather than applying higher levels of analysis at the earlier stage. Example results

are shown below in figure 37.

The R operator produces a rich feature environment, and requires further
processing to extract the relevant information. This may take the form of filtering the
image, or the extraction of cluster location from the conditioned result. The principle
objective, that of direct extraction of structural features in a form appropriate for passing
to a recognition algorithm, is not adequately achieved. In practice, the perimeter
following algorithm of section 5.3.1 can extract feature data from the perimeter images,
and the median filter and its morphological analogue can reduce the size of cluster to an

acceptable extent, as is indicated in Appendix B.2.
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The increased selectivity of the MHMMT is clearly shown in figures 38 (a)(i) -
(vi). Figures 38 (a)(iv) and (v) show the effect of increasing the gradient of the template.
The features are more localised, but with further increases in template gradient threshold
may well be missed altogether. The feature sets extracted here are of an appropriate form
for passing directly to a structural recognition algorithm. The example image referred to
as IS6B (figs (vi) and (vii)) is used later for quantitative analysis of the effects of noise on

the algorithms applied.
is4b.img (eye extracted) MHMMT
X 'y type X 'y type
365 271 1 360271 1
423 326 1 4203251
4213271
4203291
420 342 1 418 343 1
166 388 1 168 386 1
168 387 1
168 388 1
382 406 1
377 326 0 376 3270
418 334 0 4163320
381 348 0 3793480
248 357 0 -
260 380 O -

The low contrast image of figures b(i) - (iii) below are examples of the peak
performance of such an algorithm. The features are located and localised, with little
spurious data included. The template had been optimised neither in shape nor gradient

for the solution.
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Table (9): Concave Features Extracted using the R intersected Method

booze.img (eye rin extracted

extracted)

X y X y

218 186 -

289 189 283 191
284 191

269 192 268 191
269 191
268 192
269 192

242 197

315 209 317 210
318 210

323 218 323 216
324 216

204 238 -

295 266 293 265
294 265
295 265

213 273 212 272

219 299 -

273 304 272 302
272 303
273 303

310 331 -

312 322 -

349 358 -

348 398 -

As can be seen, there is a tendency to multiple responses to recognised corner
types. Certain features are missed because of the geometric thresholds used. Although

perceptually significant to the eye, their curvature is not adequate to match the
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requirement set. Other features are simply missed, because of the sampling shape, or the
sweep of the profile in the intensity domain.

5.3.5 Extraction of In-object Features using the R Operator and Templates

The extraction of in-object features used the same basic algorithmic approach as
shown in 5.3.2 above. The difference comes in the sophistication of the interpretation of
the results. Having already shown a method of extracting the object perimeter, the
localisation of features within the object is a matter of position: if the result falls within
the perimeter it is within the object. The key problem in this work is characterised by the
extraction of shape from shading information from the object. The attempt is made to
characterise surface features from the intensity map profile relative to the background
area.

There are two broad strategies applicable to this problem. The first is to locate the
structural components of the feature from the intensity map. This may be enhanced by
oblique lighting, a constraint which has not been previously needed. There is little reason
to assume general features will be easily isolated due to significant intensity differences
between the feature and the background, which is now the body of the object itself. The
second is to define the feature itself as the template, and attempt to identify the feature as
a whole within the intensity map. This will require the fixing of scale and rotation prior

to the analysis.

Only the first method was applied. The separation of feature and background
proved an intractable task, with shading effects often more significant than the features.
The degree of lighting control needed to produce successful results was difficult to
achieve using the simple test rig. The best results were obtained by using a dual lighting
strategy, initially attempting to obtain uniform illumination to optimise the
object/background segmentation, and then using directional illumination to highlight the

required features.

Specular reflections from points of high curvature proved useful. The significant
increase in intensity caused by off-specular to specular transition were easy to identify,
and were used as markers of high curvature when localised in appearance. It is
recognised that these are the features which could be easily extracted through
straightforward binarisation by thresholding. In general, high curvature areas, by
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producing significant variation in the intensity map, proved easiest to extract. The
coincidental extraction of the wing marking on the low contrast image in figures 38(b)(ii)
and (iii), and 39(i) and (ii) illustrate this point.

5.3.6 Noise

The presence of noise causes distortion of the shape of genuine perimeter features,
and incorrect location of feature clusters both outside and inside the object. The effect of
noise on the R perimeter feature detection algorithm is shown in the following
quantitative results. Both salt and pepper noise and Gaussian noise were added to the

aircraft images, and the accuracy and completeness of the feature extraction compared.

Problems generally arise when the noise structures are of the size of the features
sought by the extraction algorithm. The reduction of noise was attempted by application
of the probe templates with appropriate gradient and geometric thresholds. The
alternative method, that of removal of the noise by pre-processing, was not considered as
part of this work. It would, however, offer an additional enhancement to the quality of
the source data, but usually at the cost of some disturbance to the positions of features.

5.4 Quantitative Results

Table (10) below represents the results obtained from the previous analysis
considered against the human visually extracted data for the same objects. Some caution
is needed in the consideration of the data. The act of placing a cursor at the perceived
point of high curvature on a screen image is not guaranteed to give the perceptually
important point. It is a conscious act, mediated by the process of placement, and
therefore offers the point thought to be the significant one, but not necessarily that on
which the unconscious mind bases its decisions as to locus and type. Insofar as the
placement is correct, this offers a realistic estimate of the position of point of perceptual

significance.

It is clear that the measures applied by the algorithm and the measure applied by
the text subjects are similar in the case of most features, by less so where the features are
large (the nose cone, the wing tips) or subject to a gradual gradient profile. (See
Appendix (B2.1) for details).
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Table (10): Feature Detection Results for Various Objects

(A) Concord IS1

Distance | d=3 d=10 d=20
| Algorithm PACITC) | (TCIAC) | P(ACITC) | P(TCIAC) | P(ACITC) | P(TCIAC)
Multiple R Template 0.52 0.56 0.80 0.55 - -
Intersection
Mostly Hit, Mostly 0.32 0.22 0.48 0.44
Miss (1)
Edge Following and 0 0 0.67 0.67 1.0 0.89
Curvature Estimation
R Extracted Perimeter 0.11 0.11 0.56 0.56 0.89 0.77
Perimeter Following
and Curvature
Estimation
(1) Key Features only 0.8

d = distance between actual and assigned corner

P(ACITC) = pr(assign corner and corner exists within specified distance)=(corners within

distance/no of corners); note this does not include multiple hits.

P(TCIAC) = pr(true corner within specified distance if corner assigned)=corners within

distance/no of corners assigned); this does include multiple hits on the same corner

(B) Rotated Concord IS4

Distance | d=3 d=10 d=20

 Algorithm P(ACITC) | P(TCIAC) | P(ACITC) | I(TCIAC) | P(ACITC) | (TCIAC)
Multiple R Template 0.85 0.80 0.94 0.8

Intersection (1)

Mostly Hit, Mostly 0.82 0.5 0.91 0.6

Miss

Edge Following and 0 0 0.71 0.5 1.0 0.6
Curvature Estimation

R Extracted Perimeter 0 0 033 04 0.67 0.6
Perimeter Following

and Curvature

Estimation

1) Key Features Only 1.0

145




(C) Hawk Trainer IS6

Distance

=3

d=10

d=20

Algorithm

P(ACITC)

P(TCIAC)

P(ACITC)

P(TCIAC)

P(ACITC)

P(TCIAC)

Multiple R Template

Intersection (1)

0.57

0.27

0.90

0.40

Mostly Hit, Mostly
Miss

0.86

0.55

0.92

0.61

Edge Following and

Curvature Estimation

0.08

0.06

0.72

0.58

0.92

0.68

R Extracted Perimeter
Perimeter Following
and Curvature

Estimation

0.17

0.03

0.67

0.13

1.0

0.16

(1) Key Features only

0.56

(D) Square Block 1S12

Distance

d=3

d=10

d=20

Algorithm

P(ACITC)

P(TCIAC)

P(ACITC)

P(TCIAC)

P(ACITC)

P(TCIAC)

Mutltiple R Template

Intersection (1)

1.0

0.5

Mostly Hit, Mostly
Miss

0.25

0.17

1.0

0.17

Edge Following and

Curvature Estimation

0.6

0.5

1.0

0.83

R Extracted Perimeter
Perimeter Following
and Curvature

Estimation

0.8

0.67

1.0

0.67

(1) Key Features only

0.56
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(E) Low Contrast, Rotated Hawk BOZ

Distance | d=3 d=10 d=20
| Algorithm PAACITC) | (TCIAC) [ P(ACITC) | P(TCIAC) | P(ACITC) | P(TCIAC)
Multiple R Template 0.88 04 1.0 04
Intersection (1)
Mostly Hit, Mostly 0.72 0.6 0.92 0.67
Miss
Edge Following and 0 0 047 0.5 0.77 0.7
Curvature Estimation
R Extracted Perimeter | Invalid -
Perimeter Following excessive
and Curvature false hits
Estimation (d10.par)
R Operator Single 0.89 0.47 0.96 0.53
Template donut10.dat
{6:1}
(1) Key Features only 0.69

The tables above illustrate several points. In general, where corner are indicated,
they do exist within reasonable distances of an actual corner in the image. Our basis of
evaluation of a perceptually significant feature has been discussed previously. It is
evident that the extraction of features misses many of the features, typically of the order
of fifty percent. This raises questions as to how the object should be modelled, which are

dealt with explicitly in section (6.5).

The algorithms were not specifically tuned for best results. The donut template
was used (gradient threshold five grey levels) for the great majority of the work, with
some success. Closer tuning of the gradient can assist in reducing multiple hits with the R
intersected method. However, it is a truer test of the utility of the algorithms to use a

relatively low threshold, and compare the results so obtained.

The results of Table (11) below compare the features extracted from the is6 image
using four different gradients of the donut.par set of templates (see Appendix (A.3) for

details of the templates contained within the set).
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Table (11): Comparison of IS6B.IMG Intersected R Extracted Convex Features at
Four Different Gradients of the D.par Series Template Set, Limits at {13,12}

Distance | d=3 d=10
Probe Template Set P(ACITC) | P(TCIAC) | P(ACITC) | P(TCIAC)
d.par{13:12} 0.73 0.38 1.0 0.38
d10hug.par{13:12} 0.79 0.44 1.0 0.44
d20hug.par{13:12} 0.71 0.44 1.0 0.44
d30hug.par{13:12} 0.5 0.13 1.0 0.19

There is an apparent optimal gradient threshold band for feature detection. Too
low a gradient and features are masked by a surfeit of noise-generated false hits; too high
a gradient and they are not found. This is, of course, dependent on the contrast in the
image. More specific forms of surface fitting (such as is implied in Zuniga and
Haralick’s facet based detector, with its underlying cubic fitting to the intensity surface)
can make better use of this information.

The general assignment of features occurs close to the feature loci in the majority
of cases, particularly where adequate contrast and low noise coincide.

The results of Table (12) below compare the use of the MHMMT method and the
R intersected method in the presence of Gaussian noise. Noise was added at a signal to
noise ration of five. As can be seen, the MHMMT method produces the more accurate
results, but rejects more of the features. The R intersected method is less effective in
rejecting false features, but includes significantly more of the object features. Given the
implicit surface fitting with the MHMMT, this is to be expected. The MHMMT also
requires a better estimate of detection gradient to work fully effectively than does the R
intersected method. The common factor is, however, the relatively low number of
perceptually significant features found. The confidence in any recognition of an object

based on these figures is likely to be low.

The choice between the two rests on the need for exact location and low numbers
of multiple hits balanced against a higher number of features located. The decision rests
on the use to which the data is to be put. As is discussed later, the recognition algorithms
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used in this work generally produced better results with the larger number of features
located by the R intersected method, particularly where the multiple hits occur very close
to the corner which generates them.

Table (12): Gaussian Noise at Signal to Noise Ratio 5 added to the IS6 Test Image

Distance | d=3 d=10
Probe Template Set P(ACITC) | P(TCIAC) | P(ACITC) | P(TCIAC)
Concave Features
rin, d10hug.par{5:3} 0.47 0.33 0.8 0.53
mhmmt, 1.0 0.40

donut10{6:2,14:10}

Convex Features

rin, d10hug{13:12} 0.70 0.38 1.0 0.38

mhmmt, 1.0 0.25
donut10{6:1}={15:10}

5.5 Summary of Discussion

There is a basic point to note in the previous work. Having loosened the
constraints on the probe template, we are effectively applying all the possible variants,
made from the m pixels out of n of the template, to the image at the same time. The result
simply shows that one of the sequences of variants is applicable at the given point, but

does not identify which one.

This is, then, a coarse tool, likely to pick up various spurious formations as well as
the desired objective. In spatial frequency terms, we are broadening the response of the
filter (albeit in a controlled way). This will allow more information to pass through, and
should prevent the over-tight response of the direct operator equivalents such as the hit

and miss transform and set erosion with hard limits.
There would be information handling advantages to determining which of the

possible responses had occurred, but this merely returns us to the "hard power” technique
of trying each variant in turn. This is inefficient on processing grounds alone. [Assume a
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template has 16 defined points within it. For a template limit of 9 points contained, the
number of applications would be

!
C,=(—'£'—)‘—' wheren=16,r=9,
n=r).r!

n

to cover the range of combinations. This yields a possible 11440 combinations. The
advantage of such an approach is that the source of the positive result is identified,
enabling rule-based elimination of a variety of sources of incorrect response.]

In practice, of course, we would only apply the nine pixel template in each of the
sixteen possible complete orientations, and any acceptable variations. We have over-
loosened the filter to some extent, and the remainder of the work consists of considering
how the re-tightening might be accomplished practically and to an appropriate degree, to
allow adequate selectivity with enough flexibility to accept the likely range of correct

input.
The three methods attempted produced varying degrees of success.

R Operator Method

The R operator represents the broadest filter. In this case, the options for
tightening the response are twofold, by increasing the gradient of the template, and by
tightening the conditions for a positive response. Neither method is without dangers:
over-tightening the conditions will reject useful features; increasing the gradient will

eliminate weaker intensity structures which may be relevant to recognition.

As can be seen from Table (13) below, the increased gradient of template is
effective in excluding additional data from the result. The extent to which this is
applicable to the general case of object recognition is arguable. It presupposes a
knowledge of whether the image is textured or non-textured; it assumes that the most
significant changes in the intensity map will relate to features of interest (there is an
obvious flaw in this assumption); it assumes that the relevant features for recognition will
be those extracted at the highest gradient. As can be seen from the data, other features
may appear as the threshold gradient eliminates more of the structures in the intensity

map. There may be some case, where possible, in reducing the intuitive supervision of
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the algorithm inferred by using “perceptually significant” features, and allowing it to find
its own feature models based on live data. This would require the rotation of the object
within a sequence of images, the relevant feature sets being generated whenever a new
significant feature appears or an established one is obscured. Later rationalisation could
be applied to reduce the likely excess of library models created.

Table (13): is6 concave features extracted using r operator with limits 6,1 at
different template gradients

donut donut20 donut30
X y X y Xy X y
317 157 274 185 313 158 275 186
314 158 273 186 318 158 276 186
315158 274 186 313159 285279
316 158 275 186 314 159 286 279
317 158 272 187 318 159
318 158 273 187
314 159 274 187 275 185
315159 275 187 274 186
316 159 276 187 275 186
317 159 272 188 276 186
318 159 273 188 275 187
314 160 274 188
315160 275 188 328 209
316 160 329209
317 160 329 207
318 160 328 208 371 230
315 161 329 208
316 161 335 251

371229 335 252

372 229

373 229 285279

371 230 286 279

372230 287 279

373 230 286 280

287 280

MHMMT Method

The MHMMT approach has several advantages. It is limited in the degree of
processing required, to an image inversion, two R operations, and two comparisons (but
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only for candidate points not rejected by the first comparison). This is a pointwise
operation, and therefore of order (absolute worst case) [(NxM)+2(NxMxP)], N and M
being the width and height of the image in pixels respectively, P being the number of
pixels in the probe template. These are, however, all purely integer operations, mostly
add and comparison and increments for the probe at each point in the image. As will be

discussed later, such an approach lends itself to a coarse grained parallel implementation.

The obvious increase in selectivity is highlighted clearly by the examples shown,
both in the isolation of features as a positive benefit and in the incomplete boundaries for
perimeter extraction as a problem. By adopting the method of intersection, the MHMMT
produces a clear delineation of the information required, and is effective in the rejection
of noise. Some spurious data is contained, but this results more from the logical
difficulties in designing the right spatial pattern for the probe than from inherent
inadequacy of selectivity.

The selection of the complementary template limits for both hit and miss probes is
slightly more subtle approach than it first appears. The reliance is on the fact that some
elements which meet and exceed the hit criteria will fail on the miss criteria. The noise
elements can be assumed to increase or reduce the value of the grey level at a particular
pixel. Thus it may come to be part of one or other of the solutions as a result (see
equations [7] and [14]), but will consequently undershoot the requirements of the

complementary operation.

It is only at the perimeter of structures in the intensity map that the conditional
uncertainty specified can permit inclusion in the result. By the use of complementary
conditions, the degree of exclusion is controllable. [Again, the basic rule applies - widen
the filter response and accept more included noise]. The noise effects, which will
increase the size of cluster produced for a given feature type, are limited, reducing the
likelihood of spurious inclusion as the template approaches the boundary. The rejection

of actual features is common with this method.

Generalised R Analysis Method

Consider a situation in which the gradient of the template is fixed. There are now
two ways of increasing the noise rejection of the probes. Firstly, we could increase the
size of the current shape of the probe, effectively requiring more feature to produce a
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positive response at the given location, and more noise to produce a spurious one.
Secondly, we could change the shape of the probe, but retaining its size. Depending on
the nature of the noise in the image, and the size of features sought, either could prove
effective. The former, however, should prove more robust under "blocky” noise, due to
its weaker localisation in effect offering similar advantages to averaging over a larger
template in conventional means. It will prove equally prone to random noise, if it is to
contain the same number of pixels as the alternative shape of template. As a result, this

method was adopted for the majority of the generalised R analysis work.

The majority of decomposition and analysis work recently discussed in the
literature relies on flat probe templates, allowing reconstruction from the decomposed
images. However, the objective here was not decomposition, but instead extraction and
characterisation. The vertical edges preserved by non-flat templates are likely to be the
prime candidates for features, and as a result the gradient of the template forms one of the

determinants of the success of extraction by elimination of spurious data.

5.6 Indirect Extraction - Application of the R Intersected Method to Previously
Segmented Data

The direct feature extraction processes discussed above include a dual requirement
of an adequate gradient threshold to permit proper feature extraction, coupled with the
correct geometric threshold for the classes of perimeter structures required. This may risk
obscuring the capability of the techniques developed for feature extraction. The R
intersected algorithm was therefore applied to data from pre-segmented images of
aircraft, and the images contaminated with appropriate boundary noise to simulate noisy
and inefficient segmentation at a pre-processing stage. The results of this activity are

summarised below, using the Hawk trainer of image IS6 as the example.

Noise is added in two ways, as pixellated noise, and as a bulk volume distortion.
The objective is to demonstrate the utility of the feature extraction process under standard

conditions, without the initial problem of segmenting the image.

Pixellated noise was added to the aircraft perimeter, simulating the deviation of
perimeter pixels produced by binarisation of a noisy image. The concave and convex
features were extracted, using the donut set of templates with suitable thresholds (it
should be noted that only the shape of the template matters in this instance - the gradient
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The extraction of features at greater than ten pixels deviation from the original
position may seem rather optimistic. The results were visnally compared with the
distorted images for confirmation that the features were apparently at, or near, the
positions of the distorted corners. At the higher levels of bulk noise, the movement of the
perimeter of the object is genuinely of the order of ten pixels in the image. The extent to
which, however, faith could be placed in this sort of result for recognition purposes is
limited. ~Calculation of scaling and orientation relative to the model pose will be
significantly altered.

As an example, for an object with two identified, well separated features two
hundred pixels apart, the orientation error could be as large as sixteen degrees due to the
feature location inaccuracy, ignoring any other sources of error. Worst case scaling error
could be twenty five percent. For less well separated features, the quality of estimation
deteriorates rapidly.

5.6.1 Comparison of Results with Other Methods

Illing [33, p. 64 - 66] implements a line-fitting algorithm for the discovery of
vertices in object images, and compares it with the points of maximum curvature
detection method of Rosenfeld and Johnston [43].

On the basis of her definition of noise in the boundary (corresponding to the
definition of pixellated noise used here, but generated from a single closed contour before
filling to a solid shape), vertices were detected to within five pixels of their actual locus at
a level of around ninety percent for noise levels of up to one hundred percent,
corresponding to twenty five percent of the boundary pixels being moved by two pixel
positions towards or away from the bulk of the shape, and the resulting open boundary
reconnected. The method we have adopted is capable of matching the rate of success for
the major structural features (indicated above as the control group features, for which the

results for d=5 were identical to those for d=10).

The line fitting algorithm shares a significant benefit with the method of
Rosenfeld and Johnston - it produces very low levels of false hits. This is due to the basic
premise underpinning their calculation, that of an area of high curvature following a
sequence of low curvature of a defined minimum length as the basis of identification of a
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vertex or corner. The R intersected algorithm is prone to multiple hits at a corner (see
Appendix B.4), and, for higher levels of noise, it will introduce false hits as the perimeter
structures become part of the set of recognised structures. The levels of false hits are
relatively low for pixellated noise.

The method of Rosenfeld and Johnston averaged around fifty percent vertex
detection in levels up to 100% noise in Illing’s tests. This is significantly lower than has
been achieved, but their method has the benefit of not requiring a prior selection of the
shape of any vertices sought, other than a basic threshold of inference requirement for the

degree of orientation change of the perimeter.

Both the line fitting method of Illing and the curvature estimation of Rosenfeld
and Johnston are essentially sequential in their approach - they require a sequence of
boundary pixels from which to infer their results. The R intersected method is an isolated
one. The pixel window is considered as an individual entity, down to the level of a single
image pixel as identified by the locations corresponding to its surrounds in the probe
templates used for analysis. For a massively parallel approach, based on simple logic
design rather than extensive processor implementation, this is a distinct advantage, and, in
terms of speed for hardware solution, a decisive one. The process requires the replication
of the data stream, not cross feeding of results; we thus achieve mutual exclusion and

data flow dependency only on the source data.

5.7 Texture Analysis as an Example of Feature Classification

One example of the application of feature detection in a general environment is
the classification of texture. The characteristics of the intensity map of textured samples
potentially include the full range of gradient and shape variations - indeed, the intensity
map spatial profile is the characteristic of the texture in the visual sense. A good feature
identification scheme, if it is not solely tailored to one particular feature but rather permits
identification of a variety of features, might offer a suitable source of extracted features.
If the features extracted are characteristic of the texture, then they could be used for

texture classification.

Any feature extraction scheme results in a simplification of the rich set of

relationships between pixels in the intensity map. One “goodness” measure could be the

159



degree of information reduction achieved in comparison with the quality and resolution of
the classification results. In some ways this mirrors Rutherford’s comments on statistical
interpretation of experimental results, which might be summarised as “if you need to use

statistics to explain the results of your experiment, improve the experiment”.

The successful application of a simple classification strategy with a small set of
features of limited size will only occur if the set of features extracted are characteristic of
the texture, and specific to that texture, in the context of other texture samples. This is
not to say that such a measure of capability is appropriate to all feature classifiers: very
specific classifiers may perform poorly in this kind of application, while fully meeting
their design goals. The evaluation of performance of a feature classifier in such an
application will, however, give a measure of its utility across the general case. To this
end, the R operator was used to generate a histogram of the R values for a sample of

texture with a particular structuring element, as is described in chapter 2 section 2.5.

The analysis is formed as a histogram, H, where, over a sample window size
MxNEe f(x,y), with probe structure k(& ) the individual histogram values are:

H = 21” p =1 where r(x,y) =i,i € CARD(k(E,m))

x,yeM N

The R operator is applied to the image with a particular probe structuring element.
The result is then used to produce a histogram, representing the frequency of occurrence
of each R value within the image calculated as the count of the number of pixels at which
it is found. The histogram is then used as a characteristic signature of the image for that
structuring element. By applying several structuring elements with different geometric
properties, the set of corresponding histograms generated is used as the description vector

for the classification of the texture under analysis.

The set of characteristic histograms for a particular sample window, H, is the
feature classifier, which, for a set of N probe structures would be defined as:

H ,, = {{H},},n = no of probe structuring

elements applied, ne N

160






5.7.1.1 Texture Classification Results - Brodatz Texture Samples

Nineteen samples of 256 by 256 pixels, at 8 bit resolution of intensity were used
in the tests. Six test samples were generated as subsets of the original images, and these
were used to assess the effectiveness of the R histogram as a feature vector for texture
classification. Each sample was assessed against the full set of samples using a minimum
distance classification. A successful classification is assumed where the maximum
distance within the sample group is smaller than the distance to any member of any of the
other groups. The inference of this is that of separation of the feature space into classes
based on a spherical cluster in the dimensions of the feature vectors.

The effects of sample window size on the histograms obtained was evaluated.
The test data samples are of 256x256 pixels, 8 bits intensity resolution. With the largest
size of window, some overlap of values within samples is unavoidable. Whilst this
reduces the value of the data, it does not invalidate it completely. The samples were
chosen to minimise this problem. The results are shown in Tables (14) and (15) below.

The results illustrate a basic point about the use of thresholds in terms of intensity
with the donut template. Any gradient inherently reduces the sensitivity of the probe to
structures within the image of smaller intensity gradient than the template. Thus, in

rejecting “noise”, certain structural information in the image is removed.

Table (14): Application of Single Vector (Donut0.dat Template R Values) with

Brodatz Texture Samples

Window no of samples average no of percentage percentage

Size (MxM) misclassifications  misclassifications correct
classifications

48 684 135 19.7 80.3

72 684 57.68 8.4 91.6

96 684 17.58 2.57 97.4

136 684 0 0 100
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5.7.1.2 Texture Classification Results - Galvanneal Samples

The feature extraction method was then applied to a natural, random texture
sample, using 380 samples of galvannealed steel in five known, calibrated coating
conditions. These images were acquired at a x500 magnification, and were subject in
some cases to depth of field problems causing partial blurring of the acquired image as is
shown in figure (50). The images were of 512 x 512 pixels at 8 bits grey scale resolution.
As can be seen from the results of Table (18), there is a strong correlation between the
coating condition and the optical texture as it was measured, but the classification scheme

is by no means perfect in its present form.

The samples of figure (50)(a) and (b) are under-annealed, sample (c) is near

optimal, and samples (d) and (e) are over-annealed.

Table (18): Classification of Galvanneal Samples

Window Size (MxN) | No of Vectors Used % Assigned to Correct Class (of 380
Samples, 5 Classes)

400x400 15 75

200x200 15 65

400x400 3 60

5.7.1.3 Noise Performance

Salt and pepper noise was added to the Brodatz set texture samples, and the
algorithms run to classify them. In the context of the rank of the containment of the probe
sets, this impulsive noise produces limited distortion of the histogram, but causes the
raising of the outliers in the data (corresponding to no containment and full containment
at a point). The algorithms were adjusted to ignore these outliers, producing a significant

improvement in the performance of the classification scheme (Table (19)).
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Table (19): Noise Performance of Classification Based on the Use of 15 Feature

Vectors

% Noise | Window Size | % Correctly Classified (of | % Correctly Classified on
19 Texture Samples) Removal of Data Outliers

0 150x150 100 100

1 150x150 90 95

2 150x150 79 85

3 150x150 63 70

4 150x150 52 60

5.7.1.4 Boundary Detection

In order to locate boundaries between textures, it is necessary to assign pixels in
close proximity to the boundary to particular texture regions. The larger the probe
structuring element is about the point, the more likely it is to overlap the “other” texture
region. The approach used was to adopt a 96x96 pixel window size, and classify the
regions initially on this basis. Where the classification metric exceeds the permitted
variation, typically near a texture boundary, then the larger sizes of template were
eliminated and the window size halved, down to a limit of 12 pixels window size. All
remaining point are assigned on a nearest neighbour basis. With test data of the form
shown in figure (51) below, the pixel classification was found to be accurate down to the
minimum window size, and the system classified between 30% and 70% of the remaining

pixels correctly, dependant upon the chosen boundary shape.

In practise, the use of the R operator is far more effective in enhancing textures for
segmentation. By choosing which structures to eliminate, and applying an R conditioned
operation (erosion, dilation, duet, or one of the structure detectors), the structural
differences between textures can be increased. Figures 52 (i) - (iv) overleaf illustrate this

for two situations, a natural gravel on chipboard example, and a soft tissue would

perimeter enhancement
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serial task. However, if the initial R extraction is rapid, then the processing times will be
acceptable in comparison with conventional techniques such as the GLCM approach.

For the very large volumes of data likely to be generated by an in-line
classification scheme for galvanneal strip, then the use of mean and variance data will
allow further localisation of clusters. This was not attempted with the roughly fifty
samples per class allocated for off-line consideration.

Comparison with the work of Wang, Haese-Coat et al [19] in terms of noise
performance and discrimination indicate a less effective result for equivalent window
sizes. Their methods require the calculation of grey level mean and variance for each
image calculated by the decomposition discussed in section 1.1, p16. They report results
of between 93.52% and 99.07% classification success with one hundred and eight sub-
images from nine selected classes drawn from the Brodatz set, based on a window size of

sixty four pixels square.

The process adopted requires the successive opening (erosion, followed by
dilation) of the image under test by small structuring elements. After each stage, the grey
level means of the images are calculated. These form the texture features fed to a
Bayesian classifier for analysis. The lowest risk classification is adopted (which is
necessarily an optimal solution to the data). The work earlier in this chapter has achieved
results of between 91.6% and 94% classification success with a window size of seventy

two by seventy two pixels.

The lower classification accuracy is due in part to the non-optimal classification
method adopted, and is compensated to some extent by lower computational intensity.
The numbers of templates and densities of (pixel numbers within) templates are
significantly lower. Given that the R approach does not require the generation of many
intermediate images, the computational approach adopted could offer significant
advantages for in-line usage. Their work is, however, much more suitable for
segmentation of multiple textures within a single image due to the good performance for
small window sizes. It is difficult to justify the use of a one hundred and thirty six pixel
square window, iteratively applied for each pixel in the image, as a valid approach to
rapid identification of texture grouping. Their approach does, as ours, include
consideration of shape as well as size of texture, although in a measure closely linked to

those of granulometry.
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In general analysis and use, there is no practical method of regenerating the
original image from the R results.

In practise, with the classification of Galvanneal samples, the classification
scheme performed well in comparison to a fourteen feature grey-level co-occurrence
matrix technique (see Haralick et al [69] for details). Typical results show that a
performance of between 25 and 45 percent correct classification on a per-sample basis is
likely with these features. Better results should be obtained by mean and variance
analysis of the various features over a larger data sample. Application of Fourier spectra
techniques to the same data produced comparable results, but with vastly greater
computational burden [70].

As an illustration of the generality of the applicability of the template based
feature classification scheme suggested, the above work is a reasonably convincing
demonstration of its utility. In reality we are mapping a correlation between a template
and the surface of the intensity map, as measured by the rank of point under consideration

in its local surface.

5.8 Conclusion

The various methods described have been applied to feature detection for real
images with some success. The nature of the objects used for testing result in multiple
hits at significant perimeter features, as would be expected due to real profiles and

sampling deficiencies.

The extracted data sets were evaluated against human visually extracted
information, being those features regarded as perceptually significant by the test
volunteers. The resulting features were quite close to the visually important points, but a
relatively large number of points were not found. Typically the figure were of the order
of distance 3 pixels from the human assigned point, and around 50% of the points found
for the general set of perceptually significant features, with around 90% of the strongest,
or control group, features identified. The implications of this for the recognition process

will be evaluated in the next chapter.
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Chapter 6: Results and Discussion for Object Recognition
6.1 Introduction

The recognition algorithms developed in Chapter 3 were implemented, and
applied to feature data extracted, as shown in the last chapter, from images of the various
objects. Freedom of rotation, translation and scaling led to a need to interrelate the
extracted features, as is later described, to create comparison models with appropriate
properties for recognition use. The resulting models were compared against reference
model poses for recognition, and the identified features were used to extract orientation
information from the object. The test objects used are relatively well separated, including
the hawk trainer, the concord and the block model from the earlier work for 3-D
recognition.

6.2 Set Erosion

The set erosion process is capable of isolating the loci of containment of a
particular pattern within a data set. This is its primary function. The question of
recognition then becomes one of identifying a suitable range of features to extract from an
acquired image, and then applying a characteristic set of features from the library model
of the required object as a probe set for the erosion process. If the feature set is correctly
chosen, is stable under the image conditions, and is unique, then the full erosion result

indicates the probable presence of the object within the image.

This method was applied early in the project as a strategy for recognition. As can
be seen from the table of results below, it can prodﬁce high quality information. It
became obvious that the method as applied required a highly accurate extraction of
features from the original image. The counter measure developed to prevent this problem
was to spread the lines in the structural pattern spectrum, thus allowing toleranced
deviations within the scope of the library model. It was necessary to sum the side
components within the same tolerance limits in the extracted data. The reasoning behind
this is obvious: it requires a separation of 57 pixels to yield a 1 degree accuracy in
orientation measurement of a straight line. Few features in a 512x512 image are likely to
be of this order of length. In the examples used, the camera focus and field of view were
optimised to ensure exactly this situation. The results obtained are shown in Table (20)
below, and presented in more detail in the 1989 conference paper [37]. A simple

uncertainty measure was included with the recognition information, along with rotation

and scaling.
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The set erosion method was effective, but was felt to be unwieldy. Its problems
become more significant when applied to 3-D objects.

The perimeter definitions were later extracted by edge following and chain code
generation. The simple 2-D shapes lend themselves very well to such an approach. As a
result, the data obtained included both sequences of sides and types of features. The use
of sequences of edge features, independently from the actual approximated loci of the
features, provided a model capable of recognition under these elementary conditions.
Rotation, and scaling, were extracted directly from the set erosion process, where the
offset for alignment of the probe model set yields the rotation, and the ratios of the

longest sides the scaling.

The techniques used rely on the extraction of adequate feature data. With 3-D
objects, the problems of extracting accurate orientations for edges were found to be less
tractable. The degree of inference required to generate adequate data increased
significantly, and became unwieldy when added to the requirement for single line data.

Table (20): 2-D Object Recognition Results using Set Erosion

Shape Recognized Orientation Scale
Actual Calc Err  Actual Calc Err

% %
Square y 0 0 0 0.95 0.96 1
Rectanglel y 10 11 10 3.28 331 1
Rectangle2 y 20 22 10 1.48 1.50 2
Pentagon y 70 70 0 1.77 1.75 1
Hexagon y 4 4 0 1.00 1.03 3
Polygon y 20 21 5 1.60 1.57 2
Chord y 10 8 20 1.20 1.17 3
Trapezoid y 324 322 1 0.95 0.97 2
Uconcave y 10 11 10 0.97 0.95 2
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Table (21): Characterisation of Occluded Shapes

Shape Overlap  Recognize Orientation Scale
(%)
Actual Algorithm Actual Algorithm

Trapezoid 10 Both
and Square Trapezoid -2 -2 1.80 1.70

Square 0 1 1.80 1.67
Pentagon 15 Both
and Square Pentagon 2 4 1.00 1.05

Square 50 52 1.80 1.65

The principal features of the object under test must be included fully in the
extracted feature data for a successful recognition using formal set erosion. If this occurs,
the technique is effective and efficient, using simple integer processing to obtain the
result. Such a requirement has implications for the modelling technique used, in that the
object model must include the various views of the object including the different
combinations of principle features. As has been previously indicated, the 3-D structural
features found most reliable under extraction were corners and perimeter details (which

are most easily extracted when amenable to extraction as 2-D structures).

6.3 RJ Operator

The inherent capability in the RJ operator for handling less complete data proved
a useful enhancement in recognition. The RJ operator is applied to the extracted feature
set, the locus of best fit generated, and the corresponding J sets retained for analysis
where a complete fit is not obtained. This is not a minimum distance classifier strategy as
such, but shares the same basic pair matching philosophy. The locus of highest number
of completely fitted components is used with the grey scale method; using the
multivalued function version, the locus of the best number of completely and partially
fitted components is used. The two RJ methods (greyscale and multivalued function)
differ in the use of the presented data, and, as is shown in the following section, the latter

proved more useful for the extracted data sets, and particularly with overlapping and

partial obscuration in the objects under test.

The feature sets used with this algorithm were extracted using the methods
illustrated in Chapter 5. The problem is one of classification of the given data. For the
most part, the data illustrated has been extracted by different methods but at the same
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scaling. This is not generally the case. Part of the recognition algorithm requirement is to
extract (and compensate) for scaling effects.

6.3.1 Use of Features

Having successfully extracted features from the test images, the next task is to
produce a set of feature attributes amenable to recognition use. The modelling techniques
used have been discussed previously (Chapter 3, section 3.3). As this work suggests, the
relationships created from the features to produce the data set has a significant effect on
its utility for recognition purposes. The extracted features were used to generate data sets
of the types indicated in the following sections. Examples of the data sets are shown in
Appendices B.5, B.6 and B.7.

The feature sets were pre-processed to a limited extent. A minimum separation
limit for features was adopted, and adjacent features of the same type were amalgamated,
limiting the likelihood of multiple responses from a single feature, and sets of concave
and convex features were added to produce the full description of the object. The
different extraction techniques used were then compared, using the accuracy of

recognition as the primary basis of evaluation.
6.3.1.1 Lumped Model

This was generated simply as the sum of the occurrences of high convex
curvatures and high concave curvatures observed within the data. As such, it is an
exceptionally crude model, and obviously highly dependent on a quality initial image. It
is prone to missing features, and easily aliased. The recognition process does not need to
use the R operator: a simple subtraction of counts provides adequate interpretation. The
uncertainty of extraction with the R operator methods with acquired data makes such an

approach untenable.

Model = {n n

convex * " “concave }

6.3.1.2 Modelling by Silhouette Perimeter Sequence of Features

The model was generated from the extracted data by two separate methods:
conventionally, by edge following, chain coding and curvature estimation; and using the
R operator. The former method allows extraction of silhouette perimeter feature

sequence information as a natural result of the technique. In order to obtain sequence
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information from the R approach, the centroid of the extracted features was calculated,
and a sequence generated by orientation estimation in an anticlockwise direction about
that point.

N
Centroid of Features (x,,y,) = 2(%’))—1\';) where (x,,y,) € F
0

R Model = {(type,,8,),..(type,.0,,),..(type,, ,0 )}, where (8, <0, <6)
6.3.1.3 Modelling by Web Skeletons

The model was generated by producing a list of the orientations of all the other
features within the acquired set from each feature in turn. Although this may seem
exhaustive, given the high likelihood of missed features, such an approach maximised the

probability of a correct recognition.

Model = {(type,.0,,)},Vme F.¥neF,
where I = set of extracted features;m,n € F.

The data sets were compared with library models created from data extracted by

eye, using the RJ operator. The results shown below were obtained.

6.3.2 The Results

The tables in the following sections show the results obtained for each of the
modelling methods, using features extracted from the images of Chapter 5. The data is
presented in two forms, firstly for a direct extraction of features with the donut series
templates (annulus height of five grey levels), and then with further optimisation of that
threshold. The added benefit obtained from the use of the R operator is the ability to use
the knowledge of the probable identity of features as a guide to the estimation of roll and

yaw. Where available, both convex and concave features were used.

The quality of the initial feature extraction is of paramount importance to the
generation of successful, accurate recognition data. The increased sophistication of the

modelling techniques has benefits, and permits recognition with less certain feature

information.
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6.3.2.1 Direct Extraction using the Donut Series Templates

The results shown below were based on unprocessed extraction for the R operator
based methods, relying on data with no pre-processing. Fixed geometric and gradient
thresholds were used, in this case based on the donut template series (perimeter values of
five grey levels) and containment of between 2 and 5 pixels for convex features, and of
between 10 and 15 pixels for concave features. This represents an attempt at a direct

automation of the recognition process for the images used.

The chain coded edge following method requires binarisation for use, and the
series of results for this method are generated after the required processing has occurred.

The results are adequate, but produced problems for the objects of low perimeter
curvature (such as the block), and excessive feature generation for the higher contrast

object (the hawk trainer) for convex features.

Table 22: Recognition Results using the R Operator with Sequenced Silhouette
Perimeter Data, Not Optimised for Probe Template Gradients

Object Recognition of Object/Pose by Indicated Method
Edge Mostly Hit, Intersected R Direct R
Following/ Mostly Miss Operator Operator with
Chain Code Transform (Rin) Edge Following
concord yly yly yly yly
rotated yly y/n 1 yly yly
concord
hawk trainer yly yly y/y2 y/y3
block4 y n n y
rotated hawk yly yly y/y2 n/n’
trainer

IFound non-rotated pose.

2Working with concave features only.

3Chain code generator produced description of adequate portion of boundary.
4Symmetrical in each axis - the pose question is not sensible as only one pose exists.

SExcessive generation of spurious results over the tail portion due to low contrast.
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Table 23: Recognition Results using the R Operator with Web Skeleton Data, Not
Optimised for Probe Template Gradients

Object Recognition of Object/Pose by Indicated Method
Edge Mostly Hit, Generalized R Direct R
Following/ Mostly Miss Operator Operator with
Chain Code Transform (Rin) Edge Following
concord yly yly yly yly
rotated yly y/n yly yly
concord
hawk trainer yly yly yly yiyl
block y n n y
rotated hawk yly yly yly n/n
trainer

linsufficient description of boundary, low confidence in result
6.3.2.2 Orientation Estimation

The calculation of yaw, pitch and roll is greatly simplified by the pre-
determination of object type and approximate pose. The acquired features represent
known points of the object. The choice of likely wing tips or nose and tail, for example,
is a trivial task by reference to the acquired and model data, presenting the ideal

information for calculation of orientation.

For the results of table 24 below, the scale was fixed and the objects compared
with the stored model for the pose. The orientation relative to the model pose was

calculated.

As has already been observed in section 5.6, the accuracy of the determination of
feature loci in the extraction process then determines the resolution of orientation. This is
only partially true. The separations of the features used for orientation estimation are
additional sources of error. The deviation is, therefore, indicative of the orientation error
inherent in the adopted process. The use of a single view of the object greatly
exacerbates these problems, in that many of the poses have the object such that its

principal axis is orthogonal to the view. This inevitably increases the errors found.
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Table (24): A Comparison of the Deviations between True and Estimated
Orientations of Objects with Various Extraction Methods

Object Deviation in Yaw/Pitch/Roll with Indicated Method (Degrees)
Edge Mostly Hit,  Generalized R Direct R

Following/ Mostly Miss Operator Operator with
Chain Code Transform (Rin) Edge Following

concord -1.7/22/25 0.4/15/error 0.6/0/0 2.1/14/21

rotated 0.7/18/22 0.3/10/error 0.9/5/10 4.5/16/12

concord

hawk trainer ~ -1.2/19/16 0.9/10/14  notavailablel  not availabie?

block 9.4 not not 6.2

(principal recognised? recognised?

axis)

rotated hawk -0.4/21/16 0.5/9/10 not available! not recognised2

trainer

lGenerated by concave features only, offering limited base for estimation.

2Insufficient description of object in extracted features. Pose information only.

The reliance on point locus estimations for regions of high curvature contributes
to the overall error in the method. The perimeter following, chain code method of
delineating features used a difference method for estimation of orientation. The window
size for the window calculations is then a parameter in the accuracy of delineation. A
smaller window offers a more accurate position estimation, but at the price of higher
susceptibility to noise and lower reliability for larger, structurally more significant,
features. In practice, a balance is chosen, which may, as in this case, yield significant

errors in position estimation but offer good set of structural features for recognition.

The mostly hit, mostly miss method offers a better resolution of position. The
extraction technique is based on a smaller window, this being the size of the template
used. It is, however, prone to elimination of valid features, resulting in difficulties with

the alignment of structures between the model and the acquired data.
The R intersected method is also based on templates. The size of the templates is

a function of the structures sought, but, in general, the smallest of these will be more

localised than is practicable for the chain code method. It is this smallest template that
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defines the localisation of the sought features. The problem here was more one of
insufficient selectivity, rather than the over-selectivity of the MHMMT. This method
produced accurate results, but would require the post-processing of feature data to reduce

the feature count, particularly in the convex structure case.

The views used were not beneficial to the estimation of roll and yaw. The top
view of the objects used initially for the concord and hawk trainer models allows the
worst case estimation of roll and yaw, relying on the apparent change in separations of the
features used. Any error in the position estimation of the features has a marked effect on

the apparent orientations under these conditions.

6.3.2.3 Recognition with Optimisation of Probe Template Gradients

The results of tables 25 and 26 following illustrate the benefits obtained from
optimising the detector for the object features to be extracted and adjusting the gradient
threshold. This was undertaken automatically, the gradient adaptively set to that of the
nearest of the donut nn series template gradients to the average grey level of the image for
single object images. For the test images here, this sets the threshold at between one third

and one half of the average object grey level in the image.

Table (25): Recognition Results using the R Operator with Sequenced Silhouette
Perimeter Data, Optimised for Probe Template Gradients

Object Recognition of Object/Pose by Indicated Method
Edge Mostly Hit, Intersected R Direct R
Following/ Mostly Miss Operator Operator with
Chain Code Transform (Rin) Edge Following’
hawk trainer yly yly yly yly
block?2 y n y y
rotated hawk yly yly yly n/n
trainer

'Results unchanged - data already uses optimised gradients and pre-processing

2 . . . . .
Symmetrical in each axis - the pose question is not sensible as only one pose exists.
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The concord and rotated concord information was unchanged - in the context of
the recognition algorithms used, the features extracted in the initial tests were near
optimal for these images.

Table (26): Recognition Results using the R Operator with Web Skeleton Data,
Optimised for Probe Template Gradients

Object Recognition of Object/Pose by Indicated Method
Edge Mostly Hit, Generalized R Direct R
Following/ Mostly Miss Operator Operator with
Chain Code Transform (Rin) Edge Following
hawk trainer yly yly vy yiyl
block y n y y
rotated hawk yly yly yly n/n
trainer

Hnsufficient description of boundary, low confidence in result

Table 27: A Comparison of the Deviations between True and Estimated
Orientations of Objects with Various Extraction Methods

Object Deviation in Yaw/Pitch/Roll with Indicated Method (Degrees)
Edge Mostly Hit, Generalized R Direct R

Following/ Mostly Miss Operator Operator with
Chain Code Transform (Rin) Edge Following

hawk trainer -1.2/19/16 0.9/10/14 0.0/0.32/14 not available2

block 9.4 6.8 6.2

(principal

axis)

rotated hawk  -0.4/21/16 0.5/9/10 0.5/9/10 not recognised?

trainer

Generated by concave features only, offering limited base for estimation.

2Insufficient description of object in extracted features. Pose information only.

The results presented in tables 25 to 27 above show clearly the benefits of

optimisation of the probe template intensity gradients for the extraction of features. The
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basic adaptive technique used allowed reasonable results with single object images with
relatively low noise backgrounds. A more sophisticated measure would be required for
use under live data conditions with low constraints on lighting and picture contents. The
adaptive optimisation of gradient thresholds for the probe templates for complex images

(multiple objects, noisy background) was not studied as part of this work.

The accuracy of the orientation measures used relates directly to the accuracy of
location of the extracted features. The performance of the algorithm in noise can,
therefore, be assessed in terms of the accuracy of feature location, as is shown in figures
(43) and (46). The accuracy of location of features is quite resilient in the presence of
pixellated noise, but the increasing numbers of false hits offer potential problems for the
recognition process itself.

6.4 Evaluation of the RJ Operator for Classification of Extracted Feature Sets

The problems of feature extraction, and their effects on the recognition process,
having been discussed, the following sections compare the RJ operator as a recognition
technique with standard measures.

6.4.1 A Comparison Between the RJ Operator Method and the Minimum
Euclidean Distance Classification

The basic difficulties are the same: given a partially complete, possibly flawed
description of the acquired image object features, the best fit between the library models
and the object must be obtained, and evaluated for its accuracy and completeness.

With the minimum distance classifier, the library model set is aligned with each of
the features in the acquired set, and an evaluation of the separation of the features
undertaken. This evaluation is in the form of two numbers, the sum of the distances
between the elements of the feature vector, and the square of distances, thus allowing for
cancellation between positive and negative variations. Each feature distance should be
calculated to its closest dual, and, given that a particular feature can only be matched
once, it requires some effort to produce the minimum result. The result is inherently
tolerant of missing features - they have no particular significance in this approach, and
might be included as a separate count or as part of the overall distance calculations. Note,
however, that the inclusion of wholly missing features within the count necessitates a
high quality feature extraction methodology, to prevent the rejection of correct, but

sparse, responses.
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This is not so with the R operator method. Like all erosion-based techniques, this
produces a result conditioned solely on the presence of features. The feature vectors are
shifted and intersected, and it is effectively the separation between feature vectors that is
the determinant of quality of fit. In computational terms, the model set is shifted by each
element of the acquired set, and the resulting partials intersected. This yields a
computational cost for shifts equal to the product of the numbers of features in acquired
and reference sets, the intersections then being a subtraction and comparison for each
element in the first partial. (A little thought will show that the most commonly occurring
partial will be one of those present in the first shifted set).

The result is a count of the components present in both the acquired and the model
data sets. The best fit from the library is initially determined by choosing the result with
the highest R value. It is necessary to introduce a variation about the ideal feature locus,
to accommodate the predictable variations in the feature position inherent in its
extraction. The J set corresponding to the best fit R contains the detailed differences

between the feature vectors.

This similarity measure is based on found and partially found components of the
feature vector, rather than on minimising the alignment differences between the
components in the two sets. It would be expected, therefore, to be less likely to produce
a spurious identification, but more susceptible to errors in the feature loci where the
image is distorted or noisy. The RIJ operator will produce a more reliable result in a

feature dense environment.

We might implement a form of minimum distance classifter by nearest neighbour
measure between each of the complete components in the J set, indicative of completely
missed components in the acquired data, and its nearest dual in that data. This should
give a similar result to implementing a distance classifier with the additional constraint
that a component of the model must align with a component of the acquired set for each

locus at which the distance is calculated.

6.4.2 Evaluation of the RJ Operator for Feature Set Classification in

Comparison with the Hough Transform

Several of the problems Grimson [72] discusses with the use of the Hough
transform are equally applicable to the technique used here. Recognition in both systems
relies on the matching of elements of the object model with instances of those elements in

the extracted feature data. The Hough approach generates ranges of transformations
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consistent with feature pairs. Each transformation is instanced as an increment in the
“bucket” for that particular transformation. The transformation adopted as the solution is
the highest bucket count. The RJ operator method positions the model feature set at each
position in the extracted feature set and evaluates the level of containment. Missing
features are indicated by the contents of the J set for the positions of maximum
containment. The likelihood of a particular position, pose or orientation (equivalent to
the Hough transformation) is indicated by the R value, much as the Hough maximum

probability is indicated by the largest bucket value.

The size of the Hough transform bucket accumulator array is acknowledged as

presenting problems for storage and speed of search [73].

In a feature rich environment, the process of generating possible object instances
from isolated vertices has a considerable likelihood of misclassification of clusters of
vertices as objects, as there is from clusters of sides. The likelihood increases as the
number of vertices increases, and also as the degree of uncertainty about loci of features
is permitted to increase. This presents problems in a multiple object or a texture-rich
environment. The limited set of feature types chosen exacerbates the problem. This is an
unavoidable flaw in the chosen process. The use of confirmatory data such as separation

of features as well as relative orientations can allow additional confidence in the result.

Unlike the Hough transform, the usual applications of which rely on clustering
many lines into a match, the process used here relies on points of high curvature. These
are the end points of lines in the Hough terminology. As a result there is no possibility of

the generation of multiple hits by a line sliding along its own length.

6.4.3 Tightening the Response

The discussion above indicates one of the methods of tightening the response of
the RJ operator for recognition purposes, that of including feature separation in the
evaluation of a response. Given the requirement for loosely constrained scaling, it is vital

that such an evaluation should occur only once an apparent match has occurred.

The other method of reducing the likelihood of false hits is to tighten the
requirement for correct feature orientation, by reducing the permitted deviation from the
required relative positions. Such an approach requires fundamentally good source data,
offering a better input image and hence higher quality vertex location, coupled with a

close proximity between the probe and object intensity gradients and optimal choice of
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geometric thresholds. This would certainly require additional poses for each object
model, the number increasing as the orientation specifications are tightened. Ultimately,
constraints as to lighting, position and rotation would be imposed, taking the situation
outside that the work was aimed at supporting and into the area where simpler techniques
might provide a better solution.

6.5 Number of Poses Required for Recognition of an Object

The number of poses stored varies between objects, primarily dependent on their
structure and complexity. The rotation of the object brings different structural features
into view, while others are obscured. These are compound effects, roll, pitch and yaw all
affecting the single view appearance. The aim must be to provide a sufficiently rich set
of poses to ensure that a limited set of features will consistently recover the required

view.

As a guide, for the objects used in this section of work, the number of views
required varied between three for the cube to twenty four for the Hawk trainer. These

were evaluated by determining the unique poses in the feature sets.

The set of stored poses for the objects was generated by eye. As such, it contains
an inherent set of assumptions about the priority and utility of certain features. As has
been discussed in Chapter S, there is considerable similarity between the perceptually
important points of high curvature and those extracted by the algorithm, but a complete
contiguity is not found. A more objective procedure might offer a better linkage to the
algorithms' strengths. It is likely that a steady rotation coupled with a continuous tracking
of the object features will enable the production of the richest set of poses, based on the
inclusion of a new model as new features appear or are obscured. This set of pose models
would later be minimised for storage, eliminating unnecessary versions. However,

adequate equipment for such a test was not available at the time of writing.

It should be noted that further compression would be obtained for limited object
domains, where differentiation from other objects is more significant than producing its

best description.

6.6 On Occlusion

Recognition can be achieved with partial obscuration of the object, subject to the

constraint that a sufficient body of evidence about the object exists to give a unique
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match. The reconstruction of the object boundary is not a simple task given the method
of recognition adopted - it is feasible to identify the missing vertices, but this yields
insufficient information about which portion of the boundary is absent. The process then
becomes one of aligning the full object image for a pose, stored as a library model along
with the vertices summary, with the apparent position of the pose in the image, and
identifying the missing portions. General comments of the order of “a wing is missing”
(see figure (21)) can be made, but a high utility for reconstruction is not a feature of the
approach. This is an area where the line fitting approaches offer genuine superiority of
performance.

For fixed scale, recognition was achieved reliably with up to thirty percent of the
object removed. It is difficult to draw a general rule for this situation - if the area
removed is contiguous, and carefully chosen then recognition could be claimed at levels
of even eighty percent removal. Common sense, however, mitigates against such claims.
The requirement is simply that enough of the characteristic features of the object remain
in the residual view. The degree of obscuration is only relevant in its relationship to this

requirement, and depends wholly on the object under analysis.

In order to provide an estimate of the utility of the RJ operator method under
obscuration (or missing) of features, a game based test was derived. The algorithm was
run many times on data from which a fixed percentage of the features were removed. The
features were randomly chosen for each test from the acquired data for the Hawk trainer
IS6, including false hits where they occurred in the noisy extraction process. The data set
was then assessed against the library model poses for all the objects with a requirement of
the highest occupancy being set as indicating the best result, and therefore the chosen
object. The results are shown in Table (28) below, for 60% added pixellated noise.

Table (28): Recognition with Partial Object Features under 60% Pixellated Noise

% FEATURES REMOVED | % RECOGNISED
10 100
20 100
30 92
40 84
50 72
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6.7 Limitations of the Algorithms as Implemented

The algorithms as currently implemented are essentially “success orientated”, in
that they are designed to locate the best fit of the given model within the acquired data
set. This poses several problems when the more general problems of, for example, the
bin of parts identification task, where the possibility of overlap and significant
obscuration are likely to occur. The feature rich environment engendered will offer
relatively high containment of various models, whilst the partial occlusion of the objects
will conceal many of the features of the objects sought. The likelihood of false
identification, or of failure to locate the relevant object, is high.

The algorithm is not designed to identify several instances of the object, for
repeated application to the residual features after each more confidently found version is
accepted and removed from the feature world. The current implementation will simply

take the highest confidence locus as the place of the object (singular) within the image.

In order to improve the response under these conditions, the fixing of scale and
the formal inclusion of feature loci in the library model, as well as their relative
orientations and separations, offers one possible path to success.

The model world used for object recognition was relatively small. This inherently
reduces the likelihood of multiple instances of very similar feature sets appearing in the
model library, and consequently reduced the risk of the acceptance of two separate views
as equally valid for the particular acquired feature set. This problem of uniqueness of
view occurs for many recognition systems. The resolution of apparent recognition
contention would require full use of the J sets data, where the added constraints of
consistency with the missing features could offer a directed search to locate data to

support the hypothesised match.
6.8 Comparison with Previous Work

There are two major methods of identifying object and orientation using this type
of structural feature approach. Both methods use the object silhouette as the primary
source of information, when working from single views. The points of high curvature
may be identified, and used as indicators of the object structure. Alternatively, the areas
of low curvature which separate them are used, either as aligned segments of boundary or

to locate the areas of high curvature between them.
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Two methods based on the identification of feature points were adopted by Chien
and Aggarwal [44] and Illing [33]. Chien and Aggarwal reported the use of k-curvatures
to identify the points of high curvature. Their location offered an apparent error in
orientation estimation of better than 5 degrees. With images of objects under noisy
conditions, causing up to 60% of boundary pixels to be perturbed, Illing reported
orientation errors of up to 15 degrees, with an average uncertainty of around 7 degrees,
through the use of boundary section alignment.

The worst case figures found for orientation error in any plane with the R operator
methods was of the order of 16 degrees. This resulted primarily from errors in the
location of features during the extraction process. Errors of up to 25 degrees in
orientation were found with the chain coded method. The ability to recognise objects is
comparable with these other techniques. The relatively few views required for each
object offer computational benefits in use.

Pitas and Venetsanopoulis [16] describe the use of decomposition by morphology
for the classification of objects. This is based on the use of repeated openings to generate
a paradigm for a view of an object, being the largest size of a basic shape (circle,
rectangle, square, triangle) it can contain. The sum of the component parts so defined

forms a reasonable description of the original shape under decomposition.

Its application to pose based model recognition is fairly straightforward. The
method has some of the benefits of global feature based systems: it can deal with large
structures in a single feature; it can offer a good level of noise resilience; but, unlike these
algorithms, it can handle some degree of partial obscuration provided that a syntactic or
graph-like approach to the layout of the primary shapes is adopted. Under obscuration,
the deviation of the features used by this method will be greater than that with the vertex

based approaches.

The method requires the repeated opening of the image, and as such can be
computationally intensive. The number of operations is indicated in the paper to vary
with the order of the number of pixels in the object in the image, which seems overly
optimistic. The object is pre-processed, segmented and binarised, and the problems these
stages entail are not considered in the original work. The same amenability to parallel
implementation occurs here as with the RJ operator approach, but with a larger degree of
data replication due to the whole image dependency of the shape paradigms, and the
sequential nature of the application of the opening process. This may offer problems with

hardware implementation.
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Its performance under pixellated noise (described in section 5.6) is better than that
of the vertex based methods, due to its reliance on the bulk of the view and not its
outliers. It cannot, however, equal the full precision of the vertex based solutions in high
quality image conditions. The separation of vertices is necessarily greater than that of the

centres or control points of the paradigm shapes used in decomposition.

Liu and Srinath [71] use the smoothed curvature of the perimeter contour to
isolate the vertices of curved objects, which form the control points for the object,
breaking the boundary into straight line segments. They state that a target of forty
segments is appropriate. A two pass matching process first matches the pairs of
segments, then possible groups of segments. The distance measure is based on the
chamfer % distance transformation, amended as a partial distance for each segment. Full
classification of the object set with up to twenty percent distortion, for shape scales
between 0.8 and 1.2 times the size of the shape under test, are reported. The method
suggested, based on side alignment, is far more susceptible to the missed vertex problem
than the RJ operator solution. A single missed vertex for an outlying feature will
contribute disproportionately to the distance measure, sharing similar difficulties with the
artificial centre of gravity sequence of features method we have described earlier in
section 3.3.1.2. The results obtained offer little greater accuracy of vertex location than

the chain code method we have described.

6.9 Conclusions

The primary objective of the project was to produce an object recognition system
based on morphological methods. The modified techniques used have proved successful
for the recognition of objects, but required the use of non-morphological techniques for
the generation of models appropriate to the use of the data, particularly under frce rotation
and scaling. This, as a result, fails the objective of maintaining a purely morphological
approach throughout the algorithmic architecture. Some other processing is required to
produce models used for recognition, although this processing is limited. The recognition
process, itself, is once again based on the RJ operator. If rotation and scaling are
controlled, or known, a purely morphological architecture is possible. Pre-calculation

bears the same problems as sophisticating the use of extracted features - these require

conventional processing operations.

Objects within the model set were recognised, and their orientations identified to

within fifteen degrees in the worst case. Recognition under noisy and partially obscured
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conditions was achieved, subject to the requirement that a sufficient portion of the
boundary carrying areas of high curvature remains to form a classifiable data set. The
results are comparable to those obtained by other methods.

A high degree of isolation of processing is achieved in the computation intensive
recognition part of the scheme, provided the source data (the extracted feature set) is
replicated for analysis. The ability to use the same architecture for extraction as for
identification is a significant benefit of this technique.

The recognition results obtained through the use of the multivalued RJ operator
are adequate, and accurately map the feature set to the model pose. This offers benefits in
ease of calculation of orientation. The models respond well to missing features, offering
a reasonable recognition capability with partial obscuration. The reconstruction of the
missing boundary requires a different approach, as the vertex based method adopted
offers only limited information about the area lost.
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Chapter 7: Conclusions and Suggestions for Future
Work



Chapter 7: Conclusions and Suggestions for Future Work
7.1 The Operators

The operators developed as part of this work broadly achieve their initial
objectives. The R conditioned erosion is tolerant of defects in the data set under test,
where formal set erosion is not. This permits defined levels of containment for the
existence of a given element in the result set for binary sets, or a given function value at a

result location for grey scale applications.

The R conditioned erosion operator is equivalent to the application of an “umbra
only” soft morphological filter with a multiple response condition, and a minimum value
calculation over the template area where the condition is not met. The effects of this are
perceptually different: the R conditioned erosion tends to enhance the structures selected
by the combination of probe structuring element and geometry limits more rapidly than do
the soft filters, and retain the ability to generate a form of mostly hit, mostly miss
transform and a meaningful multiple probe result intersection. These have proved useful

for feature extraction and object recognition.

The grey scale R conditional erosion grows the dark areas of an image in much the
same way as formal erosion, but avoids the “blocky” nature of the result and the inherent
destruction of all fine detail (smaller than the applied structuring function area). This may
offer benefits in the preservation of perimeter fine detail in pre-processing. It also permits
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